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Simultaneous Backward Reduction algorithm for disassembly lot-sizing

under random ordering lead time

Ilhem Slama1, Taha Arbaoui2, Faicel Hnaien1, Oussama Ben-Ammar3, Belgacem Bettayeb4 and,
Alexandre Dolgui5

Abstract—In order to meet item demands, end-of-life
(EOL) product and subassembly ordering and disassembly
schedules are determined by disassembly lot sizing, which
is the subject of this study. We take into consideration
a stochastic version with undetermined ordering lead time
(OLT). In this case, OLT stands for the amount of time
that passes between placing and receiving an order (we can
only order EOL products). Throughout the planning horizon,
scenarios are used to model the stochasticity. The objective is
to reduce the expected total of setup, purchasing, inventory,
and backlog expenses. This is achieved by expressing the
problem as a two-stage mixed integer linear programming (2S-
MILP) model across all potential scenarios. The 2S-MILP is
unsolvable since it is predicated on every scenario conceivable.
A Simultaneous Backward Reduction approach is proposed to
make it tractable. To confirm the suggested method’s efficacy,
it is assessed in a variety of environments.

I. INTRODUCTION and literature Review

For the three primary pillars of social equity, environ-
mental preservation, and economic viability, sustainable
development has evolved into a philosophical idea for
the planet’s future. Environmental protection is one of
the most important pillars to focus on because of the
serious environmental degradation caused by things like
excessive resource usage and global warming. [1].

One of the new problems for sustainable development
is how to handle end-of-life (EOL) items more responsi-
bly from an economic and ecological standpoint. [2]. In
general, reverse logistics frameworks that include collec-
tion, disassembly, inspection, recycling, repackaging, and
other methods can be used to recover EOL products. [3].

This study focuses on reverse logistics tasks such as
separating reusable parts/sub-assemblies, disassembling
the product into parts to recover resources, etc. [4].
Decision problems in disassembly systems fall into two
categories: design problems, which include lot-sizing,
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scheduling, and process planning, and operational prob-
lems, which include disassembly line balance and design
for disassembly. Keep in mind that one of the most
important tasks in reverse logistics is disassembly, par-
ticularly when it comes to product/material recovery like
recycling and refurbishment.

One issue with disassembly production planning de-
cisions is the disassembly lot-sizing problem, which is
addressed in this work. In order to meet the needs of its
parts, it seeks to ascertain how much of an EOL product
and its subassemblies need to be disassembled [2].

There are several variations of the disassembly lot-
sizing problem that depend on the disassembly system
(two or multi-level bill of materials) and the planning
horizon (one or multiple periods). The majority of ma-
terial on disassembled lot-sizing systems deals with the
deterministic uncapacitated problem. [5], [6], [7], [8], [9],
Although a limited amount of research concentrated on
the deterministic capacitated problem [10], [11], [3], [2].
For the existing surveys, readers can refer to [12].

In the actual world of industry, the disassembly process
is susceptible to several unknowns, including lead times,
disassembly yield, and uncertain component demand
[13]. These ambiguities cause delays in the disassembly
schedule and result in unfulfilled client demand.

Many scholars have employed stochastic strategies to
address the disassembly lot sizing issue. To contextualize
our work within the current literature, we review studies
on stochastic disassembly lot-sizing problems under un-
certainty of demand, yield, and disassembly lead time.
Table I compiles the literature on the topic in question
and includes details on the planning horizon, uncertainty
kind, resolution technique, and disassembly system.

II. Problem description

One way to think about the current industrial frame-
work would be to think of a computer maker that offers
end-of-life customers the option to return their outdated
devices. Additionally, this company responds to the de-
mand for reconditioned parts from its most ecologically
concerned customers by maintaining a disassembly and
refurbishment facility. This configuration is shown in Fig.
1.

Old computers (shown by boxes marked 1) need to
be ordered, gathered, and delivered to the company’s
remanufacturing factory to meet the demand for reman-
ufactured parts. After that, they need to be sorted and



TABLE I: Summary of relevant literature under uncertainly
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[14] Heuristics
√

1 2
[15] Fuzzy goal programming

√
1 2

[16] MILP, Lagrangian heuristics
√

Multi 2
[17] 2S-MILP

√
Multi Multi

[18] Lagrangian heuristics
√

1 2
[19] MILP, Lagrangian heuristics

√
Multi Multi

[20] MS-MILP, Outer-approximation
√ √

Multi 2
[21] MS-MILP

√
Multi Multi

[22] S-LP
√

Multi 2
[13] Analytical model, Newsboy formulae

√
1 2

[23] SAA
√

Multi 2
[24] Analytical model, Newsboy formulae

√
1 2

[25] GA
√

Multi 2
[26] Aggregate scenario

√
Multi 2

[27] 2S-MILP
√

Multi Multi
[28] 2S-MILP

√
Multi Multi

Current paper SBR alogorithm
√

Multi Multi

“MILP: Mixed Integer Linear Programming, SAA: Sample average approximation, GA: Genetic algorithm, 2S-MILP: Two stage-MIL,
MS-MILP: Multi stage-MILP, SBR: Simultaneous Backward Reductio.”

dismantled to extract usable parts for the remanufactur-
ing process (the parts are shown by the circles with the
letters a, b, and c).
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Fig. 1: Remanufacturing from collection to disassembly

In actuality, there is no set amount of time that passes
between placing an order and actually receiving an EOL
product. The primary reason for this uncertainty is the
lack of EOL solutions available on the market. As a
result, it is assumed in this study that there is a root
item shortage, meaning that end-of-life products are un-
available for order at any time. A distinct set of scenarios
is established in order to include this uncertainty in the
decision-making process. It is anticipated that there will
be a need for parts and that disassembling EOL items
will take some time. Lastly, the capacity for disassembly
is supposedly infinite.

We take into account time-varying purchasing costs
based on the state of the market, which implies that
the costs of purchases could change based on various
planning periods. The necessary equipment needs to be
assembled once each piece has been disassembled. There
is a setup fee as a result. Additionally, items stored to

meet future demand result in inventory holding costs.
Backlog and inventory holding costs are associated

with the risk of unclear ordering lead times. As a matter
of fact, if the EOL products are not delivered on schedule,
the disassembly and refurbishing process does not begin
as planned, which results in backlog costs. Similarly,
if the EOL product is received ahead of schedule, an
inventory cost is incurred.

This study examines the case of a multi-echelon dis-
assembly system. As seen in Fig. 2, an EOL product
to be ordered and disassembled is represented by a
root item, a sub-assembly to be further disassembled is
represented by an intermediate item (items 2–6), and
a component that cannot be dismantled is represented
by a leaf item (items a–d). The number of components
that were obtained through the disassembly processes is
indicated in parentheses.

Customers have a certain desire for disassembled
things at all times, as was previously noted. For leaf
items, this need is external; for root and sub-assembly
items, it is internal. Ultimately, the only way to meet
the demand is to disassemble the EOL goods.
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Fig. 2: Multi-echelon disassembly lot-sizing system

This study is supposing:



1) After a random ordering lead time, the EOL product
is available for disassembly;

2) The ordering lead time is a discrete random variable
confined by the known intervals OLT−

t and OLT+
t ,

with a known probability distribution;

The issue addressed in this work is the difficulty of
figuring out, under random OLT, over a specific plan-
ning horizon, the ordering schedules of the EOL and
the disassembly schedules of all parent objects in the
provided disassembly system. The goal is to reduce the
total anticipated expenses for setup, purchases, inventory
holding, and backlog.

III. Linear stochastic model

The topological order is taken into account for all
components in the issue formulation examined in this
research, both left to right and bottom to top. Let N
be the index of the final item found after disassembling
it, and let i = 1 be the index of the root item. Allow
the subsequent trio of sets: (i) I, the set of items i
with i = 1, 2, ..., il−1, il, ...N , where il denote the index
for the first leaf item, (ii) Ic, the set of items i of the
last level of product structure that can no longer be
disassembled. These items verify the following equality:
∀i ∈ Ic, ∀j ∈ I | aji = 0 and Ic = {il, ..., N}, and (iii)
Ie, the set of remaining items such as Ie = {2, ..., il−1}.
The full list of notations used throughout this paper is
given in Table II.

In this work, we present a definition of stochastic
optimization based on scenarios. For the EOL product,
a scenario shows a potential realization of the ordering
lead time in each period.

Definition 3.1: Let the collection of all conceivable
scenarios be Ω. A realisation of the ordering lead times
from periods 1 to t corresponds to each scenario ω. More
specifically, in scenario ω, the EOL product is accessible
in period t+OLTω

t if any purchase orders of EOL product
start in period t. The probability of scenario ω is Pω. If
the ordering lead times in each period are independent,
Pω =

∏
t∈T P (OLTt = OLTω

t ),
∑

ω∈Ω Pω = 1,∀ω ∈ Ω
and |Ω| =

∏
t∈T (OLT+ −OLT− + 1)

An example of a two-stage multi-period stochastic
mixed-integer program that can describe the researched
problem is 2S-MILP. The choices made in period 0
before seeing the OLT are reflected in the first-stage
variables. These choices concern the quantity of setup
and disassembly for item i ∈ Ie, as well as the quantity
of EOL product procurement for period t. The inventory
levels of item i ∈ I and the backlog levels of item i ∈ Ic
at the end of period t correspond to the second stage
variables, often known as recourse decisions. Following
the realization of the OLT for every scenario ω, these
choices are made.

TABLE II: Notation

Index

t Index of period t, t ∈ T
i Index of item i, i ∈ I
ω Index for scenarios ω of ordering lead times, ω ∈ Ω.

Parameters

T Set of time periods of the planning horizon
I Set of items
Ic Set of leaf items
Ie Set of sub-assembly items
Ω Set of possible scenarios of lead times
dit External demand for item i in time period t, ∀i ∈ Ic
aji Number of units of item i obtained from disassembling j
Ii0 Initial inventory for each item
OLTω

t Random ordering lead time in time period t at scenario ω
hi Per-period inventory holding cost of one unit of item i, ∀i ∈ I
si Per-period setup cost of parent item i, ∀i ∈ Ie
bi Per-period backlog cost of one unit of item i, ∀i ∈ Ic
ct Purchase cost of EOL product in time period t
ϕi Parent of item i, ∀i ∈ I\{1}
M A large number

Functions

E(.) Expected value
Pω Probability value for each scenario ω

Decision variables

Qit Quantity of parent item i to disassemble in period t
Zt Quantity of EOL product to procure in time-period t
Yit Binary indicator of disassembly for item i in period t

Variables

Iωit Inventory level of item i at the end of period t of scenario ω,
∀i ∈ I
Bω

it Stockout level of item i at the end of period t of scenario ω,
∀i ∈ Ic

The set Ω of all conceivable OLT situations and the
probability Pω of each scenario ω constitute the basis of
the stochastic formulation of the multi-level disassembly
lot-sizing problem. The primary goals are to choose the
proper ordering and disassembly strategy and reduce
the excepted objective value.

Our model is a development of [27]’s work in general. It
can be described using the 2S-MILP model that follows:

E(TC) = min
∑
t∈T

( ∑
ω∈Ω

Pω

(∑
i∈I

hi.I
ω
it +

∑
i∈Ic

bi.B
ω
it

)
+

Zt.ct +
∑
i∈Ie

si.Yit

)
(1)

Iω1t =
∑
τ∈Aω

t

Zτ −
t∑

τ=1

Q1τ + I10 ∀t ∈ T ,∀ω ∈ Ω (2)

Iωit =
∑

j∈ϕ(i)

aji.Qjτ + Ii0 −
t∑

τ=1

Qiτ ∀i ∈ Ie,∀t ∈ T

(3)



Iωit −Bω
it =

∑
j∈ϕ(i)

aji.Qjτ + Ii0 −
t∑

τ=1

diτ ∀i ∈ Ic,∀t ∈ T

(4)

Qit ≤ YitM ∀i ∈ Ie,∀t ∈ T (5)

Qit ≥ 0 ∀i ∈ Ie,∀t ∈ T (6)

Yit ∈ {0, 1} ∀i ∈ Ie,∀t ∈ T (7)

Iωit ≥ 0 ∀i ∈ I,∀t ∈ T ,∀ω ∈ Ω (8)

Bω
it ≥ 0 ∀i ∈ Ic,∀t ∈ T ,∀ω ∈ Ω (9)

Zt ≥ 0 ∀t ∈ T (10)

Over the planning horizon, the goal function (Eq.1) seeks
to minimize the total of the allowances for inventory
holding, backlog, purchasing expenses, and setup costs.
For a scenario ω, the inventory balance level for the EOL
product, each sub-assembly item, and each leaf item i
is defined by constraints (2), (3), and (4), respectively,
at the end of each time period t. The set of periods
whose disassembled parent items are available is denoted
by Aω

t := {τ ∈ T |τ +OLTω
τ ≤ t}. If any disassembly

work needs to be done within a certain time frame,
constraints (5) ensure that a setup cost is generated in
that time frame. 6–10 constraints offer the parameters
that surround the choice variables.

IV. Simultaneous Backward Reduction (SBR)
algorithm

Due to the complexity of probabilistically constrained
programs, the use of approximation techniques based on
scenario reduction is often accepted and justified when
solving problems involving large sets of scenarios. These
approximate methods make solvable models of the type
(1) - (10), whose dimensions increase exponentially with
the number of scenarios generated.

Theoretically, scenario reduction is an independent
problem, but in most cases, it is indispensable for solving
a probabilistically constrained program, whose uncertain
data are described by discrete probability distributions.

Rather than randomly generating a polynomially
tractable subset of scenarios, we propose to reduce the
set of scenarios by eliminating those most unlikely to
occur de facto, according to metrics of probabilistic
distributions.

Algorithm 1 Simultaneous Backward Reduction (SBR)
[29]

Step 1:
Cku=CT (ωk, ωu),∀k, u = {1, .., |Ω|}
C1

ll=minb̸=lClb,∀l, l = {1, .., |Ω|}
z1l =Pl × C1

ll,∀l, l = {1, .., |Ω|}
l1 ∈ arg mina={1,..,S}z

1
l , G

1 = l1
Step i:
Ckl = minb ̸=G(a−1) ∪ {l}Ckb, l /∈ G(a−1), k ∈ G(a−1) ∩ {l}
zal =

∑
k∈G(a−1) ∪{l} pk × Ca

kl, l /∈ G(a−1)

la ∈ arg minl/∈G(a−1)zal
Ga = G(a−1) ∪ {la}
Step |Ω| − n+ 1 Provide the optimal redistribution of n
preserved scenarios.

The SBR algorithm starts by finding the first scenario
to be eliminated, which corresponds to the scenario with
the smallest distance to the others (i.e. the scenario that
can be best represented by the remaining scenarios).
The first iteration of this algorithm therefore consists
in finding the scenario whose elimination will result in
the smallest error. Then, at each subsequent iteration,
the probability distribution of the remaining scenarios
is updated by adding the probability value of the last
scenario eliminated to that of its closest non-eliminated
scenario. In this way, all m scenarios are iteratively
eliminated in the same way as the first scenario.

V. Computational experiments

This section presents the results of experiments con-
ducted to study the behavior of the proposed optimiza-
tion approaches. The proposed models are implemented
in C with Concert Technology and solved with IBM
CPLEX 12.5 on a PC with processor Intel (R) Core ™
i7-5500 CPU @ 2.4 GHz and 8 Go RAM under Windows
10 Professional.

A. Numerical example

The small size testbed consists of an example of a
multi-echelon disassembly system as presented in Fig. 3.
This example deals with a disassembly system with five
items and two-parent elements. The number in paren-
thesis represents the disassembly yield for each item. As
detailed in Tables III, we considered eight test instances
with a finite planning horizon with 3 to 10 periods and
an ordering lead time range

[
L+
i − L−

i

]
= [1, 2] ∀i ∈

Ie,∀t ∈ T . Here, the ordering lead time follows the
uniform probability distribution.

The demands for components over the planning hori-
zon dit are generated randomly from D ∼ U (0, 100)
∀i ∈ Ic and ∀t ∈ T . The unit time inventory holding
lost sales and backlog and costs are hi=3, ∀i ∈ I\{1},
bi = 2 × hi and ei = 5 × bi, ∀i ∈ Ic, respectively. The
setup cost si is generated randomly from D ∼ U(500,
1000) ∀i ∈ Ie, where D ∼ U (a, b) denotes that a discrete



uniform distribution is used to generate the parameter
randomly with support {a, . . . , b}.
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Fig. 3: Example of multi-echelon system.

We begin our experiments by comparing the perfor-
mance of the suggested SBR technique to the standard
stochastic 2S-MILP model. More specifically, Table III
lists the total number of scenarios |Ω|, the total number
of scenarios that were aggregated into |Ω1|, the Gap, and
the CPU times in seconds for each instance set. Here |Ω1|
represents 30% of |Ω|.

TABLE III: SBR Performance (CPU time).

Instances Instance set TS-MILP SBR

#Instance |N | |T | |Ω| CPU |Ω1| CPU Gap

1 5 3 23 0.06 3 0.031 0.00
2 5 4 24 0.39 5 0.037 0.02
3 5 5 25 2.60 10 0.09 0.02
4 5 6 26 30.62 20 4.07 0.05
5 5 7 27 1470 39 6.049 0.02
6 5 8 28 - 77 7.041 0.15
7 5 9 29 - 154 11.07 0.21
8 5 10 210 - 307 22.51 0.22

(–): No feasible solution is available. (Gap): The percentage
deviation between ATC and the expected total cost (E(TC))

As the same table illustrates, the number of all con-
ceivable possibilities in the stochastic 2S-MILP grows
exponentially with the number of periods. Therefore,
occurrences with more than seven periods and two-parent
items are not solved by the 2S-MILP. Contrarily, the SBR
technique has a very low number of scenarios. Given a
small deviations Gap (less than 0.25%), the SBR plays
an important role in finding a solution very close to the
optimal one in a very reasonable time.

B. Performance analysis

Here are the test results from a major test problem
we performed to demonstrate the efficiency of the 2S-
MILP model and the SBR technique in general. Ten
problems make up each [0] combination of three levels
of the number of components (10, 20, and 30) and three
levels of the number of periods [0] (5, 7, and 10). These
are the huge test questions. Three ordering lead time
range sizes are taken into consideration for each level of

the number of periods (1, 2 and 4). The creation process
for each parameter is displayed in Table IV, whereD ∼ U
(a, b) denotes that the parameter is created at random
using a discrete uniform distribution.

An essential component of the decision-making process
is computation time. We gave CPLEX a 3600 second
time limit to run as a result. The following performance
metrics are employed:

• CPU: Computation times, in seconds, i.e. the
time(s) required to find optimal solutions;

• I∗: Number of optimal (out of 10 instances) obtained
by the CPLEX solver.

TABLE IV: Characteristics of data sets

Parameters Values
hi D ∼ U(10, 30)
ct D ∼ U(40, 60)
si D ∼ U(500, 1000)
Ii0 D ∼ U(20, 100)
bi D ∼ U(50, 100)
dit D ∼ U(50, 160)
aij D ∼ U(1, 3)

OLTit D ∼ U(OLT−
i , OLT+

i )

Table V indicates that 2S-MILP performance is influ-
enced by ordering lead times, number of periods, and
number of items. Of these criteria, the ordering lead-
time range and the number of periods have the most
effects on computation time. Additionally, once the size
of the uncertainty interval exceeds a certain amount (i.e.,
OLT+

t −OLT−
t ≥ 2), 2S-MILP is impossible to solve any

case with 10 periods.

VI. Conclusion

For a particular kind of end-of-life product, this study
examined a multi-level disassembly lot-sizing challenge.
Under the interval representation of uncertainty, the
amount of time it takes to receive an EOL product
following the placement of a purchase order is seen as a
stochastic variable. Determining the order and quantity
for disassembling the EOL product and its subassemblies
is the issue. To minimize the projected total cost, an ideal
two-stage multi-period stochastic mixed-integer program
is proposed. This model uses the set of all conceivable
situations to define the random parameter. To alleviate
the scalability issues, a Simultaneous Backward Reduc-
tion algorithm (SBR) is suggested. Experimental results
show the effectiveness of the proposed models and the
convergence of the resulting SBR.
We are still conducting research in this area. First,
creating a heuristic to handle the big test cases is an
interesting project. Furthermore, the multi-stage model
presents an intriguing avenue for further investigation
in the context of the traditional tree representation
scenario.



TABLE V: Performances of the 2S-MILP

(a) Problem with 5 periods.

2S-MILP
#components 10 20 30

OLT+
t −OLT−

t I∗ CPU I∗ CPU I∗ CPU
1 10 0.45 10 0.93 10 1.64
2 10 4.84 10 14.35 10 12.5
4 10 96.297 10 331.672 10 723.781

(b) Problem with 7 periods.

2S-MILP
#components 10 20 30

OLT+
t −OLT−

t I∗ CPU I∗ CPU I∗ CPU
1 10 4.93 10 3.64 10 13.87
2 10 499.35 10 1243.25 10 1336.56
4 0 - 0 - 0 -

(c) Problem with 10 periods.

2S-MILP
#components 10 20 30

OLT+
t −OLT−

t I∗ CPU I∗ CPU I∗ CPU
1 10 83.37 10 381.60 10 1022.46
2 0 - 0 - 0 -
4 0 - 0 - 0 -
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