Article Dans Une Revue Applied Network Science Année : 2024

Synchronization processes in fNIRS visibility networks

Xhilda Dhamo
Eglantina Kalluçi
Eva Noka
  • Fonction : Auteur
Gérard Dray
Coralie Reveille
Darjon Dhamo
Stefan Janaqi

Résumé

We employ Kuramoto model to assess the presence of synchronization in individuals who fulfill a cooperation task. Our input data is a couple of signals obtained from functional Near-Infrared Spectroscopy Data Acquisition and Pre-processing technology that is used to capture the brain activity of an individual by measuring the oxyhemoglobin (HbO) level. We consider 1 min signal for individuals in three distinct states: (i) rest; (ii) before a disturb happens; (iii) after the disturbance. We estimate global and local order parameters synchronization with the purpose to compare the conditions of reaching a synchronous state in the networks corresponding to different states for distinct individuals and hemispheres of the prefrontal cortices of same individual. Experimental results confirmed once more that coherent state is reached not for same conditions in both individuals and hemispheres of the prefrontal cortices. Furthermore, condition changes even for different events. The computation of the effective frequencies for each degree class indicates clearly the network difference in rest, before and after disturb. Finally, we investigate the dynamic connectivity matrix and consider the similarity between distinct prefrontal cortices over time.

Domaines

Santé
Fichier principal
Vignette du fichier
s41109-024-00663-x.pdf (2.65 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04693214 , version 1 (10-09-2024)

Licence

Identifiants

Citer

Xhilda Dhamo, Eglantina Kalluçi, Eva Noka, Gérard Dray, Coralie Reveille, et al.. Synchronization processes in fNIRS visibility networks. Applied Network Science, 2024, 9 (1), pp.53. ⟨10.1007/s41109-024-00663-x⟩. ⟨hal-04693214⟩
37 Consultations
33 Téléchargements

Altmetric

Partager

More