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Supplier Selection Considering Flexibility, Order Splitting, and
Uncertainty of lead times

Oussama Ben-Ammar1, Belgacem Bettayeb2, Ilhem Slama3 and Alexandre Dolgui4

Abstract— Effective replenishment planning and inventory
control are essential for the smooth operation and adaptability
of supply chains. These aspects play a pivotal role in up-
holding a company’s competitiveness and triumph in today’s
fiercely competitive markets. Supply chain planners encounter
significant hurdles in choosing the most appropriate suppliers
in diverse scenarios, reducing average inventory levels, and
determining optimal safety lead times. This research tackles
these challenges by examining and evaluating a multi-period
replenishment planning issue within the framework of dynamic
demand and multiple suppliers. The suppliers are pre-selected
and defined by procurement costs, with lead times considered as
independent discrete random variables with known and limited
probability distributions. The goal is to optimize the distri-
bution of order quantities among these pre-selected suppliers
while minimizing the anticipated total cost. Two strategies and
corresponding linear models are suggested to investigate the
impact of dividing orders between suppliers, order crossover,
and order flexibility. Numerical experiments provide evidence
that concurrently considering splitting and flexibility yields
benefits in terms of cost optimization.

I. INTRODUCTION AND RELATED PUBLICATIONS

Efficient supply chain management is crucial for ensuring
timely deliveries and customer satisfaction. Over the years,
significant attention has been devoted to addressing uncer-
tainties in supply chains and their impact on performance.
This includes strategies to mitigate supply uncertainty and
cope with disruptions [1], [2], [3], [4]. However, existing
inventory models often overlook dynamic demand and lead
time uncertainties, which are critical in today’s volatile mar-
kets, such as those exacerbated by the COVID-19 pandemic
[5], [6], [7], [8].

Dealing with uncertainty in procurement strategies, par-
ticularly in single-sourcing with uncertain lead times, poses
challenges. Traditional approaches like safety lead times and
safety stocks have been explored, but stochastic optimization
techniques offer more nuanced solutions [9], [10], [11],
[12]. Multi-period supply planning under lead time uncer-
tainty is complex due to order crossovers and probabilistic
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dependencies between received quantities. Existing models
often oversimplify or ignore these factors, limiting their
applicability [13], [14].

Research addressing uncertainty in lot-sizing problems
under lead time uncertainty is limited. Some studies have
proposed optimal policies but often focus on determinis-
tic demands or single-sourcing procurement strategies [15],
[16].

Supplier selection under uncertainty is another crucial
aspect of supply chain management, with delivery perfor-
mance consistently identified as a top priority [17], [18],
[19], [20]. However, existing decision-making techniques are
often static and may not adequately account for dynamic
environments [21].

Dynamic supplier selection has gained attention, especially
in reconfigurable supply chains, where decisions are made at
tactical or operational levels. Splitting orders among multiple
suppliers has been favored over single sourcing due to
reduced lead time risks [22], [23], [24], [25]. Despite efforts
to manage inventory under lead time uncertainty, alternative
strategies warrant further investigation [26], [27].

This study advances current understanding by exploring
multi-sourcing dynamic replenishment planning under lead
time uncertainty. It considers allocating order quantities
among pre-selected suppliers and proposes two strategies
based on order splitting and flexibility. The challenge lies
in balancing uncertainty-related costs and purchasing costs.

The subsequent sections of our paper are structured as
follows. Section II outlines the problem under study and
introduces various approaches concerning order splitting and
flexibility. Section III elaborates on two stochastic models
related to the splitting of demands and order flexibility.
Section IV presents a numerical example demonstrating
the discussed linear stochastic models. Lastly, Section V
summarizes our conclusions and outlines potential future
research areas related to this study.

II. PROBLEM DESCRIPTION

This study explores a scenario involving a single buyer and
multiple suppliers, focusing on a multi-period replenishment
planning issue for a specific product. Each period’s demand,
which is integral and predetermined, may be fulfilled by one
or more chosen suppliers, with delivery following a stochas-
tic discrete lead time. Allowances are made for tardiness
(backlog), with all unmet demands assumed to be fully back-
ordered. It is important to note that there are no restrictive
assumptions regarding the overlap of orders or the demand
structure (specific demand values per period). Ordering costs



are deemed insignificant or are included in the purchase
costs. The available data includes period-specific demand,
per-unit inventory holding and backlogging costs, a list of
suppliers for the product, and their per-unit prices. As for the
lead times from suppliers, the only pre-known detail is their
probability distributions, which are either statistically derived
or estimated by the suppliers and encompass factors like
production capacity, processing, queuing, and distribution
times unique to each supplier. Once a supplier is selected and
the order quantity confirmed, delivery follows a random lead
time based on its probability distribution. The uncertainty
in lead times means that orders might be received in a
different order than planned, potentially causing extended
storage periods and tardiness, thereby escalating costs.

As this is a multi-period and multi-supplier problem, two
strategies are plotted relative to (i) the splitting of each
demand into small batches over several suppliers at different
periods and (ii) flexibility. No flexibility means that, for
each supplier, all quantities ordered in the same period are
regrouped and delivered in the same package. Notice: the
notion of order flexibility considered here is meaningless
when lead times are deterministic because, in that case, all
quantities released in the same period, regrouped or not, will
surely be received together. If lead times are deterministic
and there is neither capacity constraint nor ordering costs, the
optimal solution is trivial. All demands are satisfied logically
by the supplier proposing the lowest price.

In the next section, the problem of distribution of order
quantities over pre-selected suppliers is modelled by consid-
ering the uncertainty of lead times, the possibility of order
splitting and flexibility on orders. The modeling approach
is based on stochastic linear programming with aggregated
scenarios. Table I details the mathematical notations used in
this paper.

III. LINEAR STOCHASTIC MODELS

This section details two stochastic models relative to
demands’ splitting and order flexibility. To do so, for each
choice regarding flexibility, first, some sets that delimit the
decision domains and the state spaces are defined. Then, the
corresponding ILP formulation for the case with demands
splitting policies is given.

A. Characterizing the scenarios of “No Flexibility” strategy

To account for the uncertainty in lead times, the following
elements are introduced:

• the set of indices MNF
t of all order quantities Qs

τ used
to calculate the backorder level at t

• the set of all possible scenarios Ω0

• the set of aggregated scenarios ΩNF

• the probability pω of each aggregated scenario ω ∈ ΩNF

For a given period t, we can split all possible Qs
τ (each

quantity is ordered from supplier s at period τ ) into three
groups: (i) orders that will surely be received before the end
of period t (see Fig. 1-(a) and -(b)), (ii) orders that will
never be received before the end of period t (τ + Ls

− > t)
(Fig. 1-(e)), and (iii) orders that contain uncertainties about

TABLE I: Notations

Parameters
T number of time buckets
t index of the period
S set of suppliers, with |S| = S
s index of suppliers, s = 1, ..., S
Dt demand of period t, an integer
ch unit inventory holding cost per period
cb unit backlog cost per period
cs unit purchasing cost from supplier s
Ls
τ,ω lead time associated to the quantity ordered at period τ

from supplier s for the scenario ω. It is a discrete random
variable varying between Ls

− and Ls
+ and used for the

case where demands splitting is not allowed
Ls
τ,t,ω lead time associated to the quantity ordered at period τ

from supplier s to satisfy demand Dt for the scenario
ω. It is a discrete random variable varying between Ls

−
and Ls

+ and used for the case where demands splitting
is allowed

Variables
Qs

τ,t quantity ordered from supplier s at period τ to satisfy
Dt, it is an integer decision variable, which is used for
the case where demands splitting is allowed

Qs
τ quantity ordered from supplier s at period τ , it is an

integer decision variable, which is used for the case
where demands splitting is not allowed

ysτ,t is equal to 1 if Dt is ordered from supplier s at period τ ;
zero otherwise. It is a binary decision variable, which
is used for the case where demands splitting is allowed

At,ω arrival quantity at period t for the scenario ω
It inventory level at the end of period t

I+t inventory to carry at the end of period t. It is equal to It
if It ≥ 0 and zero otherwise

I−t backlog level at the end of period t. It is equal to −It if
It ≤ 0 and zero otherwise

Functions
P(.) probability value
E(.) expected value
1A indicator function, equals 1 if event A is true; 0 otherwise

their arrival at period t (Fig. 1-(c) and -(d)). Note that only
the order quantities belonging to the third group are subject
to lead time uncertainty. Therefore, they are used to define
the set MNF

t .

Definition III.1. Let MNF
t be the set of indices of all orders

Qs
τ that can be involved in calculating the backlogging level

at period t. This set will be used in models that do not
consider order flexibility. It corresponds to the two cases
illustrated in sub-figures (c) and (d) of Fig. 1, and is defined
by:

MNF
t =

{
(s, τ) ∈ S × T : t− Ls

+ + 1 ≤ τ ≤ t− Ls
−
}

Each quantity Qs
τ ordered at period τ from supplier s

arrives after a random lead time Ls
τ . The periods in which

this quantity can arrive are within the interval [τ + Ls
−, τ +

Ls
+]. Therefore, the inventory level at any period τ depends

on the realization of lead times of the ordered quantities
indexed in the set MNF

t .

Definition III.2. Let αs
τ,ω = 1{Ls

τ,ω≤t−τ} : (s, τ) ∈ MNF
t

be an indicator that expresses if the quantity ordered from
supplier s at period τ arrives before the end of period t for
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Fig. 1: Different cases of arrivals periods for NF strategy.

a given scenario ω:

αs
τ,ω =

{
0 if τ + Ls

τ,ω > t, with P(Ls
τ,ω > t− τ)

1 if τ + Ls
τ,ω ≤ t, with P(Ls

τ,ω ≤ t− τ)

A set of αs
τ,ω for all (s, τ) ∈ MNF

t defines a given scenario
ω. The set of all possible aggregated scenarios, whose
cardinality |ΩNF | is 2|M

NF
t |, is defined as follows:

ΩNF =
{(

αs
τ,ω

)
(s,τ)∈MNF

t

: w ∈ {1, ..., 2|M
NF
t |}

}
In the first scenario ω1 ∈ ΩNF , ∀(s, τ) ∈ MNF

t each
quantity ordered from supplier s at period τ arrives after
period t. It is a null vector whose dimension is the number
of elements of MNF

t : ω1 = 0|MNF
t |. In the last scenario

ω[ΩNF |, ∀(s, τ) ∈ MNF
t each quantity ordered at period τ

from supplier s arrives before period t: ω[ΩNF | = 1|MNF
t |.

Property III.1. Each scenario ω is characterized by its
probability of occurrence pw as defined below:

pω =
∏

(s,τ)∈MNF
t

(
αs
τ,ωP(Ls

τ,ω ≤ t− τ)+
(1− αs

τ,ω)P(Ls
τ,ω > t− τ)

)
∀ω ∈ ΩNF

where αs
τ,ω = 1{Ls

τ,ω≤t−τ} is a binary value, and such that∑
ω∈ΩNF pω = 1.

Based on the aggregation strategy resulting in the sets
MNF

t and ΩNF , a first stochastic model is proposed. It is
denoted by M1 and considers neither the flexibility on orders
nor order splitting.

This model, noted by M1, considers the strategy where
neither order flexibility nor splitting is allowed. The corre-
sponding objective function and constraints are given below:

M1: min
∑
t∈T

( ∑
ω∈ΩNF

pω.
(
chI+t,ω + cbI−t,ω

)
+

∑
s∈S

csQs
t

)
(1)

subject to constraints:

I+t,ω − I−t,ω =
∑
s∈S

t−Ls
+∑

τ=1

Qs
τ+

∑
(s,τ)∈MNF

t

αs
τ,ωQ

s
τ −

t∑
τ=1

Dτ

∀t ∈ T , ∀ω ∈ ΩNF (2)

Qs
t =

∑
τ∈T

ys
t,τDτ ∀s ∈ S, ∀t ∈ T (3)

ys
τ,t ≤ Dt ∀s ∈ S,∀t, τ ∈ T (4)

Dt∑
i∈T Di

≤
∑
s∈S

t−Ls
−∑

τ=t−Ls
+

ys
τ,t ≤ 1 ∀t ∈ T (5)

ys
τ,t ∈ {0, 1} ∀s ∈ S,∀t, τ ∈ T (6)

I+t,ω ≥ 0 ∀t ∈ T , ∀ω ∈ ΩNF (7)

I−t,ω ≥ 0 ∀t ∈ T , ∀ω ∈ ΩNF (8)
Qs

t ≥ 0 ∀s ∈ S, ∀t ∈ T (9)

The inventory level It,ω at the end of each period t for each
scenario ω is expressed by Constraints (2). Since demands and or-
dered quantities are integers, then each inventory level is necessarily
integer and can be positive if It,ω > 0 (denoted by I+t,ω) or negative
if It,ω < 0 (denoted by I−t,ω). Dissatisfied demands will raise the
backlog level of the period and remain in the system until they are
satisfied if the inventory level is null at any period. Each demand
cannot be dispatched between several periods or several suppliers.
Thus, each non-zero ordered quantity Qs

t is equal to the sum of
one or several demands (Constraints (3)). We remind that ys

τ,t is
a binary variable (Constraints (6)). It is non-null if at period τ ,
we order Dt from supplier s. If Dt is null, no quantity is ordered
from any supplier (Constraints (4)). If Dt > 0, at most one order
is released (Constraints (5)). Constraints (7-8) define I+t,ω and I−t,ω .
These two values could be arbitrarily large, but they will not do so
because in the objective function (1) they are associated to positive
costs. Constraints (9) are non-negativity constraints. Knowing that
all demands are integers, then Constraints (3) force Qs

t to be integer
variables.

B. Characterizing the scenarios of “With Flexibility” strat-
egy

To account for the uncertainty of lead times and the flexibility,
the following elements are introduced:

• the set of indices MWF
t of all ordered quantities Qs

τ,i used
to calculate the backlogging level at t

• the set of aggregated scenarios ΩWF

• the probability pω of each aggregated scenario ω ∈ ΩWF

To calculate the inventory level at period t, we can split all possible
Qs

τ,i (each quantity is ordered at period τ from supplier s to satisfy
demand i) into three groups: (i) orders that we are sure to receive
at the latest at the end of period t (τ ≤ t − Ls

+), (ii) orders that
will never be received before the end of period t (τ > t−Ls

−), and
(iii) orders that contain uncertainties about their arrival at period
t ( t − Ls

+ + 1 ≤ τ ≤ t − Ls
−, see Fig. 2). Note that only the



order quantities belonging to the third group are subject to lead
time uncertainty. Therefore, they are used to define the set MNF

t .

Definition III.3. Let MWF
t be the set of indices of all ordered

quantities Qs
τ,i that can be involved in the calculation of the

backlogging level at period t. This set is used in the M2 model,
which considers the orders’ flexibility. It is defined by:

MWF
t =

{
(s, τ, i) ∈ S × T 2 : t− Ls

+ + 1 ≤ τ ≤ t− Ls
−

and τ + Ls
− ≤ i ≤ τ + Ls

+

}

The difference of MWF
t compared to MNF

t is that, by con-
sidering the flexibility on the orders, a quantity ordered from a
supplier s at period τ is divided according to the demands to be
satisfied. Then, each demand Di can be satisfied entirely or by
several portions delivered independently from different suppliers.
Thus, Qs

τ,i is precisely the quantity ordered from s, released at
period τ to satisfy the demand of period i.

Each quantity Qs
τ,i ordered at period τ from supplier s to satisfy

the demand Di arrives after a random lead time Ls
τ,i,ω . The periods

in which this quantity can arrive are within the interval [τ+Ls
−, τ+

Ls
+]. Therefore, the inventory level at any period τ depends on the

realization of lead times of the ordered quantities indexed in the set
MWF

t .

Definition III.4. Let αs
τ,i,ω = 1{Ls

τ,i,ω≤t−τ} : (s, τ, i) ∈ MWF
t

be an indicator that expresses if the quantity ordered from supplier
s at period τ to satisfy the demand Di arrives before period t for
a given scenario ω:

αs
τ,i,ω =

{
0 if τ + Ls

τ,i,ω > t, with P(Ls
τ,i,ω > t− τ)

1 if τ + Ls
τ,i,ω ≤ t, with P(Ls

τ,i,ω ≤ t− τ)

The number of possible scenarios is equal to |ΩWF | = 2|M
WF
t |. It

only depends on the cardinality of the set of triplets (s, τ, i). A given
scenario ω is composed of a set of αs

τ,i,ω for all (s, τ, i) ∈ MWF
t .

This allows to define the set of all possible aggregated scenarios
as follows:

ΩWF =
{(

αs
τ,i,ω

)
(s,τ,i)∈MWF

t
: w ∈ {1, ..., 2|M

WF
t |}

}
Property III.2. Each scenario ω is characterized by its probability
of occurrence pw as defined below:

pω =
∏

(s,τ,i)∈MWF
t

(
αs
τ,i,ωP(Ls

τ,i,ω ≤ t− τ)+
(1− αs

τ,i,ω)P(Ls
τ,i,ω > t− τ)

)
∀ω ∈ ΩWF

where αs
τ,i,ω = 1{Ls

τ,i,ω≤t−τ} is a binary value, and∑
ω∈ΩWF pω = 1.

Based on the aggregation strategy resulting in the sets MWF
t

and ΩWF , a second stochastic model, noted by M2, is proposed
in the next sub-subsection. It is denoted by M2 and allows both
flexibility on orders and order splitting. This model is based on
a scenario approach. The set of all possible scenarios ω ∈ ΩWF

is considered to optimize the ETC. In this model formulation, it
is assumed that both flexibility and splitting are allowed. This
authorizes splitting each demand into several quantities that are
ordered from different suppliers. Orders released from each supplier
at a given period are separated and have independent lead times
occurrences. This strategy can be formulated as the stochastic ILP
given in Equations (10-16).

M2: min
∑
t∈T

( ∑
ω∈ΩWF

pω.
(
chI+t,ω + cbI−t,ω

)
+

∑
s∈S

∑
τ∈T

csQs
τ,t

)
(10)

subject to constraints:

I+t,ω − I−t,ω =
∑
s∈S

t−Ls
+∑

τ=1

τ+Ls
+∑

i=τ+Ls
−

Qs
τ,i+

∑
(s,τ,i)∈MWF

t

αs
τ,i,ωQ

s
τ,i

−
t∑

τ=1

Dτ ∀t ∈ T ,∀ω ∈ ΩWF (11)

Qs
τ,t ≤ Dt ∀s ∈ S, ∀t, τ ∈ T (12)∑

s∈S

t−Ls
−∑

τ=t−Ls
+

Qs
τ,t = Dt ∀t ∈ T (13)

Qs
τ,t ∈ N ∀s ∈ S, ∀t, τ ∈ T (14)

I+t,ω ≥ 0 ∀t ∈ T ,∀ω ∈ ΩWF (15)

I−t,ω ≥ 0 ∀t ∈ T ,∀ω ∈ ΩWF (16)

where αs
τ,i,ω is the binary indicator introduced in Definition III.4,

and pω is the probability of occurrence of scenario ω ∈ ΩWF given
in Property III.2.

We examine all possible aggregated scenarios in the M2 model,
which is explained by Equations (10-16). We aim to minimize the
ETC, including inventory, backlogging, and purchasing costs. We
also need to determine the proportion of a given Dt that should
be ordered from a given supplier s at a given period τ . The
inventory level It,ω at the end of each period t for each scenario
ω is expressed by constraints (11). Constraints (12) ensure that the
quantity ordered from supplier s at period τ to satisfy the demand of
period t is less than Dt. Constraints (13) guarantee the satisfaction
of all demands and require the sum of the quantity ordered to satisfy
the demand of period t equal to Dt.

Constraints (14) define the ordered quantities as integer variables.
Constraints (15-16) define I+t,ω and I−t,ω . These two values could
not be arbitrarily large because in the objective function (10), they
are associated with positive costs.

IV. NUMERICAL EXAMPLE

The two models were implemented in C++, solved by IBM
CPLEX 12.9 and executed on a single core from a single node of a
cluster. The used node is a 2 CPU Intel Xeon E5-2660 v3 with 10
cores at 2.60 GHz and 64 Go RAM. This small numerical example
illustrates the difference between the four aforementioned strategies.
The planning horizon has 8 periods (T = {1, . . . , 8}) within which
the periods 5 to 8 have a demand greater than zero, namely D5 =
30, D6 = 23, D7 = 10 and D8 = 55. The unit time backlogging
and holding costs are cb = 15 and ch = 10, respectively. Supply
can be ensured by 3 suppliers with different purchasing costs and
lead time probability distributions, as presented in Table II.

TABLE II: Suppliers’ data.

l : lead time possible values
s PMF s 1 2 3 4 ps

1 P(Ls = l) 0.24 0.76 68
2 P(Ls = l) 0.53 0.16 0.31 65
3 P(Ls = l) 0.48 0.52 65
PMF s: Probability mass function of supplier’s s lead time.

Tables III to IV detail the results of the optimal solutions for
M1, and M2 models, respectively.

For these tables, the first row has the periods. The second
displays the demands to be satisfied. The third shows the expected
inventory value to be carried out during each period. Row 4 gives
the expected value of the backlog level at each period. The fifth
presents the expected arrivals. Finally, the quantities ordered from
suppliers 1, 2, and 3 are shown in the last three.

Table III illustrates the optimal solution when neither orders
splitting nor release flexibility are supported (cf. Section III-A). It
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Fig. 2: Different cases representing the set MWF
t for WF strategy.

can be observed that the optimal solution is at all the times ordered
from the third supplier (30 units in period 1, 23 in period 2, 10 in
period 3, and 55 in period 4). In other words, for all demands,
we have a planned lead time equal to 4 periods (for example,
demand D5 is ordered at period 1). This solution presents the best
compromise between inventory, backlogging, and purchasing costs.
The lead time of supplier 3 is varying between 3 and 4 periods.
So at period 4 we can only receive the quantity ordered at period
1 (Q3

1=30 units) with the probability 0.48. The expected inventory
level for all scenarios at this period equals 14.40 (30 × 0.48).

At period 5, the demand to satisfy is 30 units (D5), and the
quantity to be surely received before the end of this period is Q3

1 =
30 units. However, there is uncertainty about the receipt of Q3

2 =
23, which may arrive either at period 5 with a probability of 0.48
or at period 6 with a probability of 0.52. Therefore, the expected
inventory to carry at the end of this period is E(I+5 ) = (30−30)×
0.52 + (30 + 23− 30)× 0.48 = 11.04. The optimal ETC is equal
to 8236.4, which is the sum of expected inventory holding costs
(566.4) and purchasing costs (7630).

Table IV entails the optimal solution where both flexibility and
order splitting are considered (cf. Section III-B). The M2 model
proposes to order only the quantity Q1

6,6 = 10 from the first supplier
at period 6 and the rest from the third one at periods 1, 2, and 4.
The optimal cost obtained by this model is 8119.26.

This numerical example illustrated the benefits of order splitting
and their release flexibility in absorbing the effects of lead time un-
certainty. More generally, these results also confirm that introducing
flexibility reduces costs. The solution given by the M2 model finds
the best way to dispatch demands to different suppliers at different
periods to get the best compromise between the cost of lead time
uncertainty and purchasing cost. However, the stochastic M2 model
not only has much more scenarios than the M1 model to be explored
when evaluating the expected cost of a given solution, but also more
decision variables, implying a wider space of solutions.

In this example, for M1 model, for each scenario, it is necessary
to fix |MNF

t | values of αs
τ,ω∀(s, τ) ∈ MNF

t . By considering three
suppliers, |MNF

t | =
∑

s∈S Ls
+−Ls

− = 4. Thus, the number of all
possible aggregated scenarios is |ΩNF | = 24.
For each scenario, the M2 model must fix |MWF

t | values of αs
τ,i,ω .

By considering three suppliers, |MWF
t | =

∑
s∈S(L

s
+−Ls

−+1)×
(Ls

+−Ls
−) = 2+3×2+2 = 10. Thus, the number of all possible

aggregated scenarios |ΩWF | increases to 210.

Remark 1. If one of the suppliers increases its uncertainty by one
period, for M2 model, |MWF

t | will be equal to 14 and |ΩWF | to
214. For M1 model, |MNF

t | will be equal to 5 and then ΩNF = 25.

V. CONCLUSION

This paper presents a multi-period production planning and
dynamic supplier selection problem with a known dynamic demand

and stochastic lead times. For each supplier, order lead times are
independent, discrete random variables with known and bounded
probability distributions. Two linear stochastic models are presented
to consider two alternative strategies relative to orders’ splitting and
ordering release flexibility.

The proposed models consider the order crossover and optimize
the selection of suppliers (each supplier is characterized by a
purchasing cost and a probability distribution for its lead time).

The results show that introducing flexibility in order delivery
and the dispatching of demands between several suppliers is the
best way to cope with the uncertainty of lead times.

Future work will focus on deeper analyses of the dependence
between the suppliers’ selection and the incurred costs due to
uncertainty and purchasing costs. The objective is to identify
effective strategies for negotiation between buyers and suppliers.
It will also be interesting to add to our model the possibility of
choosing between different transportation modes and include other
criteria for supplier selection, such as quality and environmental
impact.
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