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Bi-Objective Multi-Period Multi-Sourcing Supply Planning with
Stochastic Lead-Times, Degressive Pricing, and Carbon Footprint*

Belgacem Bettayeb1, Oussama Ben-Ammar2, Ilhem Slama3 and Alexandre Dolgui4

Abstract— This article studies a bi-objective stochastic opti-
mization problem for multi-period multi-sourcing supply plan-
ning. The formulated problem accounts for stochastic lead
times, degressive pricing, holding and backlog costs, delivery
flexibility costs, as well as both holding and transportation
carbon footprint. The first objective is to minimize the expected
total cost, while the second objective is to minimize the
expected total footprint. These objectives must be achieved
while adhering to suppliers’ capacity constraints and meeting
customer demand. In this paper, the proposed stochastic integer
linear program is detailed, and the ϵ-constraint method used
to solve it is described. The first results of experiments are
presented and discussed.

I. INTRODUCTION

To remain competitive and maintain a high level of service
for their customers, industrial companies must optimize their
production processes as well as related upstream and down-
stream activities, such as replenishment, inventory manage-
ment, and transportation. At the same time, they are facing
growing challenges from environmental sustainability and
regulations on carbon emissions. Managing a modern supply
chain (SC) efficiently requires balancing economic, customer
and environmental objectives in an integrated manner. There-
fore, coordinating material, information, and financial flows
in an integrated way is essential to ensure a competitive
and profitable SC for all stakeholders [1]. However, due to
the SC’s interdependent network structure, any incident or
disturbance in one element can spread and amplify, adversely
affecting the entire SC’s performance. Such incidents and
disturbances are inherent to these complex systems, arising
from uncertainties or ignorance regarding one or more in-
fluencing parameters of the system, coupled with a lack of
countermeasures to predict and prevent them. For several
decades, managing uncertainty and mitigating its impact on
the SC’s performance has been a primary focus for decision-
makers and researchers in supply chain management (SCM)
[2], [3]. This focus is heightened by the repeated observation
of SC vulnerabilities to disruptions caused by uncertainty
in certain SC parameters [4], [5]. Numerous sources of
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uncertainty have been identified and examined through SC
risk analysis, with many being formalized and incorporated
into supply planning and inventory control models.

More recently, there is growing recognition of the im-
portance of environmental sustainability for supply chains.
Managing carbon emissions from transportation, production
and inventory activities is now a strategic priority to meet
regulatory compliance and stakeholder expectations [6], [7].

Regarding the uncertainty of lead-times, the literature is
rich on approaches such as safety lead-times and safety
stocks. However, these well-known approaches to cope with
the uncertainty of lead-time are not always time-applicable
and advantageous [8], [9], and [10]. Alternative methods
utilizing stochastic optimization techniques have also been
suggested for supply planning and inventory control. Typi-
cally, these models focus on either single-period or multi-
period supply planning scenarios with consistent demand
and independent, identically distributed lead times. Despite
their utility, these models face certain drawbacks regarding
optimization and economies of scale, as they often overlook
or disregard the influence of dynamic factors like fluctuating
demand and varying capacity. Nevertheless, multi-period
supply planning that includes stochastic lead times high-
lights the complexity of managing order crossovers and the
inherent randomness in the quantities received over different
periods[11]. The crossover problem is typically addressed
either by ignoring it or by developing models that mitigate or
eliminate its impact [12]. Another common strategy for man-
aging uncertainty in SCM is multi-sourcing, which involves
collaborating with several competing suppliers. However,
supply chain managers need to formulate effective strategies
for selecting and managing multiple suppliers. For supplier
selection, various attributes such as quality, price, and deliv-
ery performance are commonly considered. Although there
is no consensus on the ranking of these attributes, delivery
performance is consistently ranked among the top three most
important [13]. Another study [14] identifies flexibility as
the most important attribute overall, followed by cost and
delivery performance.

The initial techniques for supplier selection presented in
the literature predominantly utilize mono- or multi-objective
functions optimized in a static environment, with deci-
sions targeting a strategic-level timeframe. Over the past
few decades, dynamic supplier selection (DSS) issues have
arisen, leading to the development of various models that
account for a dynamic environment in which parameters
like demand, capacity, and prices change over time. Most
DSS approaches aim to minimize the average total cost



while determining the order quantities for chosen suppliers
[15][16]. In the context of stochastic lead-time with multiple
suppliers, [17] formulated a mathematical model for a single-
item continuous review (s, Q) inventory policy. Similar
to our approach, their model allows order replenishment
to be distributed among several suppliers. The goal is to
optimize the inventory policy parameters, specifically the
reorder level and the quantity ordered from each supplier,
in order to minimize the expected total cost per time unit.
Additionally, [18] introduced a two-phase framework for
supplier selection and order allocation, considering various
transportation alternatives (TAs) for each supplier. Their
optimization model determines the optimal order quantities
to allocate to the selected suppliers for each period within
the planning horizon.

Regarding the consideration of the environmental as-
pect, [19] proposed a multi-objective integrated economic-
environmental biomass supply chain models using stochastic
and fuzzy approaches. A case study is detailed, comparing
results from different models and highlighting trade-offs
between costs and emissions. [20] presents a novel multi-
objective supplier selection model that aims to optimize
four objectives simultaneously, namely the minimization of
total cost, total carbon footprint, late deliveries, and rejected
items. It uses uncertainty theory concepts to handle uncertain
parameters and fuzzy logic for linguistic decision-maker
preferences.

Recently, the authors of this paper introduced a mathe-
matical model addressing the problem of dynamic supplier
selection strategy in multi-period supply planning with un-
certain lead times. They developed a stochastic integer non-
linear program (SINLP) to optimize the selection of suppliers
and the scheduling of lead times, aiming to minimize the
expected total cost [21] .

This work aims to investigate the problem of bi-objective
multi-period replenishment with multiple suppliers, consider-
ing stochastic lead times, degressive pricing policies, delivery
flexibility costs, and delivery carbon footprint. The objective
is to satisfy all demands by distributing them among suppli-
ers while simultaniously minimizing the expected total cost
and the expected total footprint.

The structure of the remainder of this paper is as fol-
lows. Section II, describes the problem’s stochastic integer
linear programming formulation of the problem. Then, we
report and discuss the first experimental results in section
IV. Finally, the the concluding section states the principle
conclusions from this work and future research directions.

II. PROBLEM FORMULATION

We address the issue of multi-period replenishment plan-
ning in a system involving a single product, a single
buyer, and multiple vendors. The demand for each period
is known and can be fulfilled by one or more suppliers,
each with a stochastic discrete lead-time described by its
probability mass function. Additionally, each supplier has
a capacity limit for each period and a degressive pricing
policy that applies to the total quantity ordered over the

entire planning horizon. Moreover, we consider that each
supplier has its own carbon footprint per order delivered,
which varies depending on factors such as distance and
transportation mode. For this problem formulation, we use
the notations presented in Table I for input data and decision
variables. We assume that any unfulfilled quantity from each
period is carried over as backlogged, incurring corresponding
costs. Conversely, quantities held in stock result in inventory
holding costs. It is important to note that both backlogged
and inventory quantities are subject to stochastic variation
due to the unpredictable nature of supplier lead times. We
make no restrictive assumptions regarding order crossovers
or demand patterns over the planning horizon. Our analysis
encompasses scenarios where demand can be divided into
smaller batches across different suppliers and/or periods
(referred to as splitting), with suppliers releasing deliveries
for different batches ordered within the same period incurring
an additional cost per batch (termed Delivery Flexibility
Cost). In this formulation, we utilize the notations detailed
in Table I for both input data and decision variables.

TABLE I: Notations

Parameters
T ordered set of periods indices of the planning horizon
S ordered set of suppliers indices
Is ordered set of indices of quantity intervals defining

supplier s pricing policy
Dt demand of period t
Cst capacity limits of suppliers s for each period t
[lsi, usi] lower and upper limits of the i-th quantity interval of

supplier s pricing policy
csi unit selling price of the i-th quantity interval of supplier

s pricing policy
cos ordering cost of supplier s
fo
s ordering carbon footprint of supplier s

ch unit inventory holding cost per time period
fh unit inventory holding carbon footprint per time period
cb unit backlogging cost per time period
[L−

s , L+
s ] range of possible discrete lead-time values of supplier s

Lω
sτt actual lead time, in scenario ω, of the quantity released

by supplier s at period τ to satisfy demand of period t
Fs(.) cumulative distribution function of supplier s lead-time
Variables
Qsτt integer decision variable that gives the quantity to be

ordered from supplier s at period τ to satisfy demand of
period t

Ksi integer decision variable that gives the total quantity
to order from supplier s within the i-th interval of its
pricing policy

Ysi binary decision variable indicating if the total ordered
quantity from supplier s is within the i-th interval of its
pricing policy

Zsτt binary decision variable indicating a non-zero quantity
is ordered from supplier s at period τ to satisfy Dt

Functions
P(.) probability value
E(.) expected value
1A indicator function, equals 1 if event A is true; 0 otherwise

Prior to introducing the problem formulation as a Stochas-
tic Integer Linear Program (SILP) model that incorporates
lead time uncertainty and flexibility, let’s begin by outlining
the following definitions.

Definition 1: For every s ∈ S and (t, τ, i) ∈ T 3, let define



Mt as the set of indices for all ordered quantities Qsτi that
contribute to calculating the backlogging level at period t. It
is expressed as follows:

Mt = {(s, τ, i) : t− L+
s + 1 ≤ τ ≤ t− L−

s and
τ + L−

s ≤ i ≤ τ + L+
s }

(1)

Definition 2: For every (s, τ, i) ∈ M3
t , let αω

sτi be a
boolean variable indicating for a given scenario ω if the
quantity ordered from supplier s at period τ to satisfy the
demand of period i arrives before period t. It is formulated
as follows:

αω
sτi =

{
1 if τ + Lω

sτi ≤ t

0 if τ + Lω
sτi > t

(2)

As αω
sτi is binary for each triplet (s, τ, i), the number of

possible scenarios is equal to |Ωt| = 2|Mt|. A given scenario
ω is composed of a set of αω

sτi for all (s, τ, i) ∈ Mt. This
allows to define the set of all possible aggregated scenarios
as follows:

Ωt =
{
(αω

sτi)(s,τ,i)∈Mt
: w ∈ {1, ..., 2|Mt|}

}
(3)

Each scenario ω ∈ Ωt has the probability of occurrence
pwt defined in Equation (4) below:

pωt =
∏

(s,τ,i)∈Mt

αω
sτi×Fs(t

′)+(1−αω
sτi)×(1−Fs(t

′)) (4)

where t′ = t− τ , αω
sτi ∈ {0, 1} and

∑
ω∈Ωt

pωt = 1.

The suggested model formulation presupposes that each
demand is divisible into multiple quantities sourced from
various suppliers and/or across different time periods. It
also permits delivery flexibility, albeit with an extra cost.
This means that batches ordered from each supplier at a
specific time can be released separately and have their own
independent lead times. This approach can be expressed as
the bi-objective SILP presented in Equations (5)-(17).

Min ETC =
∑
t∈T

∑
ω∈Ω

pωt .
(
chI+tω + cbI−tω

)
+∑

s∈S

(∑
j∈Zs

csj .Ksj +
∑
t∈T

∑
τ∈T

cosZsτt

)
(5)

Min ETFP =
∑
t∈T

∑
ω∈Ω

pωt f
hI+tω+∑

s∈S

∑
t∈T

∑
τ∈T

fo
sZsτt (6)

s.t.

I+tω − I−tω =
∑
s∈S

t−L+
s∑

τ=1

τ+L+
s∑

i=τ+L−
s

Qsτi +
∑

(s,τ,i)∈Mt

αω
sτiQsτi

−
t∑

τ=1

Dτ ∀t ∈ T ,∀ω ∈ Ωt (7)

Qsτt ≤Dt ∀s ∈ S,∀t, τ ∈ T (8)∑
t∈T

Qsτt ≤Csτ ∀s ∈ S,∀τ ∈ T (9)

∑
s∈S

t−L−
s∑

τ=t−L+
s

Qsτt =Dt ∀t ∈ T (10)

∑
j∈Zs

Ysj ≤1 ∀s ∈ S (11)

lsjYsj −Ksj ≤0 ∀s ∈ S,∀j ∈ Is (12)
Ksj − lsjYsj ≥0 ∀s ∈ S,∀j ∈ Is (13)∑

j∈Zs

Ksj −
∑
t∈T

∑
τ∈T

Qsτt =0 ∀s ∈ S (14)∑
i∈T

Di.Zsτt −Qsτt ≥0 ∀s ∈ S,∀t, τ ∈ T (15)

Ysj , Zsτt ∈ {0, 1} ∀s ∈ S,∀j ∈ Is,∀t, τ ∈ T (16)

I−tω, I
+
tω,Ksj , Qsτt ∈ N ∀s ∈ S,∀j ∈ Is,∀t, τ ∈ T (17)

In the SILP model described by Equations (5)-(17), we
consider all possible aggregated scenarios (see Definition 2)
and simultaneously minimize the ETC and the ETFP while
determining the proportion of a given Dt to be ordered from
a specific supplier s during a particular period τ . The ETC in
Eq. 5 comprises the expected inventory holding and backlog
costs, in addition to the purchasing costs. The latter include
the direct cost of the items purchased, which depends on
the degressive pricing applied, and the ordering costs, both
of which vary based on the selected supplier. The ETFP
in Eq. 6 consists of two main components: the first term
corresponds to the expected footprint from inventory holding,
and the second term accounts for the cumulative footprint
incurred by transporting each ordered quantity, which varies
depending on the chosen supplier. Constraints (7) specify
the inventory level It,ω at the end of each period t for
each scenario ω. Constraints (8) ensure that the quantity
ordered from supplier s during period τ to meet the demand
for period t does not exceed Dt. Constraints (10) mandate
that the total quantity ordered to meet the demand for
period t equals Dt, thus ensuring that all demands are met.
Constraints (11) to (14) facilitate the selection of the pricing
level applied by each supplier based on the total ordered
quantities. Constraint (15) ensures that Zsτt is set to 1 if Qsτt

is non-zero. Constraints (16) and (17) define the domains of
the decision variables.

III. RESOLVING APPROACH

To solve our bi-objective problem, we exploit the the ϵ-
constraint method, which is powerful approach commonly
used for solving multi-objective optimization problems. It
allows decision makers to explore trade-offs between con-
flicting objectives, namely in our case the expected total
cost incurred by purchasing and holding inventory and the
expected total carbon footprint incurred by transporting and
holding. Let f1(X) and f2(X) denote respectively ETC and
ETFP with X = (Q,K, Y, Z) the vector of all decision



variables. The ϵ-constraint approach is then composed of the
following steps:

1) determine e0 = f2(argmin
X

{f2(X) s.t. (7− 17)})
2) determine e1 = f2(argmin

X
{f1(X) s.t. (7− 17)})

3) determine the set of points defining the Pareto front:
{(f1(X∗), f2(X

∗)) : X∗ = argmin
X

{f1(X) s.t. (7 −
17) and f2(X) ≤ ϵ ∀ϵ ∈ [e0, e1]}}

IV. NUMERICAL EXAMPLE AND DISCUSSION

The SILP model of the problem has been coded in C++
and solved using the ϵ-constraint approach with the IBM
ILOG CPLEX solver. The numerical example involves a
test instance with a 10-period planning horizon, 5 non-
zero demands (see Table II), and 3 suppliers. Inventory cost
parameters are ch = 10 and cb ∈ {10, 15}. Concerning
carbon footprint, the test parameters are fh = 1 and fo

1 = 10,
fo
2 = 15 and fo

3 = 7 for suppliers 1 to 3, respectively. Suppli-
ers have constant capacities, with C1,t = 60, C2,t = 50 and
C3,t = 100 for all t = 1, .., 10, and uncertain lead-times,
which are characterized by their probability distributions
given in Table III. The pricing policies and their parameters
are given in Table IV.

TABLE II: Vector of demands

Periods 5 6 7 8 9
Demand 180 100 30 10 80

The optimal solution for the numerical example with
cb = ch = 10 and ϵ = e1 is presented in Table V. The
last five rows of the table display the optimal quantities
to order from each supplier for each period. Despite the
third supplier having the highest price (75) and ordering cost
(1000), it is chosen for three orders (Q346=100, Q356=80,
Q357=20,Q367=80 and Q368=20) which sum to 300, rep-
resenting 75% of the total demand. This demonstrates that
selecting a supplier should not determined only by the
selling price and ordering cost. Moreover, relying solely on
one supplier isn’t optimal for reducing costs and managing
uncertainties. The suggested model enables identifying a
balanced approach to address inventory, procurement, and
ordering expenses effectively.

The details of the optimal solution of the numerical
example with cb = ch = 10 and ϵ = e0 are presented
in Table VI. It reveals that the third supplier is chosen to
fulfill the entire demands, despite not having the lowest
transportation mode carbon footprint per delivered order
compared to other suppliers. Although Supplier 3 has the
lowest carbon footprint per delivered order fo

3 = 7, it is not

TABLE III: Lead-times probability distributions.

l : lead-time possible values
s 1 2 3 4
1 P(Ls = l) 0.24 0.76 - -
2 P(Ls = l) - 0.53 0.16 0.31
3 P(Ls = l) 0.95 0.05 - -

TABLE IV: Pricing policies parameters.

Pricing levels
level 1 level 2

s ls1 us1 cs1 ls2 us2 cs2 cos
1 1 20 69 21 500 65 800
2 1 30 67 31 500 65 700
3 1 500 75 - - - 1000

TABLE V: Solution of the numerical example with ϵ = e1.

t 1 .. 5 6 7 8 9 10 11 12
Dt - - 180 100 30 10 80 - - -

E(I+t ) - - - - - - - - - -
E(I−t ) - - 180 280 130 40 100 100 30 20
Q19t - - - - - - - 60 - -
Q26t - - - - 10 10 20 - - -
Q34t - - - 100 - - - - - -
Q35t - - - 80 20 - - - - -
Q36t - - - - 80 20 - - - -

ETC= 74400; ETFP=46 ; CPU time = 7.08 seconds

TABLE VI: Solution of the numerical example with ϵ = e0.

t 1 .. 5 6 7 8 9 10 11 12
Dt - - 180 100 30 10 80 - - -

E(I+t ) - - - - - - - - - -
E(I−t ) - - 180 280 130 40 90 80 - -
Q34t - - - 80 - - - - - -
Q35t - - - 100 - - - - - -
Q36t - - - - 100 - - - - -
Q37t - - - - - 30 10 - - -
Q38t - - - - - - - 80 - -

ETC= 77000; ETFP=35 ; CPU time = 3.17 seconds

selected to supply any quantity due to its considerably higher
ordering cost compared to Suppliers 1 and 2.

The results of the ϵ-constraint method gives the Pareto
fronts for cb = 10 and cb = 15 that plot in Figure 1.
It demonstrates the marginal impact of increasing backlog
costs, resulting in an increase in both objectives. Further-
more, it is noteworthy that with higher backlog costs, a
solution is identified that reduces the ETFP from 46 to 38,
with a relatively smaller increase in the ETC compared to
scenarios with lower backlog cost.

Figure 2 illustrates the impact of incorporating carbon
footprint criteria as a secondary objective on the selection
rates of suppliers. When prioritizing ETC, all suppliers are
utilized, even with minimal selection rates for suppliers 1
and 2. Conversely, to minimize the ETFP, the selection is
restricted, utilizing only the third supplier.

V. CONCLUSION

This paper presents a bi-objective stochastic optimization
model for multi-period, multi-source supply planning under
uncertainty. The model formulated the problem as a SILP
and solved it using the ϵ-constraint method. The numerical
results provided insight into the trade-offs between costs and
emissions when selecting suppliers and ordering policies.
While effectively demonstrating the concepts, the study
focused on a small problem instance with limited parameters.
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To address real supply chain planning challenges, more
advanced modelling and solution approaches are needed.

Future work will continue to focus on improving the model
and its resolution approach to study larger instances. The
weakness of the current model lies in the exponentially
increasing number of scenarios with the number of suppliers
and their lead-time distribution ranges. Some multi-objective
meta-heuristics will also be explored.
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