
HAL Id: hal-04748690
https://imt-mines-ales.hal.science/hal-04748690v1

Submitted on 22 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Sensitivity Analysis of Traffic Sign Recognition to Image
Alteration and Training Data Size

Arthur Rubio, Guillaume Demoor, Simon Chalmé, Nicolas Sutton-Charani,
Baptiste Magnier

To cite this version:
Arthur Rubio, Guillaume Demoor, Simon Chalmé, Nicolas Sutton-Charani, Baptiste Magnier. Sensi-
tivity Analysis of Traffic Sign Recognition to Image Alteration and Training Data Size. Information,
2024, 15 (10), pp.621. �10.3390/info15100621�. �hal-04748690�

https://imt-mines-ales.hal.science/hal-04748690v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Citation: Rubio, A.; Demoor, G.;

Chalmé, S.; Sutton-Charani, N.;

Magnier, B. Sensitivity Analysis of

Traffic Sign Recognition to Image

Alteration and Training Data Size.

Information 2024, 15, 621. https://

doi.org/10.3390/info15100621

Academic Editors: Marco Leo and

Heming Jia

Received: 7 August 2024

Revised: 12 September 2024

Accepted: 2 October 2024

Published: 10 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Sensitivity Analysis of Traffic Sign Recognition to Image
Alteration and Training Data Size
Arthur Rubio 1,† , Guillaume Demoor 1,†, Simon Chalmé 1,†, Nicolas Sutton-Charani 2 and Baptiste Magnier 2,3,*

1 Department of Computer Science and Artificial Intelligence, IMT Mines Ales, Ales, France;
arthurrubio0@gmail.com (A.R.); guillaume.demoor@etu.mines-ales.fr (G.D.);
simon.chalme@etu.mines-ales.fr (S.C.)

2 EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France;
nicolas.sutton-charani@mines-ales.fr

3 Service de Médecine Nucléaire, Centre Hospitalier Universitaire de Nîmes, Université de Montpellier,
Nîmes, France

* Correspondence: baptiste.magnier@mines-ales.fr
† These authors contributed equally to this work.

Abstract: Accurately classifying road signs is crucial for autonomous driving due to the high stakes
involved in ensuring safety and compliance. As Convolutional Neural Networks (CNNs) have
largely replaced traditional Machine Learning models in this domain, the demand for substantial
training data has increased. This study aims to compare the performance of classical Machine
Learning (ML) models and Deep Learning (DL) models under varying amounts of training data,
particularly focusing on altered signs to mimic real-world conditions. We evaluated three classical
models: Support Vector Machine (SVM), Random Forest, and Linear Discriminant Analysis (LDA),
and one Deep Learning model: Convolutional Neural Network (CNN). Using the German Traffic Sign
Recognition Benchmark (GTSRB) dataset, which includes approximately 40,000 German traffic signs,
we introduced digital alterations to simulate conditions such as environmental wear or vandalism.
Additionally, the Histogram of Oriented Gradients (HOG) descriptor was used to assist classical
models. Bayesian optimization and k-fold cross-validation were employed for model fine-tuning and
performance assessment. Our findings reveal a threshold in training data beyond which accuracy
plateaus. Classical models showed a linear performance decrease under increasing alteration, while
CNNs, despite being more robust to alterations, did not significantly outperform classical models
in overall accuracy. Ultimately, classical Machine Learning models demonstrated performance
comparable to CNNs under certain conditions, suggesting that effective road sign classification can
be achieved with less computationally intensive approaches.

Keywords: autonomous driving; traffic sign recognition; machine learning; deep learning; random
forest; CNN; SVM; LDA; HOG; Bayesian optimization

1. Introduction

In the automotive technology landscape, the transition towards autonomous and
semi-autonomous vehicles, driven by pioneering companies like Tesla and other manufac-
turers, marks a pivotal evolution in how we envision transportation. A key aspect of this
transformation is the critical importance of accurate road sign recognition, which serves
as a foundational element for ensuring the safety and efficiency of autonomous driving
systems. The ability to correctly interpret road signs is essential for the proper functioning
of these vehicles, directly impacting their reliability and safety.

Our study conducts a comprehensive analysis using various Machine Learning (ML)
models on the German Traffic Sign Recognition Benchmark (GTSRB) dataset [1], focusing
specifically on classification tasks. This analysis spans classical Machine Learning tech-
niques, such as Support Vector Machines (SVM) and Random Forests [2], and extends to

Information 2024, 15, 621. https://doi.org/10.3390/info15100621 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15100621
https://doi.org/10.3390/info15100621
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0000-0884-576X
https://orcid.org/0000-0003-3458-0552
https://doi.org/10.3390/info15100621
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15100621?type=check_update&version=1

Information 2024, 15, 621 2 of 22

more sophisticated Deep Learning methods employing Convolutional Neural Networks
(CNNs) [3,4]. Beyond evaluating performance, our research emphasizes a sensitivity
analysis aimed at evaluating the models’ adaptability to alterations such as vandalism
and changing environmental conditions (weather, lighting, etc.), as well as the number
of training images per sign. These modifications replicate the environmental wear and
deliberate markings, as well as the diverse conditions encountered by self-driving vehicles
in real-world scenarios.

Given the increasing reliance on semi-autonomous systems and the historical prece-
dence of accidents attributed to misinterpretation of surroundings by such technologies, our
study highlights the urgent need for improving the robustness of Machine Learning models
used in traffic sign recognition. Enhancing model reliability under various challenges is
crucial for advancing the safety standards of future autonomous vehicular technologies,
ultimately moving us closer to a future where autonomous driving is synonymous with
unparalleled safety and reliability.

2. Literature Review

Traffic sign recognition presents a real-world multi-label classification challenge char-
acterized by unbalanced class frequencies due to the varying prevalence of different types
of traffic signs on roads [5]. This area has been studied for decades and encompasses a
diverse range of methods and approaches. The introduction of the German Traffic Sign
Recognition Benchmark (GTSRB) in 2011 represented a major milestone in this field, es-
tablishing a standardized benchmark that enables method comparison and has stimulated
substantial research efforts [6].

Prior to GTSRB, researchers explored various approaches in traffic sign recognition,
primarily relying on recognizing color and shape characteristics [7], often incorporating
aspects like vehicle motion [8] and early neural networks [9].

The introduction of the GTSRB provided the first standardized way to compare dif-
ferent methods for recognizing traffic signs. Upon its release, a competition using the
GTSRB dataset was held to test various Machine Learning techniques, including Convolu-
tional Neural Networks (CNN), Support Vector Machines (SVM), Random Forests, Linear
Discriminant Analysis (LDA), ensemble classifiers, slow feature analysis, and k-d trees.
The Dalle Molle Institute for Artificial Intelligence Studies (IDSIA) team achieved an impres-
sive accuracy of 98.98% using a group of Convolutional Neural Networks (CNNs), where
the model’s output was the average of several CNNs. In a later phase of the competition,
IDSIA improved their accuracy to 99.15% by combining CNNs with Multi-Layer Percep-
trons (MLPs) trained on Haar features and Histogram of Oriented Gradients (HOG) [3],
thus winning the final contest. Le Cun and Sermanet’s team came in second place in
both phases using a multi-scale CNN approach [4], which feeds the output of the last
convolution layer and the subsequent max-pooling layer output into the fully connected
classifier, achieving an accuracy of 98.31%. Team VISICS secured third place in the first
phase with a 97.88% accuracy using a one-vs.-all approach for SVM, combining two types
of HOG descriptors. In the second phase, team CAOR (Center for Robotics at Mines Paris)
achieved third place using a Random Forest approach with various HOG descriptors to
reach an accuracy of 96.14% [2]. Other methods using Linear Discriminant Analysis (LDA)
and K-Nearest Neighbors (KNN) also showed promising results. Those results can be seen
in Table 1.

Table 1. Results of the GTSRB contest in 2011.

Rank Team Method Correct Recognition Rate

1 IDSIA Committee of CNNs 99.46%
2 - Human Performance 98.84%
3 Sermanet Multi-Scale CNNs 98.31%
4 CAOR Random Forests 96.14%

Information 2024, 15, 621 3 of 22

Our study builds upon this foundation by exploring how the performance of classical
Machine Learning and Deep Learning models evolves with different amounts of training
data, especially under altered conditions. This exploration is crucial for developing models
that can withstand the challenges posed by real-world driving environments. The principal
conclusion drawn from this study is that classical ML models can achieve comparable per-
formance to CNNs under specific conditions, suggesting potential for less computationally
intensive solutions in practical applications.

3. Methodology

In this section, we discuss the methods used to prepare the dataset, the models we
compared, the data transformations applied, and the evaluation protocol followed. The goal
is to understand how different models perform on the task of traffic sign recognition when
subjected to various alterations and input conditions.

3.1. Dataset Overview

In this section, we present the dataset used for this study, including its composition
and diversity, which are crucial for ensuring robust model training and evaluation.

The German Traffic Sign Recognition Benchmark (GTSRB) [6] is a foundational dataset
in the domain of automated driving systems and computer vision. Established to facilitate
the development and benchmarking of Machine Learning models capable of recognizing
traffic signs, the GTSRB offers a comprehensive collection of traffic sign imagery suited for
tasks ranging from simple classification to more complex, real-world scenario simulations.

Comprising around 40,000 images scattered across 43 categories, the dataset includes
a diverse array of signs encountered on German roads, varying in shape, size, and condi-
tion to mimic real-world variability. Each image is annotated with a label indicating its
corresponding traffic sign class, providing a ground truth for training and testing purposes.

The dataset is distinguished by its real-life diversity, including variations in lighting,
angles, and partial occlusions, simulating the challenges autonomous driving systems
face in accurately identifying traffic signs under different environmental conditions. This
complexity makes the GTSRB an invaluable resource for evaluating the robustness and
effectiveness of Machine Learning models, particularly in the context of autonomous
driving where precision and reliability are paramount. One can observe the various details
of the GTSRB dataset in Table 2.

Table 2. German Traffic Sign Recognition Benchmark (GTSRB) dataset parameters [6].

Parameters Value

Number of images 39,209
Number of classes 43

Number of images per class 211–2251
Mean number of images per class 912

Format Portable Pixel Map (PPM)
Size 15 × 15–250 × 250

Number of channels 3
Quantification 3 × 8 = 24 bits

Our transformation strategy seeks to augment the inherent diversity of the GTSRB
by amplifying existing variations and introducing controlled simulations of weather or
vandalism. While the GTSRB already offers a substantial foundation with its natural vari-
ability in lighting and viewing angles, our transformations aim to extend these variations
further. This approach allows us to not only exaggerate the changes present in the original
dataset but also to incorporate the effects of environmental wear and vandalism, thereby
enriching our analysis. Crucially, by controlling these transformations, we can precisely
measure the impact of each modification on the different models’ road sign recognition
performance. This methodological control provides a detailed understanding of how each

Information 2024, 15, 621 4 of 22

model responds to intensified or altered conditions, offering valuable insights into neces-
sary improvements for ensuring the reliability of autonomous driving systems in the face
of real-world complexities.

In our study, the GTSRB serves as the primary dataset for the training and initial
testing of the selected Machine Learning models. It provides a rigorous testing ground to
assess the models ability to generalize from the learned representations of traffic signs to
accurately classify unseen images, a critical capability for the deployment of autonomous
driving technologies. You can see samples from the GTSRB dataset on Figure 1.

Figure 1. Traffic signs samples from the GTSRB dataset.

3.2. Compared Model

This section outlines the models selected for our study, categorizing them into classical
Machine Learning models and Deep Learning models to compare their performance on
traffic sign recognition tasks.

For our study, we will compare several types of models. These models can be clas-
sified into two major categories: classical Machine Learning models and Deep Learning
models. In our study, we will examine three classical Machine Learning models and one
Deep Learning model. While classical Machine Learning models typically require manual
feature extraction and are often simpler, Deep Learning models automatically learn features
from the data using multiple layers of neural networks, making them more powerful for
complex tasks.

The selection of these models was based on their proven effectiveness in traffic sign
classification tasks, as observed in the GTSRB contest. For Deep Learning, we focus on
the Convolutional Neural Network (CNN) model, which is predominantly used in the
literature. For classical models, we selected the Random Forest, Linear Discriminant
Analysis (LDA), and Support Vector Machine (SVM) models, which have achieved top
performance in previous studies.

3.2.1. Support Vector Machine

The first model we studied is the Support Vector Machine (SVM) [10]. This model is
designed to solve classification problems by relying on concepts of margins. The margin
refers to the distance between the boundary and the closest samples, called support vec-
tors. This model is primarily used for its low number of hyperparameters and its good
practical performance.

Information 2024, 15, 621 5 of 22

The diagram in Figure 2 depicts the fundamental components of a Support Vector
Machine (SVM) classifier. The separating hyperplane (blue line) serves as the decision
boundary that divides the two class, represented by red and blue dots. The support vectors
(circled lines) are the critical data points that lie closest to the hyperplane and are used
to define the margin. The margin (orange line) is the distance between the dashed lines
parallel to the hyperplane, which pass through the support vectors. Maximizing this margin
enhances the model’s ability to generalize to unseen data.

Support
Vector

Support
Vector

Figure 2. Illustration of a Support Vector Machine (SVM) classifier depicting the separating hyper-
plane (blue line), support vectors (blue dotted lines), and margin (orange lines). The two classes are
represented by red and blue data points.

3.2.2. Random Forest

In our study, we also investigate Random Forest models [11], which are used for both
classification and regression problems. The Random Forest as shown in Figure 3 is based
on a concept stating that a crowd of people will always achieve better results than a single
expert in their field of expertise. The Random Forest aggregates simpler decision trees
trained on different datasets, enhancing prediction diversity and accuracy through the
principle of bagging.

Tree 1 Tree nTree 2

(…)

Test Sample Input

Prediction 1 Prediction nPrediction 2 (…)

Average all predictions

Random Forest

Prediction

Figure 3. Random Forest classifier. The test sample input is evaluated by multiple decision trees,
each providing an individual prediction. These individual predictions are then averaged to produce
the final Random Forest prediction.

Information 2024, 15, 621 6 of 22

3.2.3. Linear Discriminant Analysis

The last classical model we are studying is Linear Discriminant Analysis (LDA) [12],
which addresses overfitting issues common in models with numerous features by reducing
data dimensionality while preserving class variability. LDA achieves this by finding a
linear combination of features that maximizes class separability and minimizes within-class
variance. This involves two main steps: identifying the linear discriminant function that
best separates the classes, and using this function to project new observations onto the
separation line. As illustrated on Figure 4, before applying LDA, data points (blue and red
dots representing different classes) are not well-separated in their original multidimensional
space, leading to potential classification difficulties. After applying LDA, the data points
are projected onto a new axis that maximizes class separability, represented by a decision
boundary (black line), facilitating more accurate classification.

Before LDA After LDA

Figure 4. Linear Discriminant Analysis (LDA) process showing data distribution before (left) and
after (right) LDA. Post-LDA, data is projected to maximize class separation, enhancing classification
by preserving discriminatory information.

3.2.4. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have revolutionized the field of image clas-
sification, setting new benchmarks for accuracy and performance [13]. This transforma-
tion was clearly demonstrated in the results of the ImageNet competition showcased on
Figure 5, where CNNs consistently outperformed all other methods. CNNs, with their
Deep Learning architecture, excel at automatically detecting complex features and patterns
in images, which has enabled them to achieve superior results compared to traditional
image processing techniques.

Figure 5. ImageNet error rate trends: Since 2012, CNNs have dominated, reaching superhuman
performance in image classification.

Information 2024, 15, 621 7 of 22

Even though CNN techniques have evolved significantly over the years, our study
focuses on a basic CNN architecture. While global image classification requires more
complex and deeper models, for classification on GTSRB, a basic architecture can achieve
almost perfect accuracy. As shown in Figure 6, the Convolutional Neural Network (CNN)
used in our study applies convolutional layers to detect patterns and features like edges
and textures, with ReLU activation introducing non-linearity. The network includes three
convolutional layers followed by max-pooling layers, which reduce the spatial dimensions
of the feature maps, retaining essential information and enhancing robustness to spatial
variations. The first convolutional layer has 32 filters of size 3 × 3, while the subsequent two
layers have 64 filters each. Input images with three channels (RGB) are processed through
these layers, then the feature maps are flattened into a one-dimensional vector, which is
input into two fully connected layers with 64 neurons each. These layers perform high-
level reasoning and classification using weighted connections. Finally, the output layer,
with a SoftMax activation function, produces a probability distribution across the 43 target
classes (traffic signs). The CNN model was selected for its simplicity and effectiveness,
with hyperparameters such as learning rate, batch size, and number of epochs optimized
using a grid search approach.

Input Output

Stop

Left arrow

30 limit

0.1

0.7

0.2

Kernel Convolution

+ ReLu

Convolution

+ ReLu

Convolution

+ ReLu Flatten

layer

Pooling Pooling

SoftMax

Activation

Function

Fully connected layerFeature Maps

Feature Extraction Probabilistic

Distribution

Classification

Figure 6. Architecture of a Convolutional Neural Network (CNN) for image classification, illustrating
the stages from input images through convolution, pooling, and fully connected layers to the final
probabilistic distribution and classification output.

3.3. Transformations

In this section, we describe the data alterations applied to simulate real-world
traffic sign conditions, such as environmental wear and vandalism, and their impact on
model performance.

3.3.1. Database Alteration

In actual driving scenarios, traffic signs may be subjected to alteration from two
primary sources:

1. Application of stickers or paint;
2. Environmental wear, such as fading colors or loss of detail.

To simulate these forms of alteration in our database, we employed a two-step ap-
proach: initially, we created a visual dashboard to explore and visually confirm the types
of transformations possible. This interactive tool allowed us to manually apply various
modifications to traffic sign images and immediately see the outcomes.

Leveraging the insights gained from the dashboard, we automated the process of
digital alteration by implementing a specific code on the initial GTSRB database. This au-
tomation involved systematically applying the transformations we had explored visually—

Information 2024, 15, 621 8 of 22

such as adjusting shapes, colors, and image properties like brightness, color saturation,
and contrast.

To visually showcase the diverse modifications we can apply to our database, we
developed an interactive dashboard showcased on Figure 7. This platform allows users to
observe and interact in real time with the changes implemented in the database. By visiting
the dashboard on this link (https://arthurrubio.shinyapps.io/autonomous-driving/) (ac-
cessed: 1 October 2024), users can gain a hands-on understanding of how data alterations
can influence outcomes in real-time.

Dynamic Sign Numeric Vandalizing

Add Sticker

Choose Sticker

X Position

Y Position

Size

Brightness

Saturation

Contrast

0 1165

0 116.5 233 349.5 466 582.5 699 815.5 932 1048.5 1165

0 1165272.32

0 116.5 233 349.5 466 582.5 699 815.5 932 1048.5 1165

50 200

50 65 80 95 110 125 140 155 170 185 200

0 20049

0 20 40 60 80 100 120 140 160 180 200

0 200129

0 20 40 60 80 100 120 140 160 180 200

oops.png

25/05/2024 14:36 Dynamic Sign Numeric Vandalizing

https://arthurrubio.shinyapps.io/autonomous-driving/ 1/2

Figure 7. Example of traffic sign alteration using the dashboard.

In the design of this interactive dashboard, we aimed to create a more realistic ex-
perience by replacing the uniform obstructions with stickers. This adjustment not only
enhances the visual fidelity of the simulation but also closely mimics real-world scenarios
where traffic signs may be partially obscured by stickers or other materials. The interactive
features of the dashboard allow users to toggle different types of visual modifications, pro-
viding a comprehensive view of how each element can affect the visibility and recognition
of traffic signs in an autonomous driving context.

In addition to developing the visual dashboard, we implemented a code designed
to alter the original GTSRB (German Traffic Sign Recognition Benchmark) database. This
code executes a series of transformations detailed in Algorithm 1 and elaborated upon
in the subsequent text. The process begins with the introduction of obstructions to the
images. These obstructions are randomly selected from a set of shapes: squares, rectangles,
triangles, and circles, and are uniformly colored in one of the following colors: red, blue,
green, yellow, orange, purple, white, black, cyan, or gray. The obstructions cover between
1% and 10% of the panel. Subsequently, adjustments are made to the brightness, color
saturation, and contrast levels of the images. Each of these properties is modified by a
random factor ranging from 30% to 170% of its original value, thus ensuring that each
image is uniquely altered. Values below 100% reduce brightness, saturation, or contrast,
while values above 100% increase them, making the image brighter, more vibrant, or higher
in contrast. This dynamic manipulation not only mimics various real-world scenarios
of visual impairments but also enhances the robustness of the GTSRB database for more

https://arthurrubio.shinyapps.io/autonomous-driving/

Information 2024, 15, 621 9 of 22

effective training and evaluation of traffic sign recognition systems. You can see examples
of those changes on Figure 8.

Algorithm 1 Traffic Sign Alteration Protocol.

Input:
Traffic sign image Sign

Output:
Altered traffic sign image AltSign

1: Load image Sign
2: Randomly select shape from {square, rectangle, triangle, circle}
3: Randomly select color from {red, blue, green, yellow, orange, purple, white, black, cyan, gray}
4: Compute random area to cover, ranging between 1% and 10% of the total sign area
5: Overlay the sign image with randomly selected shape and color
6: Modify image brightness by applying a random factor between 0.3 and 1.7
7: Modify color saturation by applying a random factor between 0.3 and 1.7
8: Modify contrast by applying a random factor between 0.3 and 1.7
9: return the modified image AltSign

Figure 8. Traffic signs samples from the altered GTSRB dataset.

3.3.2. HOG Application

The second processing phase we applied to our dataset is the calculation of the
Histogram of Oriented Gradients (HOG) [14]. HOG is used to extract key features from our
traffic sign images by analyzing gradient changes, which helps in classification. This process
captures essential shape and texture information, making the images more recognizable
for Machine Learning algorithms. The Oriented Gradient decomposition can be seen on
Figure 9.

Figure 9. HOG representation (right) of an image from the GTSRB database (left).

HOG was selected among many available image features due to its effectiveness in
capturing shape and texture, which are critical for traffic sign recognition. While color
information is important and could enhance the recognition process, HOG’s robustness

Information 2024, 15, 621 10 of 22

to variations in illumination and contrast makes it a reliable choice for this application.
Additionally, the monochromatic nature of HOG simplifies the feature extraction process,
ensuring consistency across different lighting conditions. In our experiments, HOG proved
especially useful when training classical models like SVMs and decision trees, as it en-
hanced feature extraction and led to a significant improvement in classification accuracy,
particularly in scenarios with inconsistent lighting and contrast.

The computation of HOG involves calculating the intensity gradients of the image
to detect edges, dividing the image into cells, and computing an orientation gradient
histogram for each cell. These histograms are then normalized within local blocks to
account for variations in illumination and contrast and concatenated to form the complete
HOG descriptor. For our study, we set the cell size to 14 × 14 pixels, block size to 2 × 2 cells,
and the number of orientations to 9. We used the L2-Hys norm, as defined in Equation (1).
The unnormalized vector containing all histograms of a single block is denoted by v, its
k-norm by ||v||k, and ϵ is a small constant:

f =
v√

∥v∥2
2 + ϵ2

. (1)

In parallel, we converted our images to gray scale to prepare the image dataset for
HOG computation, with gray scale simplifying the feature extraction process. We then
computed the HOG descriptors for each image of the GTSRB dataset. The inclusion of HOG
enhanced the performance of classical models by providing a more detailed representation
of image gradients, improving their ability to classify traffic signs accurately. This impact
was especially noticeable in tests where illumination and contrast varied significantly,
as HOG’s normalization process helped to maintain robustness across different conditions.
The extracted HOG features were used for both the training and testing phases of our
model evaluation.

3.4. Evaluation

This section explains the evaluation methodology, focusing on model calibration and
the experimental protocol to assess performance under different conditions.

3.4.1. Model Calibration

Before evaluating our models on the datasets, we conducted hyperparameter fine-
tuning. The extent of this tuning was adapted to the available computational resources.
To achieve optimal tuning, we utilized Bayesian hyperparameter optimization via the
BayesSearch library. Bayesian optimization presents several advantages over traditional
methods like GridSearch [15]. Rather than confining the search to a predefined discrete
space, Bayesian optimization explores a predefined continuous space, thereby enhancing
efficiency and performance.

Bayesian optimization operates as follows [16]: initially, the model tests hyperparame-
ter values randomly selected from the search space. Based on these initial tests, it employs
a Gaussian Process (GP) [17] probabilistic model to estimate performance as a function of
the hyperparameters, subsequently selecting the next hyperparameters to test. At each
iteration, the model undergoes evaluation using cross-validation, continuously refining the
probabilistic model. The optimization process proceeds until either a specified number of
iterations (n-iter attribute) is reached or the probabilistic model converges.

This method confers significant advantages, including more efficient search processes,
the capability to handle complex and high-dimensional spaces, and improved utiliza-
tion of computational resources by concentrating on the most promising regions of the
hyperparameter space.

For both the SVM and LDA models, Bayesian optimization was performed whenever
the training dataset changed, including variations in the proportion of altered data or the
number of images per class. Hyperparameters were specifically tailored to each dataset

Information 2024, 15, 621 11 of 22

configuration. This method was feasible due to the minimal impact of hyperparameter
tuning on computational time.

Gaussian Process:

A Gaussian Process (GP) is a probabilistic model used for regression tasks, defined by
its mean function m(x) and covariance function k(x, x′) [17].

The mean function m(x) is given by Equation (2):

m(x) = E[f (x)] (2)

The covariance function k(x, x′) is defined in Equation (3):

k(x, x′) = E[(f (x)− m(x))(f (x′)− m(x′))] (3)

Assuming the mean function is zero, the GP prior is written as shown in Equation (4):

f (x) ∼ GP(0, k(x, x′)) (4)

Given n observations {(xi, yi)}n
i=1, where yi = f (xi) + ϵi and ϵi ∼ N (0, σ2), the joint

distribution of the observed values y and the function values at new test points f∗ is
described by Equation (5): [

y
f∗

]
∼ N

(
0,
[

K + σ2I K⊤
∗

K∗ K∗∗

])
(5)

Here, K is the covariance matrix of the training points, K∗ is the covariance matrix
between training points and test points, and K∗∗ is the covariance matrix of the test points.

The GP can predict the function values at new points, f∗, with a Gaussian distribution
as shown in Equation (6):

f∗|X, y, X∗ ∼ N (¯∗, Σ∗) (6)

The mean ¯∗ and covariance Σ∗ of this distribution are given by Equations (7) and (8),
respectively:

¯∗ = K∗(K + σ2I)−1y (7)

Σ∗ = K∗∗ − K∗(K + σ2I)−1K⊤
∗ (8)

These formulas help the GP provide both predictions and the uncertainties
associated with them, which are important for selecting the next points to evaluate in
Bayesian optimization.

Support Vector Machine:

For the SVM model, we optimized three key hyperparameters [18]: the kernel type,
gamma, and the penalty parameter C. Initially, we evaluated which kernel type was most
suitable for our problem, testing both the Radial Basis Function (RBF) and linear kernels.
Through several iterations, we determined that the RBF kernel produced the best results.
With the kernel type established, we then optimized the gamma and C parameters using
Bayesian optimization.

For the gamma parameter, which is specific to the RBF kernel, we selected a range
of values from 10−6 to 10. This parameter controls the width of the RBF kernel, thus
influencing its impact on the decision boundary. Concurrently, we optimized the C param-
eter, which regulates the trade-off between achieving a low error on the training data and
minimizing the norm of the weights. For the C parameter, we explored values ranging
from 0.1 to 1000.

By systematically optimizing these hyperparameters, we ensured that the SVM model
was finely tuned to our specific dataset characteristics, thereby enhancing its classifica-
tion performance.

Information 2024, 15, 621 12 of 22

Linear Discriminant Analysis:

For the LDA model, there was only one hyperparameter to optimize: the shrinkage.
This hyperparameter is useful for enhancing the numerical stability of the model and
preventing over fitting. Here, we searched for the optimal value between 0 and 1.

Random Forest:

For the Random Forest model, the number of hyperparameters to test and the com-
putational time did not allow for hyperparameter optimization as performed for the SVM
and LDA models. Here, calibration was conducted only once for each change in the test
dataset (i.e., for each change in the proportion of the altered database). This calibration was
complex as it required finding a balance between computational time and reduction of the
randomness of Bayesian search.

For optimization, we focused on three hyperparameters: tree depth, the number of
estimators, and the minimum purity decrease. The first two were primarily responsible
for the complexity of optimization. To ensure reasonable computational time for Bayesian
search, a fixed number of iterations needed to be set. However, setting too few iterations
risked poor convergence of the model, not allowing access to the best values for these
influential hyperparameters. In our case, we observed variations of up to 20% in accuracy
for training the same model with the same amount of data. However, too many iterations
would result in excessively long computation times. After several tests on the number of
iterations, 20 iterations seemed to be a good compromise in terms of time and reduction
of randomness.

Once the number of iterations was fixed, we had to define the different search spaces.
For the minimum purity decrease, we searched for values between 0 and 0.2. For tree depth,
we searched integers between 1 and 20, and for the number of estimators, we searched
between 10 and 10,000 estimators. For all our searches, we found that the optimal number
of estimators chosen was the upper bound of the specified space. The same was true for
tree depth. Since these two parameters have a significant influence on computation time,
we could not explore how far we could increase the upper bound of the search space. Here
again, we tried to achieve the best compromise between computation time and model
performance. After several attempts, we found that the combination of hyperparameters—
21 for maximum depth and 1000 estimators—was an optimal solution for our problem.
Therefore, we fixed these two parameters for all our tests. Finally, repeated tests on different
datasets allowed us to see that the influence of purity decrease was negligible compared to
the other hyperparameters. Therefore, we chose to set it aside. For all our tests, the forest
was thus calibrated with the following two hyperparameters: a maximum depth of 21 and
1000 estimators. The summary of the hyperparameter search spaces can be seen on Table 3.

Table 3. Summary table of hyperparameter search spaces.

Model Hyperparameter Range of Study

SVM kernel Rbf, linear
SVM gamma [10−6, 10]
SVM C [0.1, 103]

Random Forest max depth [1, 21]
Random Forest min impurity decrease [0, 0.2]
Random Forest n estimator [10, 104]

LDA Shrinkage [0, 0.9]

3.4.2. Experimental Protocol

To conduct our dual sensitivity study, we first needed to choose an evaluation criterion.
Here, we selected accuracy, which is defined in the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
, (9)

Information 2024, 15, 621 13 of 22

where:

• TP (True Positives) is the number of correctly predicted positive instances.
• TN (True Negatives) is the number of correctly predicted negative instances.
• FP (False Positives) is the number of incorrect positive predictions.
• FN (False Negatives) is the number of incorrect negative predictions.

The choice of this metric was mainly motivated by the context. In the context of au-
tonomous driving, it is crucial to minimize prediction errors as much as possible. Studying
accuracy is therefore the best way to mitigate risks effectively. Additionally, this metric
is one of the metrics used for model optimization in terms of pure performance, so it is
interesting to use it for behavioral studies of the models.

Once the metric of interest was fixed, we established the protocol to observe the
behavior of the models concerning the number of input images and alteration levels. First,
we needed to find a reproducible way to create a dataset corresponding to the desired level
of alteration and the number of images per class.

The first approach was to create a dataset with the correct proportion of altered
images and randomly select the appropriate number of images per class from this dataset.
However, with this approach, there is no guarantee that the selected sample of images
presents the correct proportion of altered images. Therefore, we would need to repeat our
measurements numerous times on several samples to approach the exact proportions of
altered images in the subset of data. However, limited time and computational power
made it impossible to implement this idea.

The second approach, the one we chose, involved creating an entirely altered auxiliary
dataset upfront. To create the dataset with the desired features, we relied on a function
calculating the number of altered images to be selected from the fully altered database,
based on the number of images per class and the desired proportion of altered images. Once
the altered images were selected, we complemented them with regular images. Using this
method, we constructed a dataset with the exact proportion of degraded images desired,
as outlined in Algorithm 2.

Algorithm 2 Dataset Construction with Desired Proportion of Altered Images.

Input:
Original GTSRB dataset origdata

Outputs:
Fully altered GTSRB dataset altdata
Dataset with desired proportion of altered images traindata

1: Load Original GTSRB dataset origData
2: Completely alter the GTSRB dataset
3: Select number of images to input for each class numimg
4: Compute number of altered images for each class: numalt = numimg × altproportion
5: Select altered images from fully altered database
6: Construct dataset with desired proportion of altered images altdata

Once this method for constructing the datasets was established, we could set up the
protocol for sensitivity testing. First, we worked on the non-altered dataset with 20 images
per class as input. By applying the protocol described earlier, we constructed the dataset
for our tests. Once this dataset was created, we applied the HOG descriptors. After all
transformations were performed, we split the dataset into training and test subsets, using
80% of the data for training and 20% for testing, and conducted cross-validation. For our
study we chose to use ten folds for traditional Machine Learning models and five for Deep
Learning models. Once the calculations were conducted, we obtained the average of the
k-fold. When varying the number of class samples for accuracy testing, the test subset
remained consistent to ensure comparability of results.

Information 2024, 15, 621 14 of 22

4. Results

The Results section presents the outcomes of the experiments conducted, focusing on
model performance under varying conditions. Key metrics such as accuracy and sensitivity
to alterations in the dataset are examined, providing a comprehensive analysis of how each
model performs in traffic sign recognition tasks.

4.1. Impact of Image Quantity on Model Sensitivity

This section explores how varying the number of input images per class affects the
sensitivity and performance of the models in traffic sign recognition.

First, we examined the sensitivity of the models to the number of images per class as
input for a fixed level of alteration. The primary objective here is to highlight the existence
of a threshold beyond which adding new images as input is no longer beneficial to the
accuracy of the model.

To study the presence and behavior of this threshold, we start by defining the criterion
for its attainment. In our case, we consider the plateau reached if the variations in accuracy
due to the addition of new images do not exceed 1% accuracy. This threshold is based
on prior studies [19] that consider minor fluctuations in accuracy (typically below 1%)
as insignificant, particularly in the context of image classification where the model has
reached a level of stable performance.

For this initial plateau study, the alteration of the dataset does not come into play. We
choose to fix it at 30% for all our models. To visualize the results, we performed k-fold
averaging and took measurements every 20 images from 20 to 140 images, and then at
200 and 300 images per class. We then extracted the values obtained for these levels of
the number of images per class as input. These values were plotted to create the accuracy
curve as a function of the number of images per class as input.

Firstly, let us examine the performance of the SVM model. As illustrated in Figure 10,
we can observe that the best performance is reached for approximately 120 images per class
as input. Beyond this point, the model’s performance no longer significantly improves.
Additionally, we can see that the convergence towards this performance is relatively rapid.
For a low number of images per class, an increase of 20 images can lead to an increase of
up to 3% in accuracy.

20 40 60 80 100 120 140 200 300
Number of images input per class

0.84

0.86

0.88

0.90

0.92

0.94

A
cc

ur
ac

y

Threshold: 0.9355

SVM

Figure 10. SVM accuracy performance as a function of the number of input images per class (blue).
Threshold set at 99% of the final achieved accuracy (red).

Information 2024, 15, 621 15 of 22

Now that we have identified the threshold and made an initial estimation of the
number of input images required to reach it, we need to verify if this observation holds
true for the other models. To achieve this, we plot the same curve, this time with the four
models overlaid on the same graph.

On Figure 11 we can observe that, at equal levels of alteration, all four models reach
their threshold with a number of images between 100 and 120. Notably, there is no
significant difference in performance between the Deep Learning models.

20 40 60 80 100 120 140 200 300
Number of images per class

0.82

0.84

0.86

0.88

0.90

0.92

0.94

A
cc

ur
ac

y

Threshold: 0.9355

Threshold: 0.8951

Threshold: 0.9076

Threshold: 0.9214

SVM
LDA
Random Forest
CNN

Figure 11. Evolution of model accuracy based on the number of input images for 30% alteration rate:
SVM (blue), LDA (yellow), Random Forest (green), CNN (red).

4.2. Performance Sensitivity to Dataset Alteration

In this section, we investigate how different levels of dataset alteration impact the
accuracy and robustness of the models under study.

Now that we have clarified the behavior of the plateau with fixed alteration, we will
explore the dataset’s sensitivity to alteration.

Currently, we lack information on how dataset alteration influences the number of
input images required to reach the accuracy threshold. Additionally, we do not know if
dataset alteration impacts the value of the accuracy threshold itself. To investigate the
models’ behavior in response to varying levels of dataset alteration, we fix the number of
images per class at 20 to ensure that this quantity does not interfere with our observations.

To visualize the evolution of the values, we plot the different accuracy levels for
various degrees of dataset alteration, keeping the number of input images constant.

In Figure 12, we observe that the accuracy decreases as the proportion of altered
images in our dataset increases, regardless of the model. This result is logical because
the introduction of altered images adds heterogeneity to the dataset. The inclusion of
singularities, particularly through color overlay alterations, reduces certainty about the
features that define a particular category.

Additionally, we see a notable difference between Deep Learning models and tra-
ditional Machine Learning models. While traditional models exhibit an almost linear
decrease in performance, Deep Learning models experience a more gradual decline as
alteration increases. However, the initial performance loss is more significant for Deep
Learning models than for traditional models. In the context of autonomous driving, this
characteristic can be somewhat disadvantageous for Deep Learning. Given that the true

Information 2024, 15, 621 16 of 22

proportion of altered images in real-world scenarios is likely closer to around 10%, these
factors suggest that Deep Learning models, although seemingly advantageous, may not be
the most optimized solution for this particular issue.

0 15 30 50
Alteration Rate (% of the dataset)

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

SVM
LDA
Random Forest
CNN

Figure 12. Accuracy variation with the percentage of dataset alteration for 20 images per class: SVM
(blue), LDA (yellow), Random Forest (green), CNN (red).

4.3. Impact of Alteration on Sensitivity to Image Quantity

This section combines the effects of image alteration and input quantity variation,
analyzing their joint influence on model performance.

Now that we have separately examined the concepts of plateaus and performance
alteration, we will focus on the combined effects of image alteration and the variation in
the number of images per class as input.

Using the values obtained during the tests, we will plot heatmaps for each model
studied. Through this representation, we will be able to identify two main elements:

• The behavior of the plateau and the evolution of its positioning depending on the
proportion of altered images.

• The number of images required by the model to achieve performance identical to that
obtained with a lower percentage of alteration.

We will present the different heatmaps for each of the models.
In the SVM model heatmap shown in Figure 13, several observations can be made.

Firstly, for an unaltered dataset, the accuracy threshold is reached with 40 input images.
For other levels of alteration, the thresholds are at about 80, 100, and 120 images per class.
Therefore, for SVM models, the introduction of alteration significantly increases the number
of images required to reach the accuracy threshold. However, this observation holds true
primarily for the transition from a clean dataset to an altered one. When transitioning
from an altered dataset to one with even more alterations, the additional number of images
required to reach the threshold decreases sharply, from 20 images to 60 images.

Information 2024, 15, 621 17 of 22

0 15 30 50
Percentage of alteration

20
0

14
0

12
0

10
0

80
60

40
20

N
um

be
r o

f i
m

ag
es

 in
pu

t p
er

 c
la

ss

0.99 0.96 0.95 0.91

0.99 0.94 0.94 0.91

0.99 0.94 0.93 0.91

0.99 0.94 0.93 0.90

0.99 0.95 0.92 0.88

0.99 0.94 0.91 0.88

0.98 0.93 0.89 0.84

0.96 0.89 0.84 0.78
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Figure 13. SVM accuracy heatmap by dataset alteration percentage and number of input images
per class.

Regarding the model’s ability to regain performance with lesser alteration, it is ob-
served that for low levels of alteration (e.g., 15%), it is necessary to provide ten times more
images for training. Furthermore, for a training dataset with a high level of alteration, it is
impossible to reach the initial performance level. Increasing the proportion of altered signs
results in a lower accuracy threshold. Excessive alteration thus appears to limit the model’s
performance, regardless of the number of images per class provided for training.

For the LDA model, as shown in Figure 14, we observe that the accuracy threshold
behavior is notably similar to that of the SVM model. However, two key differences are
evident. Firstly, the accuracy threshold for altered datasets requires fewer images to be
reached compared to the SVM model. Secondly, while the introduction of alteration leads
to a performance drop similar to that seen with the SVM model, the decline in performance
for the LDA model is so significant that it becomes impossible to achieve performance
levels comparable to those obtained with an unaltered dataset.

The observations made for the LDA model also apply to the Random Forest model,
as shown in Figure 15. The plateau behavior is similar, and it remains impossible to
regain the performance achieved with non-altered datasets for both training and testing.
However, the Random Forest model requires slightly fewer images to reach the accuracy
threshold. This reduces the additional number of images needed when transitioning from
a clean dataset to an altered one. Consequently, the difference in performance evolution
between clean/altered and altered/altered transitions is less pronounced compared to the
other models.

For the Deep Learning model, as illustrated in Figure 16, the threshold behavior closely
mirrors that of classical Machine Learning models. The number of images required to
reach the accuracy threshold is comparable to those of the Random Forest model. How-
ever, a notable peculiarity is observed: at a higher level of alteration, specifically 50%,
the number of images needed to regain satisfactory results appears to be lower than for
less altered datasets.

Information 2024, 15, 621 18 of 22

0 15 30 50
Percentage of alteration

20
0

14
0

12
0

10
0

80
60

40
20

N
um

be
r o

f i
m

ag
es

 in
pu

t p
er

 c
la

ss

0.96 0.93 0.90 0.87

0.98 0.94 0.90 0.86

0.98 0.93 0.90 0.86

0.98 0.93 0.89 0.85

0.98 0.93 0.89 0.84

0.98 0.93 0.88 0.83

0.98 0.91 0.87 0.81

0.96 0.89 0.83 0.77

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Figure 14. LDA accuracy heatmap by dataset alteration percentage and number of input images
per class.

0 15 30 50
Percentage of alteration

20
0

14
0

12
0

10
0

80
60

40
20

N
um

be
r o

f i
m

ag
es

 in
pu

t p
er

 c
la

ss

0.98 0.94 0.91 0.88

0.98 0.94 0.91 0.88

0.98 0.94 0.91 0.87

0.98 0.94 0.90 0.86

0.98 0.93 0.90 0.86

0.98 0.93 0.88 0.83

0.98 0.92 0.87 0.81

0.97 0.89 0.82 0.75

0.75

0.80

0.85

0.90

0.95

Figure 15. Random Forest accuracy heatmap by dataset alteration percentage and number of input
images per class.

Information 2024, 15, 621 19 of 22

0 15 30 50
Percentage of alteration

20
0

14
0

12
0

10
0

80
60

40
20

N
um

be
r o

f i
m

ag
es

 in
pu

t p
er

 c
la

ss

0.98 0.94 0.92 0.90

0.98 0.95 0.92 0.89

0.98 0.95 0.93 0.91

0.98 0.94 0.92 0.90

0.98 0.93 0.91 0.89

0.98 0.92 0.90 0.89

0.98 0.91 0.89 0.87

0.99 0.88 0.83 0.81 0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Figure 16. CNN accuracy heatmap by dataset alteration percentage and number of input images
per class.

5. Discussion

In our study, we have elucidated several aspects regarding the sensitivity to the
number of images in the dataset and the sensitivity to dataset alterations.

Firstly, we identified a plateau where adding new images to the model training data
no longer improves performance. For most of the models studied, this plateau is reached
between 20 and 140 images per class. The position of this plateau is heavily dependent
on the level of dataset alteration. A more altered dataset requires a higher number of
images per class to reach the plateau. Additionally, we observed that this maximum value
deteriorates as the dataset becomes more altered.

Regarding sensitivity to dataset alteration, we noted that for most models, even a slight
alteration of the dataset leads to a performance gap that cannot be bridged even by adding
a large number of images for training. This inability can be explained by the impact of
alteration on the value of the accuracy plateau. If alteration changes the number of images
required to reach the plateau, it also affects its value, sometimes significantly, making it
impossible to return to the accuracy values obtained for a less altered dataset. Furthermore,
for most classical Machine Learning models, the performance decrease appears to be linear,
which is not the case for Deep Learning models.

When comparing classical Machine Learning models with Deep Learning models,
we consistently observed similar behaviors. Both model types struggle to regain perfor-
mance after dataset alteration, but the way accuracy declines with increasing alteration
differs. Deep Learning models, despite their advanced architecture, exhibit a faster drop in
performance at lower alteration levels, which might make them less suited for real-world
scenarios where such alterations are common. As such, Deep Learning models may not
always be the optimal choice depending on the problem’s context. From a resource-saving
perspective, traditional models can provide acceptable performance while being less com-
putationally demanding, making them valuable in scenarios with hardware constraints.

Information 2024, 15, 621 20 of 22

Our study concludes that even with a significant increase in the number of images,
the original performance levels cannot be restored once the dataset is altered. Additionally,
the presence of a plateau at 140 images per class, regardless of the level of dataset degra-
dation, is a significant finding. The difference in behavior between CNNs and classical
models, with CNNs showing less robustness at lower alteration levels but better perfor-
mance at higher alteration percentages, is also noteworthy. Finally, the similar performance
of different models, despite some being more resource-intensive, highlights the potential
for optimizing computational resources while maintaining effective results.

6. Conclusions

There are several avenues for further exploration and refinement. Firstly, our study
was conducted with limited resources, which may have led to some inaccuracies. A more
rigorous hyperparameter search for all models, particularly Random Forests, would be
beneficial with more computational power. Exploring the asymptotic behavior of the
models using the entire dataset would provide deeper insights into real-world performance
and the impact of class imbalance. Furthermore, a more in-depth study of the nature
of errors, especially in panel detection, could yield valuable findings since not all errors
are equally critical. A detailed classifier analysis could provide a broader view of how
alterations and data volume affect performance.

Additionally, it would be valuable to test other models to see if the conclusions
of this study are generalizable across different architectures. This could also include
experimentation with different image descriptors, offering new perspectives. Overall, there
are numerous opportunities for further research in this area.

The key takeaway from this study is that defining the problem thoroughly is crucial
for selecting the most appropriate method. While Deep Learning is often at the forefront
of image recognition, simpler models can offer significant advantages under specific con-
ditions. Traditional Machine Learning models, in particular, can be highly efficient in
resource-constrained environments, making them ideal for applications such as embed-
ded systems or real-time traffic sign recognition. Furthermore, combining classical and
Deep Learning models in a hybrid approach could optimize both performance and re-
source use, with simpler models handling less complex tasks and CNNs reserved for more
demanding scenarios.

Future studies could also explore simulating factors such as degradation over time
and extreme viewing angles, which are common in real-world traffic scenarios. This would
further test model robustness under more challenging conditions. Additionally, improving
preprocessing techniques to mitigate the impact of these alterations would make traditional
models more adaptable to real-world applications. By expanding the range of scenarios
and refining preprocessing, future traffic sign recognition systems could better balance
efficiency and accuracy, providing scalable solutions that adapt to increasing complexity.

Author Contributions: Conceptualization, A.R.; methodology, A.R., G.D. and S.C.; software, A.R.,
G.D. and S.C.; validation, B.M. and N.S.-C.; formal analysis, B.M. and N.S.-C.; investigation, A.R.,
G.D. and S.C.; resources, A.R., G.D. and S.C.; data curation, A.R.; writing—original draft preparation,
A.R.; writing—review and editing, A.R. and B.M.; visualization, A.R., G.D. and S.C.; supervision,
B.M. and N.S.-C.; project administration, B.M. and N.S.-C.; funding acquisition, B.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The majority of the data presented in this research article is available on
the https://benchmark.ini.rub.de/gtsrb_news.html (GTSRB Benchmark website, accessed: 1 October
2024). Any additional data, if required, can be obtained by contacting the corresponding author
upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

https://benchmark.ini.rub.de/gtsrb_news.html

Information 2024, 15, 621 21 of 22

Abbreviations
The following abbreviations are used in this manuscript:

GTSRB German Traffic Sign Recognition Benchmark
ML Machine Learning
DL Deep Learning
SVM Support Vector Machine
LDA Linear Discriminant Analysis
CNN Convolutional Neural Network
HOG Histogram of Oriented Gradients
IDSIA Dalle Molle Institute for Artificial Intelligence Studies
RBF Radial Basis Function
GP Gaussian Process
EI Expected Improvement

References
1. Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. Man vs. computer: Benchmarking machine learning algorithms for traffic sign

recognition. Neural Netw. 2012, 32, 323–332. [CrossRef] [PubMed]
2. Zaklouta, F.; Stanciulescu, B.; Hamdoun, O. Traffic sign classification using K-d trees and Random Forests. In Proceedings of the

IEEE International Joint Conference on Neural Networks (IJCNN), San Jose, CA, USA, 31 July–5 August 2011; pp. 2151–2155.
3. Cireşan, D.; Meier, U.; Masci, J.; Schmidhuber, J. Multi-Column Deep Neural Network for Traffic Sign Classification. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012;
pp. 3642–3649.

4. Sermanet, P.; LeCun, Y. Traffic sign recognition with multi-scale Convolutional Networks. In Proceedings of the IEEE International
Joint Conference on Neural Networks (IJCNN), San Jose, CA, USA, 31 July–5 August 2011; pp. 2809–2813.

5. Fu, M.-Y.; Huang, Y.-S. A survey of traffic sign recognition. In Proceedings of the IEEE International Conference on Wavelet
Analysis and Pattern Recognition, Qingdao, China, 11–14 July 2010; pp. 119–124.

6. Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. The German Traffic Sign Recognition Benchmark: A multi-class classification
competition. In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), San Jose, CA, USA, 31
July–5 August 2011; pp. 1453–1460.

7. Gao, X.W.; Podladchikova, L.; Shaposhnikov, D.; Hong, K.; Shevtsova, N. Recognition of traffic signs based on their colour and
shape features extracted using human vision models. J. Vis. Commun. Image Represent. 2006, 17, 675–685. [CrossRef]

8. Bahlmann, C.; Zhu, Y.; Ramesh, V.; Pellkofer, M.; Koehler, T. A system for traffic sign detection, tracking, and recognition using
color, shape, and motion information. In Proceedings of the IEEE Proceedings. Intelligent Vehicles Symposium, Las Vegas, NV,
USA, 6–8 June 2005; pp. 255–260.

9. Broggi, A.; Cerri, P.; Medici, P.; Porta, P.P.; Ghisio, G. Real Time Road Signs Recognition. In Proceedings of the IEEE Proceedings.
Intelligent Vehicles Symposium, Istanbul, Turkey, 13–15 June 2007; pp. 981–986.

10. Noble, W. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [CrossRef] [PubMed]
11. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
12. Izenman, A.J. Linear Discriminant Analysis. In Modern Multivariate Statistical Techniques; Springer: Berlin/Heidelberg, Germany,

2013; pp. 237–280.
13. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;

Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 53. [CrossRef] [PubMed]

14. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 886–893.

15. Alibrahim, H.; Ludwig, S. A. Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian
Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June–1 July 2021;
pp. 1551–1559.

16. Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the Human out of the Loop: A Review of Bayesian
Optimization. Proc. IEEE 2016, 8, 148–175. [CrossRef]

17. Rasmussen, C.E. Gaussian Processes in Machine Learning. In Advanced Lectures on Machine Learning; Bousquet, O., von Luxburg,
U., Rätsch, G., Eds.; Springer: Berlin, Germany, 2003.

http://doi.org/10.1016/j.neunet.2012.02.016
http://www.ncbi.nlm.nih.gov/pubmed/22394690
http://dx.doi.org/10.1016/j.jvcir.2005.10.003
http://dx.doi.org/10.1038/nbt1206-1565
http://www.ncbi.nlm.nih.gov/pubmed/17160063
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1186/s40537-021-00444-8
http://www.ncbi.nlm.nih.gov/pubmed/33816053
http://dx.doi.org/10.1109/JPROC.2015.2494218

Information 2024, 15, 621 22 of 22

18. Wainer, J.; Fonseca, P. How to tune the RBF SVM hyperparameters? An empirical evaluation of 18 search algorithms. Artif. Intell.
Rev. 2021, 54, 4771–4797. [CrossRef]

19. Linjordet, T.; Balog, K. Impact of Training Dataset Size on Neural Answer Selection Models. In Advances in Information Retrieval;
Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D., Eds.; Springer: Cologne, Germany, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10462-021-10011-5

	Introduction
	Literature Review
	Methodology
	Dataset Overview
	Compared Model
	Support Vector Machine
	Random Forest
	Linear Discriminant Analysis
	Convolutional Neural Networks

	Transformations
	Database Alteration
	HOG Application

	Evaluation
	Model Calibration
	Experimental Protocol

	Results
	Impact of Image Quantity on Model Sensitivity
	Performance Sensitivity to Dataset Alteration
	Impact of Alteration on Sensitivity to Image Quantity

	Discussion
	Conclusions
	References

