

Combining XRD and nanoindentation to characterize mechanical properties evolution of flax cell walls during controlled heat treatment

Nanobruecken 2024–19/03/2024

C. Caër, E. Guillou, G. Le Saout, L. Dumazert, A. Beigbeder, P. Ouagne, J. Beaugrand, A. Bourmaud, N. Le Moigne

- Graduate and post-graduate Engineering School :
 - > Mechanics of materials, fluids and structures
 - > Information and communication technologies
- ~1000 students (including PhD students) per year

de Recherche Dupuy de Lôme

- Research institute in mechanics
- > 300 members
- > 5 main research axis:
 - Composites, Bio-composites, Nano-composites

BREST

- Multi-materials Assembly
- Structures, Fluides & Interactions
- Energetic Systems
- Mechanical Behavior and Durability of Materials

LORIENT

19/03/2024

2

Outline

Context

Towards sustainable composite materials

Environmental concern : need for designing bio-based, recyclable, compostable materials

• Fibers :

Fibre bundles	Young's modulus (GPa)	Tensile strength (MPa)	Density ρ (10 ⁻³ kg/m ³)
E-glass	72-73	3200 - 3400	2.54
Flax [2]	37 - 75	595 - 1510	1.52

Low density, good mechanical and insulation properties !

Matrix:

Substituting thermoset matrices for thermoplastic resins

ightarrow Pave the way for recyclable composite materials

Thermoplastic processes involve high temperatures (up to 230°C) and long processing times (few to tens minutes)

19/03/2024[1] Le Coroller et al. (2013)[2] Bourmaud et al. (2018)

JOHN HARRIS/REPORT DIGITAL/REA / Cahiers du « Monde » N ° 24338, 05/04/2023

Context

Mechanical tests and temperature on flax fibers

Mechanical tests performed at room temperature AFTER heat treatments (post mortem analysis)

What happens DURING heat treatment?

Objectives

Study « in situ » the effect of temperature on both structure and mechanical properties of flax fibres

Thermal pattern	•	$25^{\circ}C \rightarrow 230^{\circ}C \rightarrow 25^{\circ}C$		
Thermal stability and degradation kinetics	•	Thermogravimetric analy	sis (TGA)	IMT Mines Alès École Mines-Télécom
Utrastructure evolution vs temperature	•	X-Ray Diffraction (XRD)	lingo	IMT Mines Alès École Mines-Télécom
Mechanical evolution vs temperature	•	Nanoindentation	INSTRUCT OF RECEIPTION OF RECE	ENSTA BRETAGNE

Thermal stability and degradation kinetics by TGA

Results

- followed by NCPs degradation ~4.5%
- → pronounced mass loss up to 8% above 190°C !!

Utrastructure evolution vs temperature

XRD samples and methodology

Equipment	Bruker D8 Diffractometer (θ-θ configuration CuKα radiation) High temperature chamber (HTK 1200, Anton Paar)		
Samples	 Pressed flax fibres bundles Alumina ceramic sample holder cup 		
XRD method	 Scans collected in 10°-50° 20 range d-spacings calculated using Bragg law Based on 200 plane position 		
Temperature	 Heating rate : 30°C/min Isothermal steps for XRD measurements : 16min Pre-defined isotherms temperatures : 25°C → 170°C → 190°C → 210°C → 230°C → 25°C 		

Utrastructure evolution vs temperature

XRD results – from 25°C to 230°C

- Cellulose peaks
- Shift to lower angle of the 200 peak with rising temperature

d-spacing d₂₀₀ increases upon heating

Utrastructure evolution vs temperature

XRD results – back to ambient

→ No irreversible plastic mechanism in crystalline cellulose involved by temperature induced strain

Mechanical properties evolution vs temperature

Equipement acquis dans le cadre du CPER ECO-SYS-MER, financé par: 19/03/2024

Mechanical properties evolution vs temperature

Nanoindentation – samples preparation

- Flax fibres bundles cut to length \leq 5mm
- Embedded in epoxy resin DP760 (overnight cured : 50°C)
- Glued on a steel disc (Ø 12mm, thickness : 0.85mm)

Mechanical properties evolution vs temperature

14

Nanoindentation – methodology

Equipment	 TI 980 / NanoDMA III / elongated Berkovich probe Xsol 400 heating stage 	SLOT 2
Samples	 3 samples tested 1 fibre bundle tested on each sample 1 fibre = 1 temperature 	
Nanoindentation protocol	 Surface detection thanks to a 2µN indentation XPM 11x11 load-controlled indents with Fm = 180µN Spacing inter-indents : 2µm 	20µm
Temperature	 Heating rate : 20°C/min Isothermal steps for nanoindentation measurements : Targeted temperature stops : 25°C → 75°C → 125°C → 170°C → 190°C → 210°C 	~20min → 230°C → 25°C
19/03/2024		

Nanoindentation results – indentation modulus mappings

Cell walls mechanical properties evolution vs temperature

Nanoindentation results - indentation modulus evolution with temperature

Indentation modulus remains stable until approximately 125°C and then significantly decreases

Cell walls mechanical properties evolution vs temperature

Nanoindentation results – hardness evolution with temperature

Hardness increases until approximately 75°C : water release followed by regular decrease

Conclusions and perspectives

- Monitoring of the evolution of ultrastructure and local mechanical properties of flax cell walls during dynamic heating from 25°C to 230°C by XRD and nanoindentation
- Dehydration and degradation of NCPs with increasing temperature but reversible expansion of cellulose
- Reversible softening of flax cell walls due counterbalancing effects
- Limited effect of temperature on elasici properties of flax cell walls

Next step:

Same protocol applied to a simple heating to 230°C

Thank you for your attention