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Abstract: Tea is one of the most consumed beverages in the world and presents a great aromatic
diversity depending on the origin of the production and the transformation process. Volatile organic
compounds (VOCs) greatly contribute to the sensory perception of tea and are excellent markers for
traceability and quality. In this work, we analyzed the volatile organic compounds (VOCs) emitted
by twenty-six perfectly traced samples of tea with two analytical techniques and two data treatment
strategies. First, we performed headspace solid-phase microextraction gas chromatography–mass
spectrometry (HS-SPME-GC-MS) as the most widely used reference method for sanitary and quality
controls of food. Next, we analyzed the samples with selected-ion flow-tube mass spectrometry
(SIFT-MS), an emerging method for direct analysis of food products and aroma. We compared the
performances of both techniques to trace the origin and the transformation processes. We selected the
forty-eight most relevant markers with HS-SPME-GC-MS and evaluated their concentrations with a
flame ionization detector (FID) on the same instrument. This set of markers permitted separation
of the origins of samples but did not allow the samples to be differentiated based on the color.
The same set of markers was measured with SIFT-MS instrument without success for either origin
separation or color differentiation. Finally, a post-processing treatment of raw data signals with an
untargeted approach was applied to the GC-MS and SIFT-MS dataset. This strategy allowed a good
discrimination of origin and color with both instruments. Advantages and drawbacks of volatile
profiles with both instruments were discussed for the traceability and quality assessment of food.

Keywords: tea; traceability; volatile organic compounds; SIFT-MS; SPME-GC-MS; volatile profiles;
untargeted analysis; volatolomics

1. Introduction

Tea, produced from buds and leaves of Camellia sinensis plants, is one the most con-
sumed beverages in the world, owing to the diversity of its flavors as well as its health
benefits. Historically originating from China, tea is now produced in a large and diverse
number of countries throughout Asia, Africa, and the Americas [1]. In 2022, the global
production of tea reached 6.7 million tons with China as the leading producer, contributing
to 50% of the world output, followed by India (20%) and the two main exporting nations,
Kenya (8%) and Sri Lanka (4%) [2]. The soil, the climate, the cultivar selection, the asso-
ciated plants, and the finesse of the plucking play crucial roles in the development of the
aromatic potential of tea [3,4]. Moreover, numerous transformation processes of tea leaves
have led to the creation of several tea grades [5,6] with different oxidation, fermentation,
and roasting rates that result in several tea colors (green, oolong or blue-green, black, dark,
red, white, and yellow). According to the FAO, the global tea trade market represents more
than USD 9.5 billon with a median price to USD 2.4 per kg [7]. To protect this market,
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several tea-growing regions developed their labels, for example, Protected Designation of
Origin (PDO) Darjeeling tea from India, Protected Geographical Indication (PGI) for Ceylon
tea (Sri Lanka), and Geographical Indication (GI) for Kenya or Oolong tea from Taiwan. The
aim of these labels is to guarantee consumers not only the geographical origin of the tea,
but also a certain expected quality that justifies its price. However, as for many high value
products, the tea industry faces several types of fraud: mislabeling and false advertising,
substitution of ingredients, adulteration and counterfeit. Thus, tea fraud affects both the
economy, by pushing down prices of legitimate products, undermining the livelihood of
producers, and public health. For consumers, it can lead to consumption of substandard
or even harmful products associated with risks of allergic reactions or long-term health
complications from ingesting chemicals or toxins [8]. The overall structure of the tea chain
varies from country to country but is generally complex, involving numerous small pro-
ducers, cooperatives, and tea factories, with several stages and a wide range of actors, from
production to consumption, which increases the risk of admixture and counterfeit.

Sanitary controls and the certification of labels have, up to now, been the main tools
to reinforce the traceability and authenticity and to restore consumer confidence. Food
traceability includes all the declarative information regarding the geographical course
of the product, from its production to its consumption. Food authentication, on the
other hand, is the global process of verifying the conformity of a product with its label
description, including origin information (species, geographical area, etc.), agricultural
practices (conventional, organic agriculture, etc.), and processing methods.

For the assessment of food authenticity and traceability, control agencies rely on ana-
lytical techniques such as separation techniques coupled with mass spectrometry (LC/MS,
GC/MS), near-infrared spectrometry (NIRS), and isotope ratio mass spectrometry (IRMS)
that have been developed in recent years [9].

In the food industry, the volatile organic compounds (VOCs) are essential due to
their role in the taste and flavor perception. The volatile profile of a food product can be
affected by geographical origin, seasonal variation, manufacturing processes, and storage
conditions. This profile includes a large number of different compounds, sometimes
hundreds of varying chemical classes, that can be present at very different concentrations.
The identification and quantification of VOCs has always been a challenge due to their
diversity and the complexity of food matrices. Headspace (HS) solid-phase microextraction
(SPME) coupled with gas chromatography–mass spectrometry (GC-MS) is one of the most
commonly used methods for the analysis of VOCs in food matrices [10–12]. This technique
allows (1) separation of compounds based on their physicochemical properties and their
affinity for the capillary column, (2) identification thanks to their fragmentation profile
with electronic impact mass spectrometry, and (3) their quantification with calibrations.
The quantification of dozens of volatile markers has been used for VOC analysis of tea
to study different steeping temperatures [13], varieties of cultivars [12,14], fermentation
processes [10,15], and geographical origins [16,17].

In recent years, direct-injection mass spectrometry (DIMS) instruments such as proton-
transfer-reaction mass spectrometers (PTR-MS) or selected-ion flow-tube mass spectrome-
ters (SIFT-MS) have been developed for rapid, non-invasive, and direct on-line measure-
ment of VOCs [18–21]. The selectivity of these technologies is not based on the separation
of analytes but on soft chemical ionization of the VOCs emitted by products. These instru-
ments are becoming increasingly popular due to their high sensitivity and speed [22]. In
the food industry, the SIFT-MS technique has been used as a tool to authenticate olive oils of
Mediterranean origin [23] and their adulteration [24], for geographic traceability of Moroc-
can argan oils [25,26], to discriminate the volatolome from Vitis vinifera berries [27], and to
discriminate cheeses [28,29]. Only a few studies to date have compared the performances
of DIMS and GC-MS for VOC monitoring [30–32].

In this work, VOCs analysis with HS-SPME-GC-MS and HS-SIFT-MS was performed
on 26 tea samples of perfectly certified origins, collected directly from producers in or-
der to assess the sample origin and quality and avoid mixed samples. We evaluated
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two post-treatment strategies of the GC-MS and SIFT-MS results: targeted analysis based
on the monitoring of a list of markers and untargeted analysis based on profiles or fin-
gerprints. The main point of this study is to show that it is possible to re-analyze results
of analyses already recorded with a new strategy to obtain complementary and/or more
effective results.

2. Materials and Methods
2.1. Samples

A tea expert collected 26 tea samples with certified origins directly from the factory.
The 26 teas came from seven different countries: Nepal (n = 3), China (n = 9), Vietnam
(n = 5), India (n = 3), China_Taiwan (n = 2), Sri Lanka (n = 2), and Japan (n = 2), amounting
to a total of twelve different regions, and they had five different colors: green (n = 6), black
(n = 10), dark (n = 3), white (n = 4), and oolong (n = 3) (Table 1).

Table 1. T Description of the tea samples.

Country Region Color Number of Samples

China Jiangsu Black 3

China Yunnan Dark 3

China Zhejiang Green 3

China_Taiwan Ali Mountain Black 1

China_Taiwan Ali Mountain Oolong 1

India Darjeeling Black 3

Japan Kyushu Green 2

Nepal Ilam Valley White 3

Sri Lanka Matara Black 1

Sri Lanka Ratnapura Black 1

Vietnam Lai Chau Black 1

Vietnam Lai Chau Oolong 2

Vietnam Lai Chau White 1

Vietnam Lao Cai Green 1

2.2. Headspace–Solid-Phase Microextraction–Mass Spectrometry–Flame-Ionization Detector
(HS-SPME-GC-MS-FID) Analysis

One gram of dry tea was placed into a 10 mL headspace vial and immediately sealed.
After a headspace equilibration phase at 60 ◦C for 10 min, VOCs were extracted and pre-
concentrated with an SPME fiber (30/50 µm PDMS/DVB/CAR Supelco, St. Louis, MO,
USA) to extract a maximum number of compounds with a wide range of physicochemical
properties. The SPME fiber was exposed to the tea sample headspace for 12 min at 60 ◦C
and desorbed for 5 min at 250 ◦C into a GC-MS/FID injector.

A gas chromatograph (Agilent 7890B, Agilent, Santa Clara, CA, USA) coupled with
an MS detector (Agilent 5977B) and a flame-ionization detector and connected to a mul-
tifunction autosampler (Combi-Pal, CTC Analytics, Zwingen, Switzerland) was used to
analyze the volatile compounds in the tea samples. Separation of the volatile compounds
was achieved with an ELITE-5MS capillary column ((5%-phenyl)-methylpolysiloxane,
30 m × 250 µm, 0.25 µm film thickness, PerkinElmer, Waltham, MA, USA). Helium 6.0 (Air
Liquide, Paris, France) was used as the carrier gas, with a constant flow rate of 1 mL min−1.
The injection port was equipped with a 0.8 mm internal diameter liner and maintained
at 250 ◦C in splitless mode. The oven temperature was initially held at 40 ◦C for 4 min,
followed by a first temperature rise to 90 ◦C at a rate of 15 ◦C/min, held at 250 ◦C for 4 min,
and a second temperature rise to 250 ◦C at a rate of 10 ◦C/min, and then held at 250 ◦C
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for 5 min. The total analysis time was 32 min 33 s. The mass spectrometer was operated
using electron impact (EI) mode with an electron energy of 70 eV. The ion source, transfer
line, and quadrupole temperature were set at 280 ◦C, 250 ◦C, and 150 ◦C, respectively.
Acquisition was carried out in scan mode, with the mass ranging from 15 to 250 atomic
mass units (amu). A GC-MS chromatogram of a sample of tea is presented in Figure S1 in
Supplementary Information. The volatile compounds were tentatively identified using the
standard NIST 14 library for mass spectra. Each tea sample was analyzed in triplicate.

2.3. Headspace-SIFT-MS

Ten grams of dry tea were added to a 1 L bottle. The bottle was fitted with a polypropy-
lene screw cap with two tight connection ports fitted with 0.6 cm PFA tubing. The first one
was connected to the SIFT-MS and the second one to a 1 L Tedlar® bag (Supelco, Bellefonte,
PA, USA) filled with zero dry air (ZeroAir Alliance ZA1500, F-DGSi, Evry, France) to
compensate for the volume used for the SIFT-MS analysis. The closed bottle was previously
incubated for 1 h at 60 ◦C before performing the positive and negative SIFT-MS full scan
analysis.

A SIFT-MS Voice200™ Ultra (SYFT Technologies, Christchurch, New Zealand) equipped
with a dual source producing positive and negative soft-ionizing precursor ions (H3O+,
O2

•+, NO+, O•−, OH−, O2
•−, NO2

−, and NO3
−) in a single scan was used. Nitrogen (Air

Liquide, Paris, France) was used as the carrier gas, and the sample was introduced through
a temperature- (110 ◦C) and flow-controlled (20 mL min−1) sample line (High-Performance
Inlet HPI®). The instrument was calibrated daily with a standard gas containing standards
at 2.0 ppmV in nitrogen (ScottTM gas mixtures, Air Liquid, Plumsteadville, PA, USA). A
blank measurement of each empty bottle was performed before introduction of the sample.
The scanned raw data files containing product ion intensities within the 15–250 m/z range
were collected.

2.4. Data Processing and Statistical Analysis

Hereafter, VOC refers to any volatile organic compound, a marker refers to an identi-
fied volatile molecule, and a profile refers to a set of VOCs that evolve in the same trend in
a group.

• Targeted approach: Two tables were constructed with GC-MS and SIFT-MS results,
corresponding to “pseudo-quantification” of markers for each sample (mean of trip-
licates and samples from same category: region/color). The molecules identified
by GC-MS with a NIST database percentage match higher than 70% were retained
as markers, and the corresponding peak areas were measured using the FID signal
(Table S3). This list of markers was used to construct a quantification method for
SIFT-MS measurements. Thus, the product ions corresponding to these markers were
identified in the data software LabSyft® release 1.6.2 (Table S2). After removing the
conflict ions, corresponding to product ions with the same m/z ratio from different
molecules, a Multi-Ion Monitoring method was developed and applied to the full scan
measurements to quantify these markers (in ppbV). Principal component analysis
(PCA) and partial least square discriminant analysis (PLS-DA) were then conducted
on these datasets to sort samples.

• Untargeted analysis of HS-SPME-GC-MS was performed with ChromCompare+ software
version 2.1.4.1 (Markes International, Bridgend, UK). As described by Spadafora et al., a
data alignment algorithm was applied to one of the 78 chromatograms [33] to overcome
retention-time drift observed across the dataset. The method used the mass spectral
data to automatically align each chromatogram with a ‘reference’ chromatogram. No
additional data pre-processing was necessary. Secondly, an untargeted tile-based ap-
proach was performed on the aligned chromatograms, dividing each chromatogram into
4000 tiles. An initial filtering process was applied with a minimum absolute intensity
of 1000 and a minimum label frequency of 100%. A feature discovery algorithm was
then applied by selecting a descriptive label (country, region, or color). The 400 most
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discriminative features were then extracted with the corresponding pic areas before
statistical analysis (PCA and PLS-DA) and graphical representations.

• Untargeted analysis of SIFT-MS analysis: The algorithm developed in our previous
work was used to extract the 1888 ions produced by the full scan analysis [29]. The data
pre-processing consisted of subtracting the background noise (signal of empty bottle)
for every replicate then averaging the triplicates for each sample to obtain a single
value of signal intensity (count s−1) for each ion. To perform statistical analysis and to
highlight differences between samples, the dataset was cleaned by suppressing the
quantitative variables, which are constant among all samples (variance equal to zero).
R language [34] was used with the “corrplot” package [35] for correlation visualization
and the “MixOmics” package [36] to represent the dispersion and discrimination of
the samples. Supervised methods (sparse partial least squares–discriminant analysis,
PLS-DA) were applied to the datasets. Figure S2 in SI presents an example of Heatmap
sPLS-DA according to the color of tea samples and the 1880 product ions.

3. Results
3.1. Targeted Markers Monitoring Strategy

The objective was first to compare the performance of both VOC analytical tech-
niques (HS-SPME-GC-MS and SIFT-MS) for monitoring of markers and to discriminate
the tea samples according to their origins or transformation processes. From the set of
chromatograms recorded with this tea collection, we looked for compounds that met the
following requirements: they had to be well separated from other constituents by the
chromatographic method, have a high confidence score compared to NIST data (>70%)
for mass spectrometry identification, and present a strong FID signal. We thus selected
48 main compounds expressed in the headspaces of our samples, including 12 alcohols,
11 terpenes, 8 aldehydes, 5 ketones, 3 esters, 4 alkanes, 3 acids, and 2 other compounds
(furan, 2-pentyl, and caffeine). Thirty-seven of the 48 molecules were found in the LabSyft
database, with 138 corresponding product ions. However, among these product ions,
90 were conflict ions, meaning that two or more molecules can generate an ion with the
same m/z ratio. These signals have to be removed for the quantification of markers. Finally,
only 48 product ions were not suspected to be interfered with by another molecule in the list.
Hence, 9 compounds could not be quantified (marked with an asterisk in Table 2). PLS-DA
analysis was applied on each dataset (GC-FID peak areas and SIFT-MS concentrations) to
try to discriminate the two descriptive parameters “Country_region” and “Color”.

Table 2. Molecules identified by HS-SPME-GC-MS. The crosses indicate the unknown compounds in
the LabSyft® database, the check marks indicate the known molecules, and the asterisks indicate the
molecules that were excluded because of conflict ions.

Compounds CAS MM (g/mol) Family SIFT-MS

1-Penten-3-ol 616-25-1 86.13 alcohol
√

*

1-Pentanol 71-41-0 88.15 alcohol
√

2-Penten-1-ol 1576-95-0 86.13 alcohol
√

*

3-Hexen-1-ol 544-12-7 100.16 alcohol
√

*

2-Hexen-1-ol 928-95-0 100.16 alcohol
√

1-Hexanol 111-27-3 102.17 alcohol
√

1-Octen-3-ol 3391-86-4 128.21 alcohol
√

*

Benzyl alcohol 100-51-6 108.14 alcohol
√

Linalool oxide 5989-33-3 170.25 alcohol x

trans Linalool oxide 34995-77-2 170.25 alcohol x

Phenylethyl alcohol 60-12-8 122.16 alcohol
√



Foods 2024, 13, 3996 6 of 16

Table 2. Cont.

Compounds CAS MM (g/mol) Family SIFT-MS

trans-Linalool 3,7 oxide 39028-58-5 170.25 alcohol x

beta-Myrcene 123-35-3 136.23 terpene
√

D-Limonene 5989-27-5 136.23 terpene
√

*

beta-cis-Ocimene 3338-55-4 136.23 terpene
√

*

Linalool 78-70-6 154.25 terpene
√

beat-Cyclocitral 432-25-7 152.23 terpene
√

Linalyl acetate 115-95-7 196.29 terpene
√

D-Carvone 2244-16-8 150.22 terpene
√

Geraniol 106-24-1 154.25 terpene
√

alpha-Longipinene 5989-08-2 204.35 terpene x

beta-Ionone 14901-07-6 192.3 terpene
√

beta-Ionone epoxide 23267-57-4 208.3 terpene x

Pentanal 110-62-3 86.13 aldehyde
√

*

Hexanal 66-25-1 100.16 aldehyde
√

*

2-Hexenal 6728-26-3 98.14 aldehyde
√

Heptanal 111-71-7 114.19 aldehyde
√

Benzaldehyde 100-52-7 106.12 aldehyde
√

Octanal 124-13-0 128.21 aldehyde
√

2,4-Heptadienal 4313-03-5 110.15 aldehyde
√

Nonanal 124-19-6 142.24 aldehyde
√

*

3-Penten-2-one, 4-methyl 141-79-7 98.14 ketone x

2-Heptanone 110-43-0 114.19 ketone
√

Butyrolactone 96-48-0 86.09 ketone
√

5-Hepten-2-one, 6-methyl 110-93-0 126.2 ketone
√

3,5-Octadien-2-one 30086-02-3 124.18 ketone x

Methyl salicylate 119-36-8 152.15 ester
√

Hexanoic acid, methyl ester 106-70-7 130.18 ester
√

Butanoic acid, 2-methyl-, hexyl ester 10032-15-2 186.29 ester x

Decane 124-18-5 142.28 alkane
√

Undecane, 3-methyl 1002-43-3 170.33 alkane x

Dodecane 112-40-3 170.33 alkane
√

Tetradecane 629-59-4 198.39 alkane
√

Acetic acid 64-19-7 60.05 carboxylic acid
√

Hexanoic acid 142-62-1 116.16 carboxylic acid
√

Butanoic acid, 4-hydroxy 591-81-1 104.1 carboxylic acid x

Furan, 2-pentyl 3777-69-3 138.21 furan
√

Caffeine 58-08-2 194.19 heterocyclic compound x

3.1.1. Targeted Origin Discrimination

The mean values of triplicates of the FID peak areas of the 48 different markers were
calculated for every sample. A PLS-DA was then performed on the dataset according to the
descriptive parameter “Country_region” to look for correlations. The results are presented
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in Figure 1A according to the first and the second components of the PLS-DA. Four different
classes of samples were clearly separated: Japan_Kyushu + (circled in green), Nepal_Ilam
Valley × (circled in red), Vietnam_Lai Chau ■ (circled in blue), and India_Darjeeling ▲
(circled in orange). A group of eight samples from different origins (China_Yunnan •,
China_Taiwan_Ali Mountain ▽, Sri Lanka_Matara
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and the three regions of China, circled in black). Only one sample from Vietnam_Lao
Cai ■ was not successfully separated from the other samples with this test. These results
confirmed that tea samples can be sorted according to their origin with GC-MS peak areas,
as previously demonstrated for green teas by Ye et al. 2022 or for black teas by Yun et al.
2021 [16,37]. However, this study showed that this classification can also be achieved with
a collection of teas from different regions and different grades (colors). The contributions
of the 48 molecules to the classification of the samples according to their origin are shown
in Table S1.
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With the same approach, the mean values of triplicates of the HS-SIFT-MS measure-
ments in MIM mode were also calculated for every sample. A PLS-DA was performed
on the dataset, but no clear separation according to the region of origin was highlighted,
neither with components 1 and 2 nor with components 2 and 3 (Figure 1C,D) of the test.
On the contrary, the different samples were spread over the representation, indicating a
high level of heterogeneity. This result may be explained by the small number of ions
that were used for this statistical test. Indeed, the conflict ions inherent to DIMS technol-
ogy greatly limit exploitation of these instruments for the quantification of markers in
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complex matrices. However, Yener et al. succeeded in finding statistical correlations of
VOC profiles of green and black teas according to their origin using PTR-ToF-MS [38]. The
authors selected 257 mass peaks before applying statistical tools to trace the origin of the
green and black teas. With a high-resolution instrument, the authors also succeeded in
tentative identification of a number of chemical compounds (61) corresponding to the most
discriminant ions.

3.1.2. Targeted Transformation Process Discrimination

The same statistical analysis of the mean values of marker signals with HS-SPME-GC-
MS/FID and HS-SIFT-MS was also performed to look for correlations with the descriptive
value “color”, reflecting the different transformation processes of teas. The results presented
in Figure 2 show high dispersion of the samples with the same color. With the separative
technique (Figure 2A), the 3 oolong teas, the 5 green teas, and the 10 black teas tended
to separate from each other. Unfortunately, dark and white tea samples were placed in a
median position and made segregation of the five grades difficult. No more explanatory
information was provided with the third component of the PLS-DA test. Several studies
have already tried to characterize the transformation process of tea with markers. Thus,
Alasalvar et al. investigated the characterization of different quality grades of black teas
from Türkiye using several techniques, including HS-GC-MS [39]. They concluded, re-
garding the importance of the concentration levels of some of the 57 volatile compounds,
that there was no clear distinction between the seven grades. Lin et al. 2013 [14] analyzed
26 VOCs emitted by different varieties of oolong teas using HS-SPME-GC-MS, and they
obtained good separations, with a limit in the misclassification of cheaper products. Zhang
et al. 2013 analyzed several grades of teas (green, oolong, and black) using two-dimensional
GC-ToF-MS after simultaneous distillation extraction, and they succeeded quite well with
the separation of sample colors thanks to 3000 detected peaks, of which, 450 were tenta-
tively identified [40]. Finally, 74 differential compounds allowed discrimination between
the three grades.
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This work with markers was performed with 48 identified molecules. These molecules
were chosen on the basis of the most concentrated and best separated by GC, thereby
allowing for a good match score with the NIST database. Contrary to Whang et al., we
did not succeed in sorting the different sample colors. Nevertheless, the choice of markers
was oriented by the nature of the SPME fiber and the phase of the GC column selected.
These choices were made based on the literature and the aim to detect the widest range of
volatile chemical compounds. Was it the best choice to discriminate the origins or colors of
our samples? Clearly not. With GC-MS, and even more so with SIFT-MS SIM mode, the
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number and the choice of key markers is essential. The emerging approach of untargeted
analysis starts with the hypothesis that the key molecules are unknown and not necessarily
the most concentrated.

3.2. Untargeted Analysis of Volatile Profiles of Teas

The global signals of HS-SPME-GC-MS and HS-SIFT-MS were analyzed to investi-
gate the contribution of the volatile profiles to discriminate tea samples according to the
geographical area of production or color. The post-treatment of the entire raw total-ion
chromatogram (TIC) trace of the chromatograms with ChromCompare+ included an align-
ment protocol, a filtering step, and a feature allowing discovery according to the region or
the color parameter. The 400 features were then further explored to highlight correlations.
For the SIFT-MS full scan measurements, the entire signals for the product ions from a 15
to 250 m/z ratio for the eight different precursors (1880 ions) were analyzed to discriminate
the two descriptive parameters (country_region, and color).

3.2.1. Untargeted Origin Discrimination

The sPLS-DA analysis of volatile profiles obtained by GC-MS allows good discrimi-
nation of the geographical areas (Figure 3A), especially for teas from China_Taiwan_Ali
Mountain ▽ (circled in grey), Vietnam_Lai Chau ■ (circled in red), and Japan_Kyushu +
(circled in green). The other samples were not separated by regions, but three separate
clusters could be drawn. The first (square 1) contained the samples from China_Yunnan •,
Vietnam_Lao Cai ■, and the two provinces of Sri Lanka. The proximity of these samples
cannot be explained by geographical proximity or their proximity with the nearby group
Vietnam_Lai Chau ■. However, the knowledge of the products allowed another reason to
be proposed that could explain these proximities. All these teas were obtained from large-
leaf cultivars of Camellia sinensis, meaning that the cultivar may have a great impact on the
volatile profile of teas. This cluster was nevertheless successfully separated according to the
third component (Figure 3B). The two Chinese provinces Jiangsu • and Zhejiang •, located
in the east of China, also presented high statistical proximity of their volatile profiles. The
geographical proximity may explain this observation and, moreover, the cultivars used in
both provinces are small-leaf teas (square 2). Finally, the teas from India_Darjeeling ▲ had
very similar volatile fingerprints to those from Nepal_Ilam Valley × and formed a third
cluster (square 3). Indeed, these two regions are geographically very close, but the cultivars
used for these teas are also very similar. In addition, the cultivars used for these two regions
are mixtures of small-leaf teas like those used for China_Jiangsu and China_Zhejiang, so
it is consistent to find proximity between these tea samples. The untargeted analysis of
HS-SPME-GC-MS allowed tracing of some of the tea origins as for the targeted analysis
with 48 VOCs, but this approach also highlighted the statistical proximity of GC-MS finger-
prints with the type of cultivars. The elucidation of the tea plant cultivar contribution on
VOCs profiles would be confirmed with phylogenic distance evaluation between samples.
However, the DNA analysis of oxidized or fermented tea leaves is challenging and requires
specific skills.

The results of the sparse PLS-DA analysis from the volatile profiles obtained by SIFT-
MS (Figure 3C,D) also showed good discrimination of tea samples from Japan_Kyushu +
and Vietnam_Lai Chau ■, as previously shown with untargeted GC-MS. The other dis-
criminated groups were China_Zejiang •, China_Jiangsu •, and China_Yunnan • with
the first and the second components of the test. Interestingly, with the representation of
components 2 and 3 of the test, the large-leaf Camellia sinensis samples grouped together in
a cluster, and the samples from China_Taiwan_Ali Mountain ▽ were separated. However,
no clear separation was observed for the India_Darjeeling ▲ samples. Thus, the proximity
of small-leaf Camellia sinensis samples highlighted using GC-MS was not clear according to
the three first components of the sPLS-DA test on SIFT-MS fingerprints.
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3.2.2. Untargeted Analysis According to Transformation Processes

Contrary to targeted analysis with the 48 VOCs, the untargeted data post-treatment
of GC-MS and SIFT-MS full scan analysis allowed good discrimination of tea colors with
components 1, 2, and 3 of the sPLS-DA (Figure 4). Thus, oolong and dark teas were clearly
separated with components 1 and 2 of the GC-MS analysis, whereas the three other grades
were grouped with components 2 and 3 (Figure 4B). From this supervised analysis of the
400-features dataset, the most contributing variables of the components 1, 2, and 3 were
extracted and are presented in Figure S3 SI. From these results, it was possible to go back
to the chromatograms and look for the involved molecules. Then, boxplots of features’
intensities can be calculated (Figure S4 SI). With SIFT-MS analysis, the most different grade
of tea was green tea (Figure 4C). The four other grades were separated with components
2 and 3 of the sPLS-DA (Figure 4D). The color of tea is related to the processing of the
tea leaves after harvesting [2]. The different stages of processing lead to different levels
of oxidation, fermentation, and roasting. Oolong teas are the most oxidized, dark teas
are fermented, and green teas are those that undergo the least amount of processing, as
they are neither oxidized nor fermented. Black teas are generally produced with very
heterogeneous processes depending on the cultures, thus leading to heterogeneous levels of
roasting. These transformation processes of tea, which modify their chemical composition,
were clearly visible by untargeted analysis with either HS-SPME-GC-MS or SIFT-MS.
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4. Discussion

The aim of this study was to compare the performances of two VOC analytical tech-
niques (HS-SPME-GC-MS/FID and HS-SIFT-MS) using a marker-monitoring method and
a volatile profile method to discriminate tea samples with descriptive variables, e.g., the
geographical area of production and the transformation processes. First, our results show
that the monitoring of markers with HS-SPME-GC-MS/FID could discriminate the ge-
ographical area of production of our samples, highlighting the impact of the cultivars,
but did not allow discrimination according to the colors of the teas. However, for this
method, the selection of the key compounds was performed once the chromatograms had
already been obtained, with adapted protocols of HS-SPME extraction and GC separation
of the sample database, thus influencing the choice of compound selection. It appears
that the 48 selected compounds were more discriminating in terms of the geographical
area and cultivar than for the process (color). Second, with SIFT-MS, no discrimination
was obtained with a SIM method established with the same list of molecules, neither for
the origin nor the color. Nevertheless, a lot of conflict ions were found with the LabSyft®

quantification method and then reduced the number of analyzed signals (Table S1). Finally,
only 28 of the 48 compounds were analyzed, with only 48 non-conflict product ions of
the 138 possible ones. SIFT-MS instruments have some well-known drawbacks due to the
ion–molecule reaction in soft-chemical ionization [41]. Isomeric compounds can form the
same product ions with the same m/z signal, which prevents their quantification [42]. By
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knowing the molecules being searched, withdrawal of the conflict ions for the follow-up
can be envisaged. On the other hand, in the case of complex matrices such as foodstuffs,
unknown molecules present in the matrix can generate conflict ions without them being
known. This limits SIFT-MS monitoring for quantification in complex matrices.

Another way to use the data of VOC measurements is untargeted analysis. We
applied post-treatments to HS-SPME-GC-MS and HS-SIFT-MS full scan data to look for
correlations. We demonstrated that untargeted analysis of GC-MS measurements allowed
for the distinction of five geographical origins and grouped several samples that share the
same type of cultivars. This suggests that the 400 most discriminant features selected by
the ChromCompare + software do not correspond with the information provided by the
48 compounds selected with the targeted approach. Indeed, among these 400 features, only
24 molecules on the list were found. The identification of the other molecules was difficult
because of weak correspondence with the NIST Database. This observation may guide
scientists regarding the great importance of the markers used for the discrimination. With
SIFT-MS, the untargeted analysis permitted correlations to be found that were not observed
with the SIM method. It seems clear from these results that the choice of markers is a key
element for samples classification based on descriptive variables. The use of an untargeted
analysis strategy for GC-MS and SIFT-MS measurements avoids any marker-selection bias
and maximizes sample sorting. Five different tea origins were separated with a PLS-DA
analysis of the full scan data. The impact of large-leaf tea cultivars was also highlighted by
this methodology. As with untargeted GC-MS, it is possible to evaluate the transformation
process of teas with untargeted SIFT-MS.

Both analytical methods are relevant for the analysis of VOCs in food matrices. How-
ever, they each have their specific advantages and drawbacks. The comparison of these
two methods based on the following four parameters is summarized in Table 3.

Table 3. Comparison of the two techniques GC-MS-FID and SIFT-MS (the symbol − means that this
parameter is a disadvantage, +/− means that this parameter is neither an advantage nor a difficulty,
the symbol ++ means that this parameter is an advantage).

SPME-GC-FID-MS SIFT-MS

Analysis time − (35 min) ++ (3 min)

Physicochemical selectivity Depends on SPME and GC column phases Depends on reactivity of precursor ions

Compound identification ++ +/− (unit mass resolution)

Quantification in complex matrices ++ (possible with internal or
external calibration) − (conflict ions)

Volatile profile discrimination ++ ++

Speed: Time is an important factor in the food industry, which involves the classi-
fication of a lot of samples. HS-SPME-GC-MS/FID analysis does not require a difficult
preparation step and can readily be automated. However, it takes several tens of minutes
for one sample. HS-SIFT-MS analysis can also readily be automated and does not require a
lengthy preparation, although a full scan record takes 3 to 6 min depending on the number
of precursor ions. This high-speed instrument allows kinetic studies with high throughput.

Selectivity: The selectivity of HS-SPME-GC-MS/FID is based on the composition of the
SPME fiber and the GC column that drives the detected chemical compounds. Separation
protocols (time, temperature, etc.) are generally adapted based on a selection of molecules
that will also drive the resolution. Mass spectrometry detection allows identification
with databases (NIST or other), whereas FID detection allows straightforward and robust
quantification. SIFT-MS provides chemical selectivity with precursor ions. Depending on
the ions, some chemical families can be addressed by this type of instrument. However,
the absence of separation leads to the risk of conflict ions, coming from several analytes
that result in ions with the same m/z ratio. With complex matrices, these conflict ions are
inevitable and require elimination of such inexplicable signals. This data-filtering step
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limits the number of molecules that can be measured at the same time. The unitary mass
resolution of the instrument, the soft-chemical ionizations, and these ion conflicts limit the
identification of unknown molecules in the matrix.

Sensitivity: SPME is a sampling technique that greatly increases the limit of detection
of a given molecule by increasing the time and the temperature of the fiber exposure. How-
ever, with complex matrixes, where a lot of different molecules with different concentration
ranges are mixed, SPME may become saturated by the most concentrated molecule, result-
ing in the less concentrated ones not being detected. Nevertheless, the global sensitivity
of this technique is in the range of ppbV for most VOCs [5]. The sensitivity of SIFT-MS is
driven by the chemical reactivity inside the flow tube and the kinetic constant k provided
in the software database. Only the 400 molecules presently recorded in the database can be
directly quantified with SIFT-MS. If the molecule of interest is unknown, the database may
be updated after calibrations. Most of the VOCs can be detected at a range of ten ppbV
with SIFT-MS [41].

Fingerprints: Both technologies can be exploited with untargeted strategies. For
GC-MS, several software solutions are available on the market. To our knowledge, only
lab-made software solutions are available for SIFT-MS full scan treatment.

5. Conclusions

This preliminary work shows the potential of profile/fingerprint VOC analysis to
discriminate the origin and transformation processing of tea samples. First, it clearly
appears that the choice of markers drives the performance of targeted GC-MS analysis.
In this study, the 48 chosen molecules allowed discrimination of the origin but not the
transformation process. Second, quantification of a long list of markers with SIFT-MS in
SIM mode leads to a high number of conflict ions, thereby limiting the resolution of the
discrimination. Third, post-treatment of GC-MS raw data highlights new correlations with
the transformation process that were not explained with markers. The choice of markers or
features (in the case of ChromCompare + software) was oriented by the composition of the
sample set. The untargeted analysis of SIFT-MS full scan data makes it possible to analyze
complex matrices with statistical profile comparisons. These analyses based on volatile
profiles could be techniques of choice for discriminating products with a label such as a
Protected Indication of Origin (PGI), a Traditional Speciality Guaranteed (TSG), or a label
defining a superior quality. In the current study, a limited number of samples were used,
but the results are promising for further study of a larger number of samples. Separation
according to origin and/or color could be greatly improved with a sample collection more
suited to the purpose. For example, by focusing on the construction of a sample bank of
black teas, discrimination of the geographical origins would probably be achieved more
readily. However, knowledge of the sample was also a key parameter that allowed us to
understand the clustering according to cultivar proximity. We do hope that this work will
encourage teams who carry out traditional VOCs analysis using marker lists to consider
taking their raw data and analyzing it with non-targeted tools. Finally, learning models
could be envisaged in order to highlight fraud by comparison of volatile profiles.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods13243996/s1, Figure S1: chromatogram of a HS-SPME-GC-
MS analysis of tea sample; Figure S2: Heatmap of sPLS-DA of SIFT-MS fingerprints according to
the color with a clustering of tea samples (horizontal) and a clustering of SIFT-MS ions (vertical);
Figure S3: 60 most contributing variables of the sPLS-DA analysis on untargeted GC-MS measure-
ments according to the color of tea; Figure S4: example of features values identified with sPLS-DA
analysis on GC-MS measurements; Table S1: list of the 48 selected compounds for targeted analysis
of HS-SPME-GC-MS-FID analysis and their contribution to the supervised analysis (PLS-DA) ac-
cording to the country; Table S2: Labsyft (release 1.6.2 SYFT®) MIM method for the quantification
of the 28 known tea markers; Table S3: GC-FID peak area intensities of the 48 compounds with the
sample correspondence.

https://www.mdpi.com/article/10.3390/foods13243996/s1
https://www.mdpi.com/article/10.3390/foods13243996/s1


Foods 2024, 13, 3996 14 of 16

Author Contributions: Conceptualization, M.L.B. and M.R.; methodology, M.R.; software, M.R.;
validation, M.L.B. and V.D.; formal analysis, M.R. and M.L.B.; investigation, M.R.; resources, L.G. and
T.P.; data curation, M.R., L.G. and M.L.B.; writing—original draft preparation, M.R.; writing—review
and editing, M.L.B.; supervision, M.L.B. and V.D.; project administration, M.L.B.; funding acquisition,
T.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Conseil Regional Nouvelle Aquitaine (CRNA) [grant number
2019EMVOL].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article/Supplementary Materials, further inquiries can be directed to the corresponding author.

Acknowledgments: The authors want to thank their partner, Lydia Gautier, T Edition, for the supply
of samples and expertise on tea and Olivier DONARD for his precious advice.

Conflicts of Interest: Lydia Gautier was employed by the company T Edition. She participated in
Data curation and Resources by providing samples with metadata that are essential for this work.
The remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References
1. Majumder, A.B.; Bera, B.; Rajan, A. Tea Statistics: Global Scenario. J. Tea Sci. 2010, 8, 121–124.
2. Bermúdez, S.; Voora, V.; Larrea, C.; Luna, E. Global Market Report: Tea Prices and Sustainability; The International Institute for

Sustainable Development: Winnipeg, MB, Canada, 2024.
3. Aaqil, M.; Peng, C.; Kamal, A.; Nawaz, T.; Zhang, F.; Gong, J. Tea Harvesting and Processing Techniques and Its Effect on

Phytochemical Profile and Final Quality of Black Tea: A Review. Foods 2023, 12, 4467. [CrossRef] [PubMed]
4. Ran, W. Comprehensive Analysis of Environmental Factors on the Quality of Tea (Camellia Sinensis Var. Sinensis) Fresh Leaves.

Sci. Hortic. 2023, 319, 112177. [CrossRef]
5. Feng, Z.; Li, Y.; Li, M.; Wang, Y.; Zhang, L.; Wan, X.; Yang, X. Tea Aroma Formation from Six Model Manufacturing Processes.

Food Chem. 2019, 285, 347–354. [CrossRef]
6. Shitandi, A.A.; Muigai Ngure, F.; Mahungu, S.M. Tea Processing and Its Impact on Catechins, Theaflavin and Thearu-

bigin Formation. In Tea in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2013; pp. 193–205,
ISBN 978-0-12-384937-3.

7. Food and Agriculture Organization of the United Nations. International Tea Market: Market Situation, Prospects and Emerging Issues;
Food and Agriculture Organization of the United Nations: Rome, Italy, 2022.

8. Kennedy, S.P.; Gonzales, P.; Roungchun, J. Food Fraud. In Chapter 8. Coffee and Tea Fraud; Academic Press: London, UK, 2020;
p. 414.

9. Shuai, M. Recent Techniques for the Authentication of the Geographical Origin of Tea Leaves from Camellia Sinensis: A Review.
Food Chem. 2022, 374, 131713. [CrossRef]

10. Zhang, W.; Cao, J.; Li, Z.; Li, Q.; Lai, X.; Sun, L.; Chen, R. HS-SPME and GC/MS Volatile Component Analysis of Yinghong No. 9
Dark Tea during the Pile Fermentation Process. Food Chem. 2021, 357, 10. [CrossRef]

11. Biancolillo, A.; Aloia, R.; Rossi, L.; D’Archivio, A.A. Organosulfur Volatile Profiles in Italian Red Garlic (Allium sativum L.)
Varieties Investigated by HS-SPME/GC-MS and Chemometrics. Food Control 2022, 131, 108477. [CrossRef]

12. Guo, X.; Schwab, W.; Ho, C.-T.; Song, C.; Wan, X. Characterization of the Aroma Profiles of Oolong Tea Made from Three Tea
Cultivars by Both GC–MS and GC-IMS. Food Chem. 2022, 376, 131933. [CrossRef]

13. Wang, Z.; Han, B.; Jing, W.; Yi, Z.; Zhang, Y.; Ren, D.; Yi, L. Effects of Different Steeping Temperatures on the Leaching of Aroma
Components in Black Tea by SPME–GC–MS Coupled with Chemometric Method. J. AOAC Int. 2019, 102, 1834–1844. [CrossRef]

14. Lin, J.; Zhang, P.; Pan, Z.; Xu, H.; Luo, Y.; Wang, X. Discrimination of Oolong Tea (Camellia Sinensis) Varieties Based on Feature
Extraction and Selection from Aromatic Profiles Analysed by HS-SPME/GC–MS. Food Chem. 2013, 141, 259–265. [CrossRef]

15. Wu, H.; Huang, W.; Chen, Z.; Chen, Z.; Shi, J.; Kong, Q.; Sun, S.; Jiang, X.; Chen, D.; Yan, S. GC–MS-Based Metabolomic Study
Reveals Dynamic Changes of Chemical Compositions during Black Tea Processing. Food Res. Int. 2019, 120, 330–338. [CrossRef]

16. Ye, N.; Zhang, L.; Gu, X. Discrimination of Green Teas from Different Geographical Origins by Using HS-SPME/GC–MS and
Pattern Recognition Methods. Food Anal. Methods 2012, 5, 856–860. [CrossRef]

17. Reyrolle, M.; Bareille, G.; Epova, E.N.; Barre, J.; Bérail, S.; Pigot, T.; Desauziers, V.; Gautier, L.; Le Bechec, M. Authenticating
Teas Using Multielement Signatures, Strontium Isotope Ratios, and Volatile Compound Profiling. Food Chem. 2023, 423, 136271.
[CrossRef]

18. Biasioli, F.; Yeretzian, C.; Märk, T.D.; Dewulf, J.; Van Langenhove, H. Direct-Injection Mass Spectrometry Adds the Time
Dimension to (B)VOC Analysis. TrAC Trends Anal. Chem. 2011, 30, 1003–1017. [CrossRef]

https://doi.org/10.3390/foods12244467
https://www.ncbi.nlm.nih.gov/pubmed/38137271
https://doi.org/10.1016/j.scienta.2023.112177
https://doi.org/10.1016/j.foodchem.2019.01.174
https://doi.org/10.1016/j.foodchem.2021.131713
https://doi.org/10.1016/j.foodchem.2021.129654
https://doi.org/10.1016/j.foodcont.2021.108477
https://doi.org/10.1016/j.foodchem.2021.131933
https://doi.org/10.5740/jaoacint.18-0405
https://doi.org/10.1016/j.foodchem.2013.02.128
https://doi.org/10.1016/j.foodres.2019.02.039
https://doi.org/10.1007/s12161-011-9319-9
https://doi.org/10.1016/j.foodchem.2023.136271
https://doi.org/10.1016/j.trac.2011.04.005


Foods 2024, 13, 3996 15 of 16

19. Deuscher, Z.; Andriot, I.; Sémon, E.; Repoux, M.; Preys, S.; Roger, J.-M.; Boulanger, R.; Labouré, H.; Le Quéré, J.-L. Volatile
Compounds Profiling by Using Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS). The Case Study of
Dark Chocolates Organoleptic Differences. J. Mass Spectrom. 2019, 54, 92–119. [CrossRef]
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