Study of the Impact of Rice Straw Particle Size on the Mechanical and Thermal Properties of Straw Lime Concretes
Résumé
The use of bio-based concretes performed with lignocellulosic aggregates constitute an interesting solution for
reducing the energy consumption, greenhouse gas emissions and CO 2 generated by the building sector. Indeed, bio-based materials could be used as an alternative of traditional materials such as expended polystyrene and mineral resources (e.g. glass and rock wools) for insulation. Furthermore, these bio-based concretes are known for their interesting insulation properties, indeed they allow to enhance thermal properties of buildings and enables moisture management which lead to design efficient building materials. For this purpose, bio-based concrete using rice straw as aggregate are studied in this present work. The impact of the characteristics of rice straw particle (particle size distribution, bulk density, and water absorption capacity, etc.) on both the mechanical and thermal properties of the bio-based concrete are investigated. Five formulations of rice straw concrete are examined, compared and then classified in terms of insulation properties and mechanical properties.
The assessments are based on the measurement of density and thermal conductivity. The variation of compressive strength in function of the characteristics (mean particle length) of rice straw particle are assessed and discussed. The investigation covers also the porosity and density. Tests are also carried out on agricultural by-products with a view to highlight their chemical, physical and structural proprieties.
The results show that the use of large particles with low water absorption capacity induce lighter concretes with the density between 339 and 505 kg/m3 and lead to a high compressive strength with a high mechanical deformability. Furthermore, it appears that an increase in the average length of rice straw particle lead to decrease of thermal conductivity of bio-based concretes. It varies from 0.062 to 0.085 W/(m.K).