Effect of Excessive Bleeding on the Properties of Cement Mortar
Résumé
The bleeding of cementitious materials corresponds to the settlement of the granular skeleton accompanied by the accumulation of water at the surface (bleed water). Part of this water (internal bleeding) remains trapped under the aggregates (sand or gravel) or the reinforcements. The excess of this trapped water can weaken the bond between the cementitious matrix and the aggregates (or the reinforcements), which affects the mechanical performance and durability of the material. This study aims to investigate the effect of excessive bleeding induced by superplasticizer on the properties of mortars. For this, a study of cement paste bleeding in the presence of superplasticizer was carried out. The effects of the water-to-cement ratio (w/c) and the superplasticizer (SP) dosage on this bleeding have been characterized. Then, the influence of the proportion of sand on the bleeding was examined by varying the sand/cement (s/c) ratio. The water trapped by sand (internal bleeding) was determined by the difference between the external bleeding on the cement paste and the external bleeding on the corresponding mortar. The results show that the internal bleeding increases with the s/c ratio and the SP dosage, until it reaches a plateau. The effect of the internal bleeding on the mechanical properties and the porosity of the mortar were then examined. Microscopic observations were made to assess the quality of the paste/sand bond. The results showed that the internal bleeding causes a degradation of the paste/sand bond (a more porous bond), resulting in a decrease in the mechanical strength (by 30% for compressive strength and 25% for flexural strength) of the hardened mortar.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |