
HAL Id: hal-04779322
https://imt-mines-ales.hal.science/hal-04779322v1

Submitted on 13 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Analysis of digital twin and its physical object:
Exploring the efficiency and accuracy of datasets for

real-world application
Henry Chima Ukwuoma, Gilles Dusserre, Gouenou Coatrieux, Johanne

Vincent

To cite this version:
Henry Chima Ukwuoma, Gilles Dusserre, Gouenou Coatrieux, Johanne Vincent. Analysis of dig-
ital twin and its physical object: Exploring the efficiency and accuracy of datasets for real-world
application. Data Science and Management, 2024, 7 (4), pp.361-375. �10.1016/j.dsm.2024.04.002�.
�hal-04779322�

https://imt-mines-ales.hal.science/hal-04779322v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Data Science and Management 7 (2024) 361–375
Contents lists available at ScienceDirect

Data Science and Management

journal homepage: www.keaipublishing.com/en/journals/data-science-and-management
Research article
Analysis of digital twin and its physical object: Exploring the efficiency and
accuracy of datasets for real-world application

Henry Chima Ukwuoma a,*, Gilles Dusserre a, Gouenou Coatrieux b, Johanne Vincent b

a Laboratory for the Science of Risks (LSR), IMT Mines Ales, 30100, Al�es, France
b IMT Atlantique, Bretagne-Pays de la Loire, France
A R T I C L E I N F O

Keywords:
Cyber physical systems
Digital twin
Cyber security
Water distribution system
Peer review under responsibility of Xi’an Jiaotong
* Corresponding author.
E-mail address: henry.ukwuoma@mines-ales.fr (

https://doi.org/10.1016/j.dsm.2024.04.002
Received 9 October 2023; Received in revised form
Available online 12 April 2024
2666-7649/© 2024 Xi'an Jiaotong University. Publi
CC BY-NC-ND license (http://creativecommons.org
A B S T R A C T

The concept of digital twin (DT) has recently gained popularity due to its ability to create a virtual representation
of systems in order to improve the performance of its cyber-physical counterpart. This study compares and an-
alyses datasets of DTs and their corresponding physical objects to determine the effectiveness and dependability
of DT technology for practical applications. The research aims to proffer a framework for ascertaining the level of
(dis)similarity between a physical object and its DT equivalent. A study of water distribution (WADI) is put into
perspective. Findings revealed that the proffered framework presents a method for ascertaining a (dis)similarity
level (considering datasets) of a physical object and its DT using adequate statistical tests.
1. Introduction

The concept of digital twin (DT) has most recently been recognized as
a disruptive technology that can completely alter the operations, secu-
rity, and manufacturing tendencies of a cyber-physical system (CPS)
(Attaran and Celik, 2023; Perno et al., 2022). DT provides an innovative
way to gather insights, optimize performance, and make data-driven
decisions in real-time by developing virtual representations of physical
objects, systems, and processes (IBM, 2023). The connection with the
world has changed because of the daily improvement of remarkable
technical breakthroughs brought about by the rise of the digital age.
Digitalization has emerged as a key driver of innovation and develop-
ment across industries, from smart manufacturing to smart cities. DT is
one of the many modern technologies that have garnered considerable
interest because of its tendency to narrow the gap in terms of predictive
intrusion detection and production capabilities between physical objects
and their virtual counterparts (Falah et al., 2020).

A DT is essentially a virtual replica of its real-world counterpart,
which is referred to as a physical system (Ercetin, 2023). The developed
DT simulates its physical counterpart’s behavior and other related
characteristics in real-time from data gathered from sensors, actuators,
IoT devices, and other sources. These capabilities enable businesses to
benefit in terms of predictive modeling, sophisticated analytics, and
real-time data-driven decision-making abilities (Attaran and Celik,
2023). A DT is fundamentally dependent on the datasets it generates in
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order to predict the behavior, enhance intrusion detection, and improve
the performance of its physical equivalent (Varghese et al., 2022). These
synthetically generated datasets play a crucial role in developing and
improving virtual representation, ensuring that the DT holistically cap-
tures the behavior, functionality, and response to diverse operations of
the real object. Equally, physical objects generate datasets via network
devices, sensors, measurements, and observations, which are crucial for
overseeing and managing their operations and further assist in predictive
intrusion detection (Braunegg et al., 2020). The accuracy and efficiency
of physical objects are also based on the datasets they generate. Building
a complete model of a physical object from data gathered from sensors,
historical records, and outside sources enables real-time simulation and
predictive analytics. As a result, DTs have become a potent instrument
with enormous potential that support these predictions or improved
manufacturing processes in industries, including manufacturing,
healthcare, transportation, and urban planning, since they can mimic
physical objects. Therefore, improved manufacturing processes or
intrusion detection capabilities can be tested on the DT before imple-
menting them on physical objects. This approach saves time, energy, and,
most importantly, resources (Moi et al., 2020).

This article aims to delve into datasets that underpin both DTs and
physical objects, examining their similarities and differences, and the
implications for real-time decision-making. For this study, the datasets
considered are those gathered from a CPS system and its digital object
equivalent (data collected from the operations of CPS and its digital
2024
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equivalent). Understanding these differences is crucial for comprehend-
ing the potential advantages and limitations of employing DT technology
in real-world scenarios. This article further investigates the level of
effectiveness and accuracy of a DT and its physical object for use in real-
world applications by comparing and exploring the datasets obtained
from the two entities. In this context, a study of water distribution
(WADI) is undertaken and validated using the C-Town distribution
system.

The remainder of the paper is structured as follows: Section 2 presents
the literature review and background information needed to comprehend
the study. Section 3 explains materials and methods, the study of WADI,
and the proposed architecture for conducting a similarity analysis. Sec-
tion 4 provides results and discussion. Finally, Section 5 concludes the
paper and discusses the scope for future studies.

The proposed framework will serve as a guide to industry and re-
searchers on the possible tests that should be conducted on datasets
generated from both the physical object and its digital object equivalent.
The (dis)similarity between the datasets will aid industry practitioners in
ascertaining what level of decision-making to take and how to improve
the DT or physical asset, as the case may be.

2. Literature review

To establish a framework for ascertaining the similarity or dissimi-
larity of datasets generated by the physical object and its DT counterpart,
the literature domain is perused. However, no framework specifically
tailored for performing this comparison regarding a WADI system is
found. Nonetheless, this study considers the application of statistical tests
and virtual comparison tools for ascertaining the similarity or dissimi-
larity of these datasets. The following studies are reviewed to give a
better understanding of statistical tools adopted in the development of a
test framework.

Mallikharjuna et al. (2023) adopted machine learning for data
pre-processing. The authors also adopted and applied a skewness test
during the data pre-processing phase. The authors noted that a crucial
statistical metric of skewness is utilized to evaluate the asymmetry of
data distribution, emphasizing that skewness can negatively impact how
well machine learning models perform, particularly those that rely on the
assumption that the data is normal or symmetrical. Furthermore, the
authors adopted and applied skewness tests to determine the presence
and degree of skewness in various aspects (variables) of the dataset used
by their study. There are tests to evaluate skewness, such as the
Shapiro-Wilk test, the D'Agostino-Pearson skewness test, and the Pearson
skewness test. In the process of data pre-processing, the proper data
transformation technique is applied after identifying skewed features to
lessen skewness. Depending on the type and degree of skewness in the
data, common transformations include the log transformation, square
root transformation, and box-cox transformation. This application aims
to build a more evenly distributed and representative dataset, ensuring
that the machine learning models can better recognize relationships and
patterns in the data, increasing their generalization and performance.

In the study of comparing multiclass classification methods using the
“Dry Bean Dataset”, Salauddin et al. (2023) used a systematic approach
that integrated numerous techniques and statistical tools. This included
the use of box plots and measures of dispersion and central tendency, to
successfully prepare the data for analysis. In a bid to perform data
pre-processing, the authors meticulously conducted data cleaning to
handle missing values, anomalies, or data errors and achieve data
integrity and accuracy before applying appropriate classification tech-
niques. Box plots were used to understand the data’s distribution and
identify outliers. Box plots present a visual depiction of the range of the
data by showing the quartiles, median, and any potential extreme values.
The authors were able to locate characteristics with significant vari-
ability, skewness, or the presence of outliers by creating box plots for
each feature in the dataset. The datasets were subjected to measures of
dispersion, such as variance and standard deviation. Understanding the
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dispersion aids in determining the unpredictability of the data and any
potential classification difficulties.

Additionally, measures of tendency were applied to the datasets to
provide insights into the typical or average value of the data. Under-
standing the central tendency is essential for imputing missing values and
handling class imbalances. Box plots and dispersion measures assisted in
identifying potential class imbalances in a multiclass dataset, avoiding a
biased model performance. The authors further used data balancing
techniques such as oversampling or undersampling to create a more
balanced and representative dataset. Subsequently, the authors applied
Gradient Boosting, Random Forest, k-nearest neighbors (k-NN), and
support vector machines (SVM) on the dataset.

Moreover, K-fold cross-validation was used to train each approach on
the pre-processed data to ensure accurate model evaluation. Standard
performance metrics like accuracy, precision, recall, and F1-score were
adopted when evaluating the models’ performance on the classification
task. The study used statistical tools like box plots, dispersion measures,
and central tendency to prepare the “Dry Bean Dataset” for comparison
with multiclass classification techniques. These tools helped identify
outliers, manage missing values, and address class imbalances.

Hussain et al. (2023) stated that homogeneity tests are crucial for
identifying the change points or breakpoints in a dataset where a dis-
tribution undergoes a change. The authors suggested the adoption of the
pyHomogeneity package in Python to perform the test for time series or
climate series data. The homogeneity test includes packages for the
Pettitt test, four variants of Buishand’s test, and the SNHT test. The au-
thors applied the approach to a synthetic dataset to identify break points.
The homogeneity test assesses the equal variances of two or more groups
or datasets. It is crucial in statistical analyses like ANOVA, t-tests, and
linear regression. It ensures similar data dispersion across groups, pre-
venting biased results and ensuring statistical analysis validity.

Yang et al. (2022) researched the need to monitor systems and
investigate complex attacks that have long-range sequences using system
auditing. The authors proposed ZEBRA, a system that can harmoniously
combine the search for attack patterns and causal dependency track-
ing—giving security personnel the option to choose between search and
tracking. The proposed system was evaluated using a series of attacks
that further proved the proposed system as very effective and efficient.

Mihai et al. (2022) opined that DT is a technology that replicates the
elements, processes, dynamics, and firmware of a physical system into a
digital counterpart, allowing for seamless monitoring, analysis, evalua-
tion, and prediction. They further stated that it goes beyond traditional
computer-based simulations and analysis, incorporating technologies
like Internet of Things (IoT), artificial intelligence (AI), 3D models,
5G/6G mobile communications, augmented reality (AR), virtual reality,
distributed computing, transfer learning, and electronic sensors. DT of-
fers a platform for testing and analyzing complex systems, which would
be impossible in traditional simulations and modular evaluations. Their
study revealed that the development of DT faces challenges that include
complexities in communication and data accumulation, data unavail-
ability for machine learning models, lack of processing power for
high-fidelity twins, interdisciplinary collaboration, and lack of stan-
dardized development methodologies and validation measures. The au-
thors proffered that as DTs are in the initial stages of development, thus
there is a need for sufficient documentation to address these challenges.

Aheleroff et al. (2021) examined the need to identify the best out of
DT capabilities regarding industrial transformation. The author’s aim
was to determine a DT reference architecture model in the era of Industry
4.0. The authors also proposed DT as a service alongside the proposed
reference model. They also investigated relevant Industry 4.0 technolo-
gies necessary for building DT. The findings of their study revealed that
DT improves by employing Industry 4.0 technologies, such as Cloud, IoT,
and AR, to promote industrial transformation.

Wang et al. (2020) proposed GuardHealth, a decentralized blockchain
system for improved data privacy and sharing that is efficient and secure.
The proposed system can manage sensitive information by adequately
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managing data sharing, data preserving, authentication, and confiden-
tiality by exploiting consortium Blockchain and smart contracts. Graph
neural network provided a trust model while guaranteeing malicious
node detection. Validation revealed that the proposed system possesses
better efficiency compared to other approaches.

Yao et al. (2020) discussed the widespread adoption of the IoT and its
impact on the increasing prevalence of edge computing. The use of edge
nodes, deployed in proximity to device users, is highlighted for its po-
tential to address concerns related to task delay, network bandwidth,
battery life, and data privacy. Emphasizing the importance of enduring
battery life in mission-critical systems, the authors proposed an
energy-efficient task offloading problem based on the alternating direc-
tion method of multipliers (ADMM) in a three-tier mobile edge
computing (MEC) network. Privacy concerns in data transmission among
IoT devices are addressed through the application of differential privacy,
integrating privacy-preserving methods with task-offloading processes.
Simulations and experiments validate the proposed algorithm’s perfor-
mance and convergence.

A study by Farine and Carter (2022) focused on the use of permuta-
tion tests in analyzing animal social network data to test null hypotheses.
Permutation tests are common but can lead to significant type I and type
II errors if they do not accurately simulate the intended null hypothesis.
Two main types of permutations exist: pre-network permutations and
node permutations. Pre-network permutations account for biases like
geographical, temporal, or sampling effects but only suit random social
structure hypotheses. Node permutations are ineffective when nuisance
effects impact observed networks, but they can handle non-random social
structure hypotheses. The authors proposed a solution by adjusting node
or edge values before applying node permutation tests through
pre-network permutations. They assessed error rates via simulations due
to confounding effects in raw data. Their “double permutation” strategy
shows lower elevated error rates than using node permutations alone or
with simple variables. While all approaches can lead to increased type I
errors under specific conditions, the double permutation approach
maintains a 5% error rate even when pre-network permutation testing
yields over 30% type I errors. Their study explores robust inference
methods, including mixed effects models, limited node permutations,
testing various null hypotheses, and creating replicated networks from
large datasets. The authors emphasize acknowledging and integrating
uncertainty in the analysis. In conclusion, they provide a viable approach
to tackle high error rates when testing null hypotheses with social
network data, along with alternative methods for robust inference and a
call to consider uncertainty explicitly.

Boyes andWatson (2022) proposed an analysis framework for all DTs.
They subscribed to the definition of DT by Catapult (2021), which states
that “a live digital coupling of the state of a physical asset or process to a
virtual representation with a functional output” is universal and sec-
tor/domain independent. The author also established a clear-cut differ-
ence between CPS and DT, stating that the cyber element is a critical and
integral component of the CPS while a DT is as described above. Their
study further identified 16 functional components and their character-
istics, which are included in the proposed framework. The approach
suggests that by concentrating only on functionality and not addressing
non-functional requirements, the analysis allows the assessment of
numerous physical and logical instantiations of DT.

de Gois et al. (2020) examined a 71-year rainfall dataset in Rio de
Janeiro, Brazil, adopting normality and homogeneity tests. While the
normality test examines whether a specific dataset follows a normal
distribution (a bell-shaped curve) or demonstrates significant deviations
from it, the homogeneity test assesses whether two or more datasets have
similar variances, indicating comparable variability or significant dif-
ferences in their variability. The authors adopted Shapiro-Wilk and
Jarque-Bera tests for the normality test and Bartlett and Fligner-Killeen
tests for the variance test. Findings from their study revealed that the
71-year rainfall dataset does not follow a normal distribution, and the
Bartlett test outperformed the Fligner-Killeen test for evaluating
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variance. The authors emphasized that to adequately define historical
time series data, it is necessary to perform several statistical tests.

Liu et al. (2019) proffered a novel density-based spatio-temporal
clustering approach that arrests the challenges in detecting hidden dy-
namic patterns in big spatio-temporal data collected from earth obser-
vation systems. The sole aim was to unravel clusters of objects with
similar attribute values occurring together across both space and time.
The approach utilizes density-based clustering, which is known for its
effectiveness in finding arbitrarily shaped clusters and requiring less
prior knowledge about the cluster number. However, existing
density-based methods often suffer from unstable performance due to the
need for user-specified parameters. To overcome these limitations, the
proposed method incorporates permutation tests into the clustering
process. The steps in the proffered approach include calculating the
density of each object on the variance and providing a measure of its
density. A fast permutation test is also applied to identify high-density
objects, i.e., objects with densities significantly higher than expected
by chance. A two-stage grouping strategy is employed to group
high-density objects and their neighbors. This step helps in forming
spatiotemporal clusters by minimizing the increase in homogeneity.
Another permutation test is conducted to evaluate the significance of the
identified clusters based on the permutation of cluster members. Exper-
iments were conducted on both simulated and meteorological datasets.
The results demonstrate that the proposed method outperforms two
state-of-the-art spatiotemporal clustering methods, namely ST-DBSCAN
and ST-OPTICS. The superiority of the proposed method lies in its abil-
ity to identify inherent cluster patterns in spatiotemporal datasets using
permutation tests while also alleviating the difficulty of selecting
appropriate clustering parameters.

Gal and Rubinfeld (2019) opined that data portability and interop-
erability are essential for the global economy. The authors further stated
that data standardization can improve data use by lowering metadata
uncertainties, data transfer obstacles, and missing data. While standards
may restrict private economic activity, they may be necessary for optimal
data analysis benefits. They also presented the benefits of data stan-
dardization, which include interfacing with other datasets. More so,
standardization enhances smoother data flows, improves machine
learning, and easier policing. Challenges of standardization include the
possible creation of negative externalities such as better profiling, pri-
vacy risks, and cybersecurity risks.

Lenhard and Lenhard (2017) stated that the statistical significance of
a finding reveals whether it is likely to be due to random fluctuations in
the data or if it represents a true effect. However, not all statistically
significant results suggest a considerable influence, and some may reflect
phenomena that are not readily apparent in ordinary life. The level of
significance is determined by factors such as sample size, data quality,
and statistical power of the investigation. The authors stated that with
huge datasets, even minor impacts can acquire statistical significance,
which may or may not be practical. Effect sizes are used to quantify the
magnitude of an effect. The authors emphasized that Cohen’s d is one of
the most used effect size measurements, but there are several others,
including Glass’ Delta, Hedges’ g, Odds Ratio, Eta Square, and others.
These effect size indicators go beyond statistical significance to represent
the strength of a phenomenon. It also includes tools for computing effects
from t-tests and ANOVAs.

Gabel and Godehardt (2015) created a dataset comprising pairs of
data points and their respective similarities to train a similarity measure.
Subsequently, the dataset is utilized to train a neural network to repre-
sent the similarity metric. The authors suggest that the network must
identify the most essential characteristics in terms of similarity for both
data points and then combine these features to get a similarity measure
for their approach.

Shirkhorshidi et al. (2015) presented a technological framework for
analyzing, comparing, and benchmarking the performance of various
similarity measures in distance-based clustering algorithms, with a
particular emphasis on high-dimensional datasets. The authors averred
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that while similarity metrics have been extensively researched in two-
and three-dimensional spaces, their behavior in high-dimensional data-
sets has received less attention. The authors assessed the impact of
various similarity measures on the output of clustering algorithms using
fifteen publicly accessible datasets classed as low and high-dimensional.
Using the datasets, their approach aimed to improve reproducibility and
enable future comparisons of new distance metrics to existing ones.
Furthermore, the authors proffered the computation of appropriate dis-
tance measurements for datasets that allow comparisons between newly
developed and classic similarity or distance measurements. Finally, the
authors suggested ways to enhance the accuracy and efficacy of
distance-based clustering algorithms in real-world applications by of-
fering insights into the behavior of similarity measures in
high-dimensional datasets.

Rodríguez del �Aguila and Benítez-Parejo (2011) adopted the concept
of linear regression models to determine relationships between depen-
dent and independent variables (IVs). The authors further discussed
Pearson’s correlation coefficient (r) and the coefficient of determination
(R2) to measure the linear association and the explained variability be-
tween variables. Simple linear regression is explained, with emphasis on
linear equations and hypothesis testing. Their study also adopts multiple
linear regression with a structure that involves multiple IVs and regres-
sion coefficients. The authors emphasized the importance of verifying
assumptions, such as linearity, homoscedasticity, normality of errors,
independence, and collinearity. They presented methods for model
construction and variable selection, including significance levels, Akaike
Information Criterion (AIC), and changes in R2. More so, the process of
goodness-of-fit evaluation is highlighted, involving graphical checks for
normality, linearity, homoscedasticity, autocorrelation, collinearity, and
influential observations. The study provided a comprehensive introduc-
tion to linear regression models, a powerful tool in scientific research for
establishing relationships between variables and making data-driven
predictions.

Furthermore, Dattalo (2013) opined that multivariate multiple
regression (MMR) is a technique for modeling the linear relationship
between multiple IVs and multiple dependent variables (DVs). MMR is
plural since there are many IVs, and MMR is multivariate because there
are several DVs.
2.1. Approaches to conducting similarity

A similarity measure is a quantitative assessment that establishes the
level to which a physical object and a digital equivalent are similar and is
carried out over time and space. The conduct of similarity analysis re-
veals the quality of the DT and provides common ground for comparison.
These similarity measures are applied in areas such as data mining, image
clustering, and recognition (Schleich et al., 2017). However, studies have
shown that in order to validate the two phenomena, statistical processes
should be adopted for easy comparison and to reduce the complexity for
Fig. 1. Proposed framework for testing (dis)similarity between datasets.
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the process of similarity computations (Wright and Davidson, 2020). The
reliance on these computations beacons on the ability to establish a
probability that the inputs, outputs, and validation data all have related
uncertainties for both phenomena. According to Wright and Davidson
(2020), these uncertainties inform how reliant or dependable these
models can be, as revealed in the work of Rasmussen et al. (2015). Yang
et al. (2019) deployed a novel dynamic time wrapping (DTW) algorithm
for the achievement of a remote motion-abnormality detection (dynamic
system). DTW was used as a similarity tool, and comparison confirmed
that the novel DTW is excellent in real-world applications for the
detection of time-changing or speed-changing abnormality. While the
choice of DTW to the case performed very well, it may not be most
suitable for high-dimensional data or data with multiple variables.

Hanoun and Hashim (2019) proffered a novel similarity measure that
used the Manhattan distance to quantify the level of similarity of human
faces (images). The application of Manhattan distance is limited to
grid-like datasets and may not be the most applicable to categorical or
continuous data. Huo et al. (2021) established a measure referred to as
the quality similarity rate used to ascertain tobacco quality control. The
authors applied the similarity regression learning using Mohalanobis
distance. The study embarked only on a qualitative approach, which may
not be sufficient to scientifically quantify the similarity between a
physical and digital object. Khan et al. (2023) explored the standardi-
zation of DT technology, introducing a “correspondence measure”
approach. The authors explored existing methods, highlighting the
importance of interoperability, data privacy, security, and accuracy. The
proffered “correspondence measure” can enhance the standardization
process by providing a standardized measure of DT’s accuracy and reli-
ability. However, there was no practical implementation of the proffered
approach.

Thus, this study proposes an approach and demonstrates with WADI
systems.

3. Materials and methods

The article proposes a framework for comparison between the phys-
ical object and its DT using datasets generated from the two phenomena.
More so, a case of WADI for a CPS is adopted for this study. The proposed
framework comprises statistical tests that will be executed using Python
to ascertain the level of similarity between the CPS WADI dataset and its
DT equivalent. The intent is to establish a framework for comparison for
other DTs as to how similar the DT is to its physical equivalent. Machine
learning is used to apply each statistical test to establish (dis)similarity.
The experiment was conducted on a Dell Precision 3571, system with the
following specifications: a 12th Gen Intel(R) Core(TM) i7-12800H pro-
cessor running at 2.4GHz, equipped with 32 GB of RAM, and a 1TB hard
disk space. The system operated on the Ubuntu 20.04 LTS operating
system. This setup facilitated the installation and execution of the
DHALSIM simulator for the experiment.

3.1. The proposed framework

The proposed framework is based on a dataset acquired from the
physical testbed (iTrust) such that three major attributes that constitute
the major functionality and distribution of water in the distribution
network are considered as input variables into the digital hydraulic
simulator (DHALSIM). The adopted WADI network depicts the physical
connectivity of equipment such as pumps, valves, tanks, pipelines, two
raised reservoir tanks, six consumer tanks, two raw water tanks, and a
return tank (iTrust, 2018). Chemical dosing systems, pumps, booster
pumps, and valves are also included. The WADI network also includes
sensors such as flow indicator transmitter (FIT) and level indicator
transmitter (LIT) (iTrust, 2018). While sensor readings are continuous,
actuator values are discrete.

The application of machine learning methods for a WADI dataset-CPS
arises from the desire to enhance predictive capabilities, optimize system



Fig. 2. Digital twin (DT) water distribution (WADI) cyber-physical system (CPS) network topology (Murillo et al., 2021).

Fig. 3. Features of interest.

Fig. 4. Boxplot for variables from both datasets (after outlier removal).
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operations, and extract meaningful insights from complex and large-scale
data. These methods empower water system operators, engineers, and
decision-makers to make informed choices for the effective and sus-
tainable management of WADI networks.

The attack dataset created in two days has 172,803 iterations or en-
tries and 131 data columns with float64 (128), int64 (1), and object (2)
datatypes with 15 attack scenarios. Furthermore, for normal operations,
which were recorded in 14 days, there are 1,048,571 instances or iter-
ations and 130 features or variables with data types of float64 (128) and
object (2). For this study, the dataset without attacks is considered, which
also served as a baseline dataset for generating a similar dataset from
DHALSIM, which is adopted from Murillo et al. (2021), based on the
values of the tanks (“1_LT_001_PV”, “2_LT_001_PV”, “2_LT_002_PV”).

In the proposed framework (Fig. 1), a series of tests is conducted to
ascertain how similar the two datasets are to improve prediction or
production capabilities.

Fig. 1 shows tests that could be carried out in an attempt to establish
similarity between the datasets obtained for the physical testbed and the
synthetically generated dataset from its equivalent (from the DT). These
tests include ascertaining the number of features in both datasets and the
row count of each dataset. More so, standardization of both datasets to
ensure that both datasets are on the same scale for easy comparison.
Based on the nature of the network topology, three variables are iden-
tified for this case, and subsequently, skewness and normality tests are
carried out on these three selected most valuable features, and the
outcome is compared between the feature pairs from both datasets. Vi-
sual comparison using a boxplot is used to assess the similarity in shape
and values of these selected feature pairs. Additionally, the mean, me-
dian, standard deviation, and variance of the features are assessed.
Linearity, correlation, and (dis)similarity tests are conducted to establish
how the variable pairs behave and are related, and finally, mean absolute
error (MAE) is conducted to determine the error margin between the
three variables (tank) from the physical testbed dataset and the DT test.
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The lesser the error, the closer and more similar the variable pairs are,
while the larger error proves dissimilarity.
3.2. A study of WADI CPS

To implement the proposed framework, datasets are obtained from
iTrust and synthetically generated using DHALSIM (Murillo et al., 2021).
Both datasets are expected to behave alike. Moreover, the proposed
framework will test both datasets to ascertain their (dis)similarities.
Fig. 2 depicts the WADI network topology for the DHALSIM DT.

Fig. 2 shows the flow of water from the source (swat in) to the
destination (consumers), showing the arrangement of tanks, pumps, and
valves.

Fig. 3 shows the process of how the features of interest are extracted
from the two objects for subsequent comparison.

4. Results and discussion

4.1. Implementation of the framework using the datasets

The study applied data standardization to the two datasets. Data
standardization is a phase in data analysis and machine learning that is
performed before the data is analyzed. It entails changing a dataset’s
characteristics (features) to have a consistent scale or distribution (Doug,



Table 1
Features of the two datasets.

Count Physical testbed dataset Digital twin (DT) dataset

Variable count 130 131
Row count (selected) 30,002 30,002
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2023). The goal of data standardization is to bring data to a comparable
level, which is especially crucial when dealing with features measured in
different units or with varying value ranges (Dickie et al., 2018). Stan-
dardization is not always required, although it can provide various ad-
vantages such as equalizing variable scales, enhancing model
performance, speeding up convergence, and making it easy to interpret
for developed models. The concept for applying standardization in the
two datasets is simply to ensure the features that are subjected to the test
are on the same scale. These standardization procedures create compat-
ibility, measurement, similarity, and symbol standards (Gal and Rubin-
feld, 2019).

The three variables from each of the two datasets were extracted to a
new dataset, and data pre-processing and tests were carried out there-
after. For the purpose of this study, the first 30,002 iterations were
extracted from the physical testbed dataset since the simulator was able
to generate 30,002 iterations for the synthetic dataset.

The code below shows how the data was standardized.
# Standardize the variables and create a new DataFrame
scaler ¼ StandardScaler()
standardized_df ¼ pd.DataFrame(scaler.fit_transform(df1), columns ¼

df1.columns)
The provided code standardizes the variables in the DataFrame df1

using the StandardScaler from scikit-learn and creates a new DataFrame
named standardized_df. Standardization (or Z-score normalization) in-
volves transforming the data in such a way that it has a mean of 0 and a
standard deviation of 1.

Table 1 displays the characteristics of the two datasets. Kindly note
that PT stands for physical testbed, and DT stands for DT. For the purpose
of similarity, kindly note that neither dataset contains any form of attack.

Table 1 clearly indicates an extra feature that is contained in the DT
dataset. This implies that the two datasets do not contain the same
number of variables, which necessarily does not affect their similarity
since the DT could capture additional feature(s) to enhance the perfor-
mance of the physical equivalent.

For this study, the most critical components are selected for com-
parison, which are the three major tanks that supply water in the WADI
network. The primary water supply tank and two elevator tanks supply
water to the other segments of the network and to consumers. Based on
the knowledge domain of the WADI topology, the study proposes to use
only these three features from each of the datasets to demonstrate the
(dis)similarity of the datasets as obtained in literature (Bochare et al.,
2014; Groves, 2015; Zhao et al., 2019) in the use of selected features
adoption and usage for constructive analysis.
Fig. 5. Normalization and skewness test of var
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4.2. Standardization and visualization of selected variables

For the rest of the study, three variables, i.e., tank levels (primary
and 2 elevator tanks), are considered from both datasets. The variable
pair includes “1_LT_001_PV” and “T0_LEVEL”, “2_LT_001_PV” and
“T1_LEVEL”, and “2_LT_002_PV” and “T2_LEVEL”, where the preceding
feature in each pair are from the physical testbed and the latter feature
are from the DT synthetically generated dataset.

Both datasets were standardized for ease of comparison. Stand-
ardScaler from scikit-learn was adopted and applied. The Stand-
ardScaler is a pre-processing tool that performs standardization in the
dataset, transforming it to have a mean of 0 and a standard deviation
of 1 for each feature. Subsequently, visualization is carried out using a
boxplot to explain the possible relationships between the variable
pairs.

The code below shows how the process of mean, median, standard
deviation, and percentiles were computed.

# Detect outliers using the IQR method
def remove_outliers_iqr(df, column, lower_bound ¼ 0.25, upper_bound ¼

0.75):
Q1 ¼ df[column].quantile(lower_bound)
Q3 ¼ df[column]. quantile(upper_bound)
IQR ¼ Q3 - Q1
lower_bound ¼ Q1-1.5 * IQR
upper_bound ¼ Q3 þ 1.5 * IQR
return df[(df[column] � lower_bound) & (df[column] � upper_bound)]

# Remove outliers from the standardized data
outlier_removed_df ¼ standardized_df.copy()
for column in standardized_df.columns:

outlier_removed_df ¼ remove_outliers_iqr(outlier_removed_df, column)
# Calculate statistics
statistics ¼ outlier_removed_df.describe().loc[[‘mean’, ‘std’, ‘25%’, ‘50%’,
‘75%’]]
# Plot the box plot for each variable after outlier removal and standardization
plt.figure(figsize¼(10, 6))
outlier_removed_df.boxplot(rot ¼ 45, grid ¼ False)
plt.title(‘Box Plot of Standardized Variables (After Outlier Removal)’)
plt.ylabel(‘Standardized Value’)
plt.xlabel(‘Variables’)
plt.show()

The code above defines an IQR-based (interquartile range) outlier
removal function, applies it to a standardized DataFrame (out-
lier_removed_df), calculates statistics (mean, standard deviation, quar-
tiles), and plots box plots for standardized variables after outlier removal.
Fig. 4 shows a visual comparison of the feature pairs upon outlier
removal.

Comparing the variable pairs in Fig. 4 shows slight pictorial variations
in the shapes of the boxplot for the feature pairs. To further analyze,
Table 2 shows the mean, median, standard deviation, 25th and 75th
percentile of the variable pairs.
iables (a) 1_LT_001_PV and (b) T0_LEVEL.



Table 2
Indices of variable pairs on boxplots.

Variable Mean Median Standard
deviation

25th
percentile

75th
percentile

1_LT_001_PV 0.02 0.11 0.99 �0.82 0.71
T0_LEVEL 0.01 0.41 1.00 �0.85 0.87
2_LT_001_PV �0.10 �0.30 0.87 �0.73 0.33
T1_LEVEL 0.01 0.64 1.00 �0.93 0.85
2_LT_002_PV 0.00 �0.03 1.00 �0.85 0.76
T2_LEVEL �0.01 0.06 0.97 �0.84 0.83
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Table 2 depicts a high level of similarity in direction (positive or
negative) and quantity in values of the mean, median, standard devia-
tion, 25th and 75th percentiles for the 1_LT_001_PV and T0_LEVEL
feature pair. This implies a narrow difference in the above-stated indices,
which clearly shows a high level of similarity. Similarly, for the
2_LT_001_PV and T1_LEVEL pair, only the standard deviation, 25th, and
75th percentiles represent a considerable similarity in terms of their
value. Thus, it can be inferred that the pair has a moderate level of
similarity. Table 2 also reveals a high similarity between 2_LT_002_PV
and T2_LEVEL variables for the mean, standard deviation, 25th, and 75th
percentiles values. It can also be inferred that the variable pair has a high
level of similarity for mean, median, standard deviation, 25th and 75th
percentile.
4.3. Normalization and skewness test for selected features

Subsequently, the Anderson-Darling test is implemented on the
feature pairs to ascertain the normality status of the features. This test is
adopted because the dataset has more than 5,000 observations and is a
more sensitive test. Additionally, the PDF is a statistical term that is used
to characterize the probability distribution of a continuous random var-
iable (Feng et al., 2023). PDF is used to display the nature of distribution
as regards normality to enable easy evaluation.

Skewness test is conducted on the three feature pairs. Skewness is a
statistical term that describes the asymmetry of a probability distribu-
tion. According to Sisodia and Sisodia (2022), it determines whether the
data is skewed to the left (negatively skewed), slanted to the right
(positively skewed), or essentially symmetric (zero skewness). Skewness
is a key tool in analyzing the shape of a dataset’s distribution. The
Shapiro-Wilk test is used to ascertain skewness in the dataset. It works
well with bigger datasets and is not affected by the number of observa-
tions. The Shapiro-Wilk test is well-known for its precision and
dependability, and it can produce reliable results even when there are a
high number of observations. It is frequently recommended as a viable
choice for verifying the skewness of continuous data, particularly with
big datasets.

The code below shows how the skewness and normality tests are
conducted for the features.
Fig. 6. Normalization and skewness test of var
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# Perform the Anderson-Darling test and classify variables as normalized or
not
def check_normality(data, significance_level ¼ 0.05):

normal_vars ¼ []
non_normal_vars ¼ []
for column in data.columns:

statistic, critical_values, significance_levels ¼ anderson(data[column])
if statistic � critical_values[2]: # Compare the test statistic to the 95%
critical value

normal_vars.append(column)
else:

non_normal_vars.append(column)
return normal_vars, non_normal_vars.

# Check normality of each variable
normal_vars, non_normal_vars ¼ check_normality(standardized_df)
# Plot separate charts for each variable indicating if it’s normal or not
for column in standardized_df.columns:

plt.figure(figsize¼(6, 4))
plt.hist(standardized_df[column], bins¼ 20, alpha¼ 0.7, density¼ True)
sns.kdeplot(standardized_df[column], color ¼ ‘red’, label ¼ ‘PDF
Curve’)
plt.axvline(standardized_df[column].mean(), color ¼ ‘green’, linestyle ¼
‘dashed’, linewidth ¼ 2,

label ¼ ‘Normal’ if column in normal_vars else ‘Not Normal’)
# Add mean, median, and skewness annotations at the right bottom of the
chart

skewness ¼ standardized_df[column].skew()
plt.text(0.85, 0.05, f’Mean: {standardized_df[column].mean():.2f}\

nMedian: {standardized_df[column].median():.2f}\nSkewness: {skew
ness:.2f}’,

transform ¼ plt.gca().transAxes, fontsize ¼ 10, bbox ¼ dict(-
facecolor ¼ ‘white’, alpha ¼ 0.8))

plt.title(f’Histogram of {column}’)
plt.xlabel(‘Standardized Value’)
plt.ylabel(‘Density’)
plt.legend()
plt.grid(True)
plt.show()
The code conducts the Anderson-Darling test for normality on each

variable in a standardized DataFrame (standardized_df). Variables are
classified as either normal or non-normal based on the test results. It then
generates separate histograms for each variable, overlaying a kernel
density estimate (PDF Curve, PDF), mean line, and a label indicating
whether the variable is normal or not. Additional annotations include
mean, median, and skewness information.

Figs. 5–7 depict the normality and skewness tests for the selected
standardized features.

Fig. 5(a) reveals that 1_LT_001_PV is a slightly left-skewed distribu-
tion (�0.160630) and its not normally distributed. Fig. 5(b) shows that
the variable T0_LEVEL is also a slightly left-skewed distribution
(�0.646385) and not normally distributed.
iables (a) 2_LT_001_PV and (b) T1_LEVEL.



Fig. 7. Normalization and skewness test of variables (a) 2_LT_001_PV and (b) T2_LEVEL.

Fig. 8. Mean absolute error (MAE) for each feature pair.

Table 3
Correlation coefficient of variable pairs.

Variable pair Correlation coefficient

1_LT_001_PV and T0_LEVEL �0.009
2_LT_001_PV and T1_LEVEL �0.015
2_LT_002_PV and T2_LEVEL �0.013
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Fig. 6(a) depicts the PDF curve for variable “2_LT_001_PV”, and with a
significant right-skewed distribution (0.95330) and is not normally
distributed. Fig. 6(b) depicts the PDF curve for variable “T1_LEVEL”, with
a slightly left-skewed distribution (�0.691317) and its not normally
distributed.

Fig. 7(a) depicts the PDF curve for variable “2_LT_002_PV”, with a
relatively weak right-skewed distribution (0.158863) and is not normally
distributed. Fig. 7(b) depicts the PDF curve for variable “T2_LEVEL”, with
a relatively strong right-skewed distribution (1.567730) and not nor-
mally distributed. Thus, it can be deduced from Figs. 5(a) and 5(b),
Figs. 6(a) and 6(b), and Figs. 7(a) and 7(b) that each variable pair has low
similarity with its varying directions as regards skewness (left or right).

4.4. Linearity test for selected features

The study adopts the correlation coefficient test to establish the de-
gree to which the featuree pairs are associated in a linear space. A sta-
tistical measure known as the correlation coefficient evaluates the
strength and direction of a linear relationship that exists between two
continuous variables. It is represented by the symbol “r” and has values
ranging from �1 to 1 (Jawabreh et al., 2020). More so, a correlation
coefficient of þ1 shows a perfect positive linear relationship, which
means that the two variables increase concurrently. A correlation coef-
ficient of �1 depicts a complete negative linear relationship, which im-
plies that as one variable increases, the other decreases proportionally. A
correlation coefficient close to 0 implies that the variables have a weak or
no linear relationship.

The code below shows how the correlation coefficient tests were
conducted to ascertain the level of linearity in the feature pairs.
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# Select the two variables for which you want to calculate the correlation
variable1 ¼ ‘1_LT_001_PV’
variable2 ¼ ‘T0_LEVEL’
# Standardize the selected variables and create a new DataFrame
scaler ¼ StandardScaler()
scaled_df ¼ pd.DataFrame(scaler.fit_transform(df1[[variable1, vari-

able2]]), columns ¼ [f’{variable1}_scaled’, f’{variable2}_scaled’])
# Calculate the correlation coefficient between the two standardized

variables
correlation_coefficient ¼ scaled_df[f’{variable1}_scaled’].corr(scaled_df

[f’{variable2}_scaled’])
This code selects two variables, “1_LT_001_PV” and “T0_LEVEL”,

standardize them, and calculates the correlation coefficient between the
standardized versions. The result indicates the strength and direction of
the linear relationship between the variables. The process is repeated for
the other feature pairs. Furthermore, the three feature pairs are subjected
to the correlation coefficient test. Table 3 shows the values obtained.

Table 3 indicates a correlation coefficient of �0.01 for “1_LT_001_PV
and T0_LEVEL” and “ 2_LT_002_PV and T2_LEVEL” pairs respectively
while “2_LT_001_PV and T1_LEVEL” has �0.02 implying an extremely
weak and almost negligible negative linear relationship between the
feature pairs. This suggests that there is almost no linear association
between the features and that the variable pairs have similar values,
which could be why the pairs do not increase or decrease simultaneously.
4.5. Similarity distance test

The study adopted the Euclidean distance measure to ascertain the
similarity between the feature pairs. The code below shows the process of
computing the Euclidean distance between the variable pairs.

# Get the two variables of interest
variable1 ¼ ‘1_LT_001_PV’
variable2 ¼ ‘T0_LEVEL’
# Compute the Euclidean distance between the two variables
euclidean_distance ¼ np.linalg.norm(scaled_df[variable1]-scaled_df

[variable2])
# Compute the pairwise squared Euclidean distances
pairwise_squared_distances ¼ np.sum((scaled_df[variable1]-scaled_df

[variable2]) ** 2)
# Compute the variance between the two variables
variance ¼ np.var(scaled_df[variable1]-scaled_df[variable2])
# Compute the standard deviation between the two variables



Table 4
Euclidean distance of variable pairs.

Variable pair Mean Euclidean
distance

Sum of pairwise
squared Euclidean distances

Variance Standard deviation

2_LT_002_PV and T2_LEVEL 246.5455 60,784.7018 2.0260 1.4234
2_LT_001_PV and T1_LEVEL 246.7830 60,901.8729 2.0299 1.4248
1_LT_001_PV and T0_LEVEL 246.0609 60,545.9839 2.0181 1.4206

Fig. 9. C-town topology (Taormina et al., 2018).
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std_deviation ¼ np.std(scaled_df[variable1]-scaled_df[variable2])
This code calculates various distance metrics and statistical measures

between two variables, “1_LT_001_PV” and “T0_LEVEL”, that have been
standardized. It includes the Euclidean distance, pairwise squared
Euclidean distances, variance, and standard deviation between the two
variables. The outcome of the similarity is shown in Table 4.

Euclidean distance is a standard measure used to quantify the dis-
tance or dissimilarity between two points in a multidimensional space
(Roisenzvit, 2023). The mean Euclidean distance between the pairs in
Table 4 indicates the average distance between data points of these pairs.
Lower values of the mean Euclidean distance imply that the data points
are mapped closely together in the multidimensional space, suggesting
higher similarity between the variables. Similarly, the sum of pairwise
squared Euclidean distances depicted in Table 4 provides an aggregate
measure of the overall separation between the data points of the variable
pair. A lower sum indicates that the points are more tightly clustered,
indicating higher similarity. The variance and standard deviation of the
variable pairs also reflect the spread or variability of the data points
around the mean Euclidean distance. Lower variance and standard de-
viation indicate that the data points are relatively close to each other,
suggesting higher similarity. The test shows that the pairs are highly
similar.
Fig. 10. Boxplot for tank levels (features) from both datasets (C-town) (after
outlier removal).
4.6. MAE test

MAE is a statistical measure of errors between two observations
reflecting the same phenomena. It is also a metric used to measure the
accuracy of a model’s predictions. That is, it calculates the average
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absolute difference between the predicted values and the actual values.
Fig. 8 shows values from the computations of the MAE for the variable
pairs. The code below shows the process of computing the MAE between
the variable pairs.

# Calculate the MAE for each pair of variables
mae_1 ¼ (df_scaled[predicted_variable_1]-df_scaled[observed_variable_1]).

abs().mean()
mae_2 ¼ (df_scaled[predicted_variable_2]-df_scaled[observed_variable_2]).

abs().mean()
mae_3 ¼ (df_scaled[predicted_variable_3]-df_scaled[observed_variable_3]).

abs().mean()
This code computes the MAE between predicted and observed values

for a specific variable pair in a scaled DataFrame.
These MAE values represent the magnitude of the difference between

the standardized expected and observed values. Lower MAE values show
that the standardized anticipated values are closer to the standardized
observed values, whilst higher values indicate that there are more dis-
parities between the standardized predictions and observations. In this
case, we have lower values, which suggests that the three variable pairs
are similar with minimal error.

4.7. Validation using the C-town topology (physical testbed and DT
datasets)

The study validates the approach by applying the framework to
another CPS WADI system to establish how effective the proposed
framework is and also to ascertain if a level of similarity can be estab-
lished. Note that the same codes used for the WADI topology test were
used for this use case. A C-Town dataset was obtained from Cambrun
et al. (2019) for the physical testbed, and its equivalent was generated by
DHALSIM (Murillo et al., 2021). The topology of the WADI is depicted in
Fig. 9. C-Town comprises 388 junctions, 429 pipes, 7 storage tanks, 5
valves, 11 pumps, and a reservoir.



Table 5
Features of the two datasets (C-town).

Count Physical testbed dataset Digital twin (DT) dataset

Variable count 45 428
Row count (selected) 5,000 5,000
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4.7.1. Dataset features
For validation, the most critical components are selected for com-

parison, which are the sevenmajor tanks that supply water in the C-Town
network. Thus, the study proposes to use only 7 features (tank levels)
from each of the datasets to establish the (dis)similarity of the datasets as
obtained in the literature (Bochare et al., 2014; Groves, 2015; Zhao et al.,
2019), which is also based on the knowledge of the topology. For the
purpose of this study, the first 5,000 observations are selected.

From Table 5, it can be observed that the features in the two datasets
vary and could be a result of the DTs’ simulation of additional functions
compared to the physical testbed. This enhances the digital representa-
tion by incorporating extra information that might not be easily
measurable in the physical system (Flumerfelt et al., 2019).

4.7.2. Standardization and visualization of seven tank variables
As applied in the WADI CPS case, for the C-Town CPS, features of

interest are selected, and seven variables (tank levels) of each dataset are
standardized to transform the data into a common format, making it
consistent and comparable, placing them on a common scale to remove
variations that might arise due to different measurement units or scales
within the dataset.
Fig. 11. Normalization and skewness test of variables (a
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Seven feature pairs are considered from both datasets which include
“L_T1” and “T1_LEVEL”, “L_T2” and “T2_LEVEL”, “L_T3” and “T3_LEVEL”,
“L_T4” and “T4_LEVEL”, “L_T5” and “T5_LEVEL”, L_T6” and “T6_LEVEL”
and “L_T7” and “T7_LEVEL” The preceding features in each pair are from
the physical testbed, and the latter variables are from the synthetically
generated DT dataset. The datasets were standardized using Stand-
ardScaler from scikit-learn, upon pre-processing. This transformed the
dataset to possess a mean of 0 and a standard deviation of 1, which were
then visualized using a boxplot to explain relationships between pairs.
Fig. 10 shows a visual comparison of the pairs upon outlier removal.

By contrasting the pairs in Fig. 10, it can be inferred that very slight
pictorial variations exist in the shapes of the boxplot for the feature pairs,
with each pair showing a very similar shape. To further analyze, Table 6
shows the interquartile ranges, mean, median and standard deviation of
the variable pairs.

Table 6 depicts a high level of similarity in direction (positive or
negative) and quantity in values of the mean, median, standard devia-
tion, 25th, and 75th percentiles.

Juxtaposing the statistical measures (mean, standard deviation, and
quartiles) for each feature pair. Findings revealed that for “L_T1” and
“T1_LEVEL,” “L_T2” and “T2_LEVEL,” and “L_T3” and “T3_LEVEL” pairs,
the quartiles (25th, 50th, 75th) and standard deviation are highly similar
in values, but the mean showed some variation in similarity. More so, for
“L_T4” and “T4_LEVEL”, the quartiles (25th and 75th) and standard de-
viation are highly similar in values, but the 50th percentile showed some
variation in similarity. The “L_T5” and “T5_LEVEL” variable pair showed
a very high similarity in values for the mean, standard deviation, and
quartiles. Lastly, for the “L_T6” and “T6_LEVEL” and “L_T7” and
) L_T1”, (b) T1_LEVEL”, (c) L_T2 and (d) T2_LEVEL.



Table 6
Features of the two datasets (C-town).

Variable Mean Standard
deviation

25th
percentile

50th
percentile

75th
percentile

L_T1 0.000575 1.000384 �0.87537 0.079703 0.906413
T1_LEVEL �0.00046 1.000788 �0.83292 0.131777 0.837254
L_T2 �0.00125 1.000361 �0.80343 0.136142 0.878828
T2_LEVEL 0.00004 1.000129 �0.81256 0.034233 0.811887
L_T3 �0.0001 1.00034 �0.85829 0.051974 0.871116
T3_LEVEL 0.000042 1.000298 �0.85233 0.054737 0.871025
L_T4 �0.00031 1.000552 �0.79166 0.025706 0.812818
T4_LEVEL �0.00023 0.999625 �0.7948 �0.02571 0.848618
L_T5 0.000711 1.000529 �0.85008 0.020058 0.850139
T5_LEVEL 0.000369 0.99985 �0.86316 0.00292 0.858283
L_T6 0.007048 0.990906 �0.67941 0.736366 0.736366
T6_LEVEL �0.00162 1.000379 �0.87527 0.535144 0.84824
L_T7 0.003172 0.998867 �0.78722 �0.05722 0.818109
T7_LEVEL �0.00047 1.000201 �0.75807 �0.16198 0.797444
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“T7_LEVEL” pairs, the quartiles (25th, 50th, and 75th) and standard
deviation are highly similar in values, but the mean showed some vari-
ation in similarity.

4.7.3. Normalization and skewness test for selected seven feature pairs
Anderson-Darling test is implemented on the feature pairs to ascertain

the normality status of the variables. This test is adopted because the
dataset has 5,000 instances and is a more sensitive test compared to other
kinds of normality tests. Additionally, the PDF is a statistical term that is
used to characterize the probability distribution of a continuous random
Fig. 12. Normalisation and skewness test of features (a
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variable, displaying the nature of distribution relative to normality to
enable easy evaluation for the C-town datasets. A skewness test is also
conducted on the 7 feature pairs to describe the asymmetry of a proba-
bility distribution.

Fig. 11(a) reveals the PDF curve for LT_1. This feature is not normally
distributed and is slightly a left-skewed distribution (�0.10). Fig. 11(b)
reveals PDF curves for the variable T1_LEVEL, this feature is not normally
distributed and is slightly a left-skewed distribution (�0.21). Fig. 11(c)
reveals PDF curves for the L_T2. This feature is not normally distributed
and is slightly a left-skewed distribution (�0.30). Fig. 11(d) reveals PDF
curves for the T2_LEVEL. This feature is not normally distributed and is
slightly a left-skewed distribution (�0.14). Figs. 11(a)–12(d) reveal that
the PDF curves for the pairs look similarand the feature pairs are not
normally distributed, though they have close values and same directions.

Fig. 12(a) reveals that though the PDF curves for the LT_3 is not
normally distributed, it has a skewness value of �0.11, which implies
that it is slightly a left-skewed distribution. Fig. 12(b) reveals that though
the PDF curves for the T3_LEVEL is not normally distributed, it has a
skewness value of �0.12, which implies that it is slightly a left-skewed
distribution. Fig. 12(c) reveals that though the PDF curves for the L_T4
is not normally distributed, it has a skewness value of �0.17, which
implies that it is slightly a left-skewed distribution. Fig. 12(d) reveals that
though the PDF curves for the T4_LEVEL is not normally distributed, it
has a skewness value of �0.06, which implies that it is slightly a left-
skewed distribution. Figs. 12(a)–13(d) reveal that the PDF curves for
the pairs look similar and the pairs are not normally distributed having
close values and same directions.
) LT_3, (b) T3_LEVEL, (c) L_T4 and (d) T4_LEVEL.
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Fig. 13(a) reveals that though the PDF curves for the L_T5 is not
normally distributed, it has a skewness value of�0.01 which implies that
it is slightly a left-skewed distribution. Fig. 13(b) reveals that though the
PDF curves for the T5_LEVEL is not normally distributed, it has a skew-
ness value of �0.01 which implies that it is slightly a left-skewed dis-
tribution. Fig. 13(c) reveals that though the PDF curves for the LT_6 is not
normally distributed, it has a skewness value of �1.07 with a significant
left-skewed distribution. Fig. 13(d) reveals that though the PDF curves
for the T6_LEVEL is not normally distributed, it has a skewness value of
�0.76 with a significant left-skewed distribution.

A comparison of Figs. 13 (a)�13 (d) reveals that the PDF curves for all
four variables are not normally distributed. Fig. 13 further reveals that
the four variables are all left skewed.
Fig. 13. Normalisation and skewness test of features (a

Fig. 14. Normalization and skewness test o
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Fig. 14(a) reveals that though the PDF curves for the L_T7 is not
normally distributed, it has a skewness value of 0.05 with a right-
skewed distribution. Fig. 14(b) reveals that though the PDF curves for
the T7_LEVEL is not normally distributed, it has a skewness value of
0.28 with a right-skewed distribution. Finally, for the LT_7/T7_LEVEL
pair, the PDF curves for the LT_7/T7_LEVEL pairs look similar and are
all not normally distributed, though a right-skewed distribution (0.05/
0.28) and have close values. This summary provides the skewness
values for each variable pair and indicates the direction and strength of
skewness in their respective distributions. Thus, it can be deduced that
each variable pair has high similarity in its varying directions (left or
right).
) LT_5, (b) T5_LEVEL, (c) LT_6 and (d) T6_LEVEL.

f features (a) L_T7 and (b) T7_LEVEL.



Fig. 15. Mean absolute error (MAE) for each variable pair.

Table 8
Euclidean distance of variable pairs.

Variable
pair

Mean
Euclidean
distance

Sum of pairwise
squared Euclidean
distances

Variance Standard
deviation

L_T1 and
T1_LEVEL

101.0245 10,205.9585 2.0408 1.4286

L_T2 and
T2_LEVEL

99.3684 9874.0789 1.9744 1.4051

L_T2 and
T2_LEVEL

99.9427 9988.5490 1.9973 1.4133

L_T4 and
T4_LEVEL

100.0372 10,007.4315 2.0011 1.4146

L_T5 and
T5_LEVEL

100.3457 10,069.2586 2.0134 1.4190

L_T6 and
T6_LEVEL

101.1055 10,222.3322 2.0441 1.4297

L_T7 and
T7_LEVEL

99.4222 9884.7671 1.9766 1.4059
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4.7.4. Linearity test for selected variables
The study adopts the correlation coefficient test to establish the de-

gree to which the pairs are associated in a linear space. For validation
purposes, seven variable pairs were subjected to the correlation coeffi-
cient test. Table 7 shows the values obtained.

From Table 7, it can be inferred that the correlation coefficient be-
tween “L_T1” and “T1_LEVEL” is �0.02. This suggests a very weak
negative correlation, indicating that as one feature increases, the other
tends to decrease slightly, and vice versa. The correlation coefficient
between “L_T2” and “T2_LEVEL” is 0.01, indicating a very weak positive
correlation. This suggests a minimal tendency for both features to in-
crease or decrease together, although the relationship is not particularly
strong. The correlation coefficient between “L_T3” and “T3_LEVEL” is
0.00, signifying no discernible linear correlation between these two
variables. Their values do not systematically change in relation to each
other. The correlation coefficient between “L_T4” and “T4_LEVEL” is
�0.00, suggesting no meaningful linear relationship between these var-
iables. Changes in one variable do not coincide with systematic changes
in the other. The correlation coefficient between “L_T5” and “T5_LEVEL”
is �0.01, indicating a very weak negative correlation. While there is a
slight tendency for one feature to decrease as the other increases, the
relationship is minimal. The correlation coefficient between “L_T6” and
“T6_LEVEL” is �0.02, revealing a very weak negative correlation. As one
feature changes, the other shows a slight tendency to change in the
opposite direction. Finally, the correlation coefficient between “L_T7”
and “T7_LEVEL” is 0.01, suggesting a very weak positive correlation.
While there is a minor tendency for both variables to move together, the
relationship is not substantial.

In summary, these correlation coefficients indicate mostly weak and
negligible linear relationships between the respective variable pairs.
Revelation from Table 7 shows that the seven feature pairs have a very
weak and almost negligible negative/positive linear relationship be-
tween pairs. This suggests that there is almost no linear association be-
tween the features and that the pairs have similar values, which could be
why the pairs do not increase or decrease simultaneously.

4.7.5. Similarity distance test for the C-town datasets
The study adopted the Euclidean distance measure to ascertain the

similarity between the seven variable pairs. The outcome of the similarity
is shown in Table 8.

Euclidean distance is a measure used to measure the distance between
two points in a multidimensional space. It indicates the average distance
between data points, with lower values indicating closer proximity. The
sum of pairwise squared Euclidean distances also indicates overall sepa-
ration, with lower sums indicating tighter clustering. The variance and
standard deviation of the variable pairs also reflect the spread or variability
around the mean Euclidean distance, with lower values indicating closer
proximity. The test indicates high similarity between the variable pairs.

4.7.6. MAE test
MAE measures the errors between two observations reflecting the

same phenomena and the accuracy of a model’s predictions. It computes
the average absolute difference between the predicted values and the
actual values. Fig. 15 depicts values from the computations of the MAE
for the variable pairs.
Table 7
Correlation coefficient of variable pairs.

Variable pair Correlation coefficient

L_T1 and T1_LEVEL �0.02
L_T2 and T2_LEVEL 0.01
L_T3 and T3_LEVEL 0.00
L_T4 and T4_LEVEL �0.00
L_T5 and T5_LEVEL �0.01
L_T6 and T6_LEVEL �0.02
L_T7 and T7_LEVEL 0.01
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Fig. 15 shows the values obtained from the experiment. MAE values
represent the magnitude of the difference between the standardized ex-
pected and observed values. The low MAE values show that the stan-
dardized anticipated values are closer to the standardized observed
values, whilst the higher values indicate that there are more disparities
between the standardized predictions and observations. In this case, we
have low values, which suggests that the seven variable pairs are similar
but with minimal error.

5. Practical implication of findings on CPSs

This research explored the physical testbed and its equivalent using
datasets obtained from the two scenarios (WADI and C-Town). Findings
revealed a high similarity for the tests conducted. When the mean,
quartiles, and standard deviation have similar values for two datasets, it
implies that the central tendency, spread, and distributional character-
istics of the datasets are comparable. For the tanks, the test conducted
implies identifying if the distribution of water from the tanks to their
destinations is (un)stable for each tank, thus ensuring normal WADI
between the tanks and their final destination. The lower the standard
deviation, the more efficient the WADI, and a higher standard deviation
implies significant variability or inefficiency, potential issues such as a
cyber-attack.

Decision-makers can expect similar typical values for the physical
testbed and its digital equivalent, making it easier to compare and
analyze individual features (sensors/actuators/tanks, etc) from the
datasets. More so, quartile comparisons of water levels can help assess
the consistency and variability in the system’s performance and may
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also indicate (un)stable and (un)reliable or variability of WADI. The
standard deviation is a measure of the amount of variation or
dispersion of a set of values. Thus, standard deviation has a multi-
faceted impact on WADI systems, influencing water quality, system
reliability, and design uncertainties within the network. Understand-
ing and managing the standard deviation of relevant parameters is
crucial for ensuring the efficient and effective operation of WADI
systems. For demand fluctuations, analyzing standard deviation in
WADI over specific periods can help utilities plan for peak demand
periods and allocate resources efficiently.

For skewness, readings can indicate whether the distribution is
symmetric or if there is a tendency for water levels to be more extreme on
one side of the distribution. Positive skewness indicates a longer right
tail, while negative skewness indicates a longer left tail. This simply in-
dicates where there is more pressure or concentration (low, average, or
high) for WADI or the behavior of WADI. Euclidean distance also suggests
that the behavior of tanks of both objects is remarkably similar, implying
that for any anticipated improved performance, the digital equivalent
could be used to anticipate the behavior and project results. This eases
planning and scalability. The MAE gives an insight into the amount of
error to be expected between operations of the two objects. The lesser the
error, the more efficient the system operations.

6. Conclusion

The study established a comparison framework for WADI cyber-
physical testbed and its DT counterpart to ascertain how similar they
are. Datasets were sourced from iTrust for the physical asset and syn-
thetically generated datasets from DHALSIM, and a series of statistical
tests were conducted using machine leaning. Three critical elements (one
primary and two elevator reservoir tanks for WADI) were considered for
this similarity test because the primary tank provides water to the entire
network distribution system, and the two elevated reservoir tanks store
water for onward transmission to consumers. Tests conducted revealed
that the two datasets had some level of similarity. As regards the row
count, 30,000 rows were used for each test, but the DT dataset had one
extra variable when compared to its physical counterpart dataset. Stan-
dardization was applied to both datasets to scale them to the same level.
Box plots also revealed a proficient level of similarity between each
variable pair. The three variable pairs also displayed skewness (left and
right) and non-normality for each variable pair. The correlation coeffi-
cient test was used to ascertain the linearity of the variable pairs, which
showed to be very weak or non-existent because the value obtained from
the test was close to zero. Euclidean distance was also adopted and
applied to the feature pairs to discover a significant similarity in the pairs
with minimal variations. Finally, the proposed approach was imple-
mented/validated on C-Town datasets (synthetically generated and
generated from the testbed), which further proved to be efficient since
similarity was established for most of the tests conducted on the feature
pairs. The study established that in the development, adoption, and
integration of a DT for application in the real world, there needs to be a
moderate to a high level of similarity between the data generated from
the physical object and its DT counterpart as this will improve data
quality that reflects the physical object and help in decision-making
processes on the physical object for intrusion detection or improved
manufacturing processes. The research can be extended to accommodate
more variables, and a quantifiable similarity index could be used to
compare physical objects and DTs.
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