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Innovative applications of human movement analysis, for example, for mitigating/slowing down certain pathological conditions,
have recently emerged from the modeling and automated measurement of full-body expressive midlevel individual and group
movement qualities, at a higher complexity level than movement qualities derived directly from physical signals, still not
characterizing any gesture in a specific way. More in general, the availability of automated analysis techniques of midlevel
expressive movement qualities can contribute to interaction design incorporating body-based performance practices inspired
by artistic theories in dance and music. This work investigates how such practices and techniques can support embodied
interaction design by enabling automated measuring of cues of leadership, cohesion, and fluidity in full-body movement in
group settings. In particular, the dance-inspired scientific approach, the data collection protocol, and the analysis techniques
adopted for assessing movement qualities connected to leadership and cohesion within the group and fluidity of the dancers’
full-body movement are described. Finally, future developments of this research are outlined.

Keywords: embodied movement-based interaction design; group scenario; midlevel expressive full-body movement qualities;
multimodal data acquisition

1. Introduction

Emerging technologies are pushing a disruptive change of
paradigm in the design of interactive digital tools and ser-
vices, involving the users to engage in full-body, physical,
artistic, and emotional experiences. The recently proposed
“somatic turn” within the interaction design and human–
computer interaction (HCI) communities [1–3], as well as
art-inspired approaches to embodied interaction design
(see, e.g., [4, 5]), bears witness of these methodological as
well as technological changes of paradigm. In this scenario,
the investigation of automated measurement techniques of
mid- and high-level movement qualities—which are at

higher levels of complexity than low-level qualities, derived
directly from physical signals—is leading to advances in
embodied interaction design and to innovative applications
of human movement analysis: for example, in mitigating
or slowing down certain pathological conditions, with a par-
ticular focus on degenerative ones [6, 7].

Research on the development of computational methods
for the analysis of human movement benefits from a fruitful
interaction between various disciplines, such as biomechan-
ics, neuroscience, experimental psychology, and arts and
humanities [8]. In [9], an embodied approach and interac-
tive system were proposed to support physical exercises at
the hospital for people with Parkinson’s disease, based on
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the “aesthetic resonance” paradigm, according to which the
full-body movement of a patient causes the emergence and
real-time manipulation of interactive soundscapes and visual
art feedback. In more detail, the system proposed in [9] mea-
sures the fluidity of the full-body movement of the patient:
in case a high degree of fluidity is detected, the patient is
enabled to “paint” using her own body as a “brush” on video
projections in the surrounding white walls, and at the same
time to create and develop naturalistic, layered soundscapes
(e.g., a forest, the sea). In this way, physical rehabilitation
exercises become engaging experiences, enabling the patient
to interactively create and mold aesthetically resonant visual
and auditory content. Such experience incentivizes the patient
to overcome bradykinesia in Parkinson’s disease as the audio-
visual feedback is driven by fluidmovements of the participant.

A similar approach was adopted in the exergames
designed for supporting the cognitive and motor rehabilita-
tion of children in the ARIEL-Augmented Rehabilitation
Joint Lab between Casa Paganini InfoMus-University of
Genoa and the Giannina Gaslini Children Hospital.

In the European Horizon 2020 ICT DANCE project, the
same group at the University of Genoa collaborated with
choreographer Virgilio Sieni in a series of public events
involving over 120 citizens (nondancers) participating in
the (re)discovery of their own full-body expressive qualities
[10]. In DANCE, the real-time measures and sonifications
of fragility and lightness midlevel expressive qualities of
full-body movement of one of the participants (the leader)
nudge the other participants to entrain and express the same
qualities in their full-body joint movements. Such midlevel
qualities are at a higher complexity level than movement
qualities derived directly from physical signals (e.g., raw data
captured by sensors); still, they are not at such a high level to
characterize any gesture in a specific way (i.e., their knowl-
edge, without the additional one of other suitable features,
cannot make such a gesture distinguishable from every other
gesture).

In [11], interactive sonification of human movement
qualities was proposed in rehabilitation from chronic pain
disease: the interactive auditory stimuli have the role of
enhancing fluid and safe movements and “distracting” the
patient from the attention to chronic pain. Interactive soni-
fication of human movement qualities was also developed in
the EU Horizon 2020 ICT WHOLODANCE project (http://
www.wholodance.eu/), grounded on cross-modal corre-
spondences [12] to support the learning process of full-
body movement and actions in sport, dance, music, and
other scenarios [13].

In the EU FET PROACTIVE EnTimeMent project, a
computational model for the automated detection of the
perceived origin of movement (i.e., of the part of the body
where movement appears to originate from the perspective
of an external observer) was developed [14]. The case of
dance movements was considered in the research per-
formed, as a testbed for the possible future application of
the developed system to motor and cognitive rehabilitation,
for example, after a stroke [15].

The examples above are grounded on an original
approach for the modeling of full-body multimodal gestural

expressiveness in individuals as well as in small groups of
people. The approach is based on a cross-modal correspon-
dence of movement qualities to visual and sonic stimuli [9],
resulting in the “slow mood and aesthetic resonance” para-
digm [16], which integrates aesthetic resonance with the
rediscovery—by means of interactive technology—of the
long time necessary for a deeper, social, embodied experi-
ence of artistic content. Originally developed for the interac-
tion with an environment that stimulates active listening,
this conceptual framework, including multitemporal scales
and representational structures for affect processing, expres-
siveness, interpersonal synchronization, and entrainment, is
structured into several layers, ranging from the acquirement
of physical signals to the definition of both mid- and high-
level qualities of full-body individual as well as small group
movement, based on those signals.

In this scenario, the present work investigates, in the
form of a pilot study, techniques for the automated measure-
ment of midlevel movement qualities in a small group. To
this aim, we designed a scientific experiment inspired by
common technical exercises and performance practice in
dance improvisation. Specifically, in our protocol, full-body
expressive motion sequences inspired by typical exercises
performed by dancers during a joint improvisation aiming
at improving their group cohesion are taken into account,
in which subtle behavioral changes are introduced endoge-
nously by the participants. We propose several ways to mea-
sure and track automatically midlevel movement qualities
that either directly provide information about the motoric
behavior of the group (fluidity in our case) or that are cues
of functional roles (such as leadership) or emergent states
(such as cohesion). Automatic tracking of such qualities
can help identify differences between the group behavior
and that of its members, and particularly the heterogeneity
in the individual movement skills of the group members
(connected with their soft skills, see [17, 18]), with possible
applications related to the aesthetic resonance paradigm
but also in areas different from performing arts (i.e., in
fatigue detection, rehabilitation programs, support for hiring
decisions). Of particular interest is the case of frailty detec-
tion in elderly people [19], which can inspire novel applica-
tions of artificial intelligence to healthcare [20]. Finally, the
tracking of leadership can be a means to extend the defini-
tion of the perceived origin of movement [14] from the indi-
vidual to the group level.

In the following sections, details about the art-inspired
scientific protocol of the experiment and the data collected
are described. Then, the results of some preliminary analyses
performed on a subset of such data, based on the proposed
definitions of midlevel movement qualities, are presented.

2. Improvised Group Movement
Scenario—Dance-Inspired Embodied
Interaction Design

Our scientific approach is inspired by the typical exercises
usually performed by dancers before dancing together.
We analyzed several exercises and performance practices
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typically adopted in contemporary dance by professional
dancers to increase their joint performance and raise kin-
esthetic sensitivity and attunement among dancers. Our
team includes a professional choreographer and dancer,
with whom we individuated, also with the help of tech-
niques of embodied sketching (e.g., by performing first-
person full-body joint sessions of nondancers with the
guide of the dancer), the specific exercise to be performed,
then refined/adapted its details for our objectives. This
work led to the development of a protocol for measuring
midlevel full-body movement features in small groups of
nondancers (e.g., synchronization), which are cues of
group phenomena, for example, cohesion and leadership.
The exercise emerging from our iterative embodied inter-
action design process is described in the following.

Three participants are instructed to move in a triangle
formation at a personal space distance [21] from each other
(i.e., their hands may touch if they keep their arms straight
open to each other); this triangle formation must remain
unchanged as much as possible during the exercise. More-
over, participants are allowed to walk and move in every
direction, including backward and lateral steps. The choice
of three as the number of participants is made with the aims
of simplifying the task for the nonexpert participants, reduc-
ing the number of participants, and simplifying the data
acquisition protocol.

One member of the group is initially assigned the role of
leader, and the two others the role of followers. The leader
freely decides the directions and the speed of walk in a free
space of around 10m × 10m and can propose movement
cells to the rest of the group (e.g., arm movements) that each
member must immediately imitate. When the leader inten-
tionally rotates and turns directed to one of the two fol-
lowers, the leadership migrates to the selected follower.
The triangle formation must remain unchanged, but now
with a new leader that decides the direction and movements
of the formation. If the group stops, the leader remains
unchanged from the one there was before the stop, unless
she herself, following the same protocol as above, gives the
leadership to someone else before restarting.

The pilot study was approved by the Ethical Committee
of the University of Genoa (where the data was collected, at
the Casa Paganini InfoMus Research Center). All the partici-
pants declared, when filling in a questionnaire, that they were
older than 18 and that they understood that their data would
be collected pseudoanonymously for research purposes. Data
was processed and analyzed by cross-disciplinary teams of
movement and artificial intelligence scientists at Casa Paga-
nini InfoMus-University of Genoa, EuroMov-University of
Montpellier and IMT Mines Alès, and IMT Lucca, sup-
ported by the partnership with the software company Qua-
lisys, a leading provider of precision Motion Capture
(MoCap) and 3D positioning tracking systems.

Capture of movement qualities was performed in a
multimodal environment operating at different temporal
scales (milliseconds for electromyographic activity, seconds
for MoCap, and minutes for breathing). More specifically,
data was collected in November 2021, using the novel Qua-
lisys markerless MoCap system (https://www.qualisys.com/

features/markerless-motion-capture/), with a frame rate of
50 frames per second. Additionally, microphones were
placed on the participants’ headsets with the aim to capture
their breathing signals, whereas Trigno EKG biofeedback
wireless sensors (https://delsys.com/trigno-ekg-biofeedback/)
were used to provide information about their heart rates
and their variability (see Figure 1 for an example).

The collected data for this pilot study refer to four
groups of three participants each (mixed gender, healthy
young adults, age: mean = 22 9 years, std = 1 3 years). All
the participants were novice dancers. This choice was made
as they were representative of a larger population than
expert dancers, having in mind a future extension of the
analysis of midlevel full-body expressive features to various
categories of possible users (e.g., both healthy and frail older
people).Theaimofdata collectionwas toexplore the emergence
of leadership, the unfolding of behavioral synchronization
(here investigated as a cue for cohesion) of the participants,
and the analysis of the fluidity of their movements.

Leadership roles were designed to be exchanged among
participants fluently and endogenously. Participants were
prompted to look at the participant they would like to give
the leadership to. The duration of each trial was set to 10
min, with the assumption that this was a sufficiently long
duration to bond the group and to study the evolution of
the features that may display its underlying cohesion, that
is, the synchronicity of the movements of its members, as
well as the fluency of their behavior, respiration, and heart
rate. The idea was that the participants would gradually
learn to better predict the movement of the leader and of
other agents (“learn the task”), then move accordingly
together, more in synchronization and more fluidly at the
end of the trial in comparison to its beginning, molding into
a single “organism.”

Participants were instructed with a short video recording
describing the purpose of the task, the rules of the task and
of communication allowed during it (e.g., vocal expressions
were forbidden, and the only form of communication
allowed was through gaze and movement intentions, aimed
to give or take leadership). After the recordings, participants
were asked by a researcher at Casa Paganini to fill in a ques-
tionnaire asking for scores regarding the sense of leadership
perceived during the task, based on the work developed
by [22].

Movement analysis was performed based on the two
horizontal coordinates of the centers of mass of the partici-
pants’ heads, being their vertical coordinates almost constant
(i.e., approximately equal to their heights). Figure 2(a)
reports an example of data acquisition, whereas Figures 2(b),
2(c), and 2(d) illustrate three successive frames acquired dur-
ing one execution of the task.

3. Measurement of Cues of Leadership,
Cohesion, and Fluidity for a Group of
Three People

First, each recording was divided into 10 different periods of
equal duration (1 minute each). In each period, for every

3Human Behavior and Emerging Technologies
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time instant t, a triangle T t was defined, taking the posi-
tions of the centers of mass of the heads of the three mem-
bers of the group (see Figure 3) to demark the triangle
corners. The choice of the heads as the body parts to track
was also motivated by the rare occurrence of occlusions, as
compared to other parts of the body.

Then, several metrics were defined as cues of leadership,
cohesion, and fluidity within the group.

3.1. Leadership. For each time instant, the direction of move-
ment of the group was given by the velocity vector of the
centroid of triangle T t , going from that point to the

10
ECG signal

R peaks found and Heart rate: 91.9975

Seconds

Samples

×10–4

×10–6

×104

5

0

0

1

0.8

0.6
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0.2

0
0 0.5 1 1.5 2 2.5 3 3.5

5 10 15 20 25 30
–5

Figure 1: Example of heart rate data for one participant (the R peak refers to the maximum amplitude in the so-called R wave, which is
recorded in an electrocardiogram).

(a) (b)

(c) (d)

Figure 2: Three participants performing the task addressed in this work. (a) Reconstruction of the three skeletons, based on the Qualisys
markerless MoCap system. (b–d) Three successive frames (at seconds 9, 11, and 13) showing an example of execution of the task, for the
first group.

4 Human Behavior and Emerging Technologies

 hbet, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/1636854 by E

cole des M
ines d'A

les, W
iley O

nline L
ibrary on [25/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



centroid of triangle T t + 1 . Each centroid was found as the
center of mass of the system of three points, by assigning equal
mass to each of them. Then, because of the specific task we
addressed, we say that the leader was neatly identified as the
member of the group whose relative position vector with
respect to the centroid formed the smallest angle with the
velocity vector of that centroid (i.e., with the “red” arrow in
Figure 4, as a positive rescaling of the vector did not change
the angle), when the following additional conditions held: this
angle was smaller than 90°; the corresponding angles associ-
ated with the other members of the group were larger than
90°. For instance, in the case of the first subfigure in
Figure 4, the leader was Person 2. Otherwise, when these con-
ditions were not met, we say that the leader was not neatly
identified. In practice, to find the leader, the cosine of the angle
between the two vectors above (LeadMetric t ) was computed
for every member of the group, and then, it was compared
with the threshold zero to check the two additional conditions.

Other metrics related to leadership were, for each period,
leadership duration and number of taking turns in leader-
ship (see the second subfigure in Figure 4). These were eval-
uated by analyzing the time evolution of leadership. The idea
is that, as a group got more synchronized and cohesive, par-
ticipants were expected to achieve balanced numbers and
durations of leadership periods.

3.2. Cohesion. Group motor synchronization, here investi-
gated as a cue for cohesion, was operationalized as moving
“smoothly” by defining a suitable metric, based on the rate
of deformation of the triangular shape associated with the
set of agents. The feature was defined only when a leader
was neatly identified and did not change between two
successive frames. Given any two successive time instants t
and t + 1 characterized by the presence of a neatly identified
and common leader, the “work” W t needed to deform the
triangle T t into the triangle T t + 1 was evaluated accord-
ing to the following procedure. First, T t was translated to
T t + 1 , preserving the leader (i.e., making the two leader’s
positions overlap after the translation). Then, the deforma-
tion of the triangle was measured by the sum of the lengths
of the two “red” segments in Figure 5.

When the deformation was equal to 0, the triangle T t
was only translated, and the group was in perfect synchroni-
zation, which suggests that the group was cohesive. When
the deformation was “big,” then synchronization was low.
To model this condition, the “work” W t was transformed
to synchronization by the formula SYN t = exp −aW t
(see Figure 6). The value of a was selected in such a way that
exp −a · mean W = 0 5, that is, as a = ln 2 /mean W .
In this way, as being a positive, the resulting index ranged
from 0 to 1.
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Figure 3: (a) Head movements in the XY plane and (b) their trajectories, for group 1.
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3.3. Fluidity. When at movement (contrary to the static case,
which means perfect synchronization and no fluidity at all),
the movement of a group is taken as fluid when the norm
V t of the velocity of the centroid of the triangle T t does
not change a lot in a time window of duration 2 τ, centered
at time t. This idea is captured by the distribution of the
norms of such velocities around their mean value. When
the standard deviation is little, this means that the move-
ment stays fluid. Then, the fluidity index was defined as
Fluid t = exp −std V t − τ : V t + τ : see again
Figure 6 for an example of the calculation. In this way, high
fluidity corresponds to a value of the fluidity index nearly
equal to 1. In the figure, τ is equal to 1.5 s, corresponding
with 75 frames. This choice is made with the aim of finding
a suitable trade-off between a sufficiently high temporal
resolution (which increases by reducing the duration of the
time window) and a sufficiently high reliability of the esti-
mate of the standard deviation (which improves by increas-
ing the duration of the time window).

3.4. Time Evolution of the Average Indices for Period. The
evolution of the average for each of the computed cues of
leadership, cohesion, and fluidity over the periods is
reported in Figure 7, for group 1.

3.5. Analysis of the Answers to the Leadership Questionnaire.
This section briefly describes the analysis performed on the
answers to the leadership questionnaire. After the session,
each player (identified by a color, namely, red, yellow, or
magenta) was asked to evaluate 5 statements aimed at asses-
sing the degree of leadership of each team player (including
themselves). The statements (also considered in [22]) were
the following:

S1. This player decided what to do and how to do it.
S2. This player proposed her ideas to the group.
S3. This player acted as a guide for the group.
S4. This player provided indications to the group.
S5. This player gave the group its goals.
Participants were asked to provide their ratings on a

scale from 1 to 6. Then, the following means were computed,
giving the same weight (1/5) to the rating of each statement:

- Mean rating of the participant herself as a leader (self).

- Mean rating of the participant as a leader as assessed
by the other participants (others).

- Mean rating of the participant as a leader as assessed
by the other participants and by the participant herself
(overall).

Results for one group are reported in Table 1.
Overall, the scores suggest an equal distribution of lead-

ership across participants during the whole session.

4. Possible Extensions

This work describes an approach of embodied interaction
design and a pilot study, to support the design of interactive
full-body applications involving small groups of people. The
protocol was inspired by dance performance practices and is
grounded on midlevel movement qualities that either char-
acterize the motoric behavior of the group (fluidity) or are
cues of functional roles (leadership) or emergent states
(cohesion) in a small group of people performing everyday
movements. We presented preliminary results of analyses
performed on a subset of the acquired data, based on the
proposed definitions of these qualities.

The following are possible developments of this research:

- By extending this pilot study to groups of people with
different movement capabilities, one could investigate,
for example, the influence an expert dancer exerts on
novice dancers by propagating her own movement
patterns (individual motor signatures (IMSs) [23]),
for stimulating the emergence of a group movement
pattern (group motor signature (GMS) [24]). A partic-
ularly relevant aspect would concern the evaluation of
the time needed for the emergence of the GMS. This
study could also involve the analysis of the midlevel
qualities considered in the present work.

- Variations of the definition of fluidity and inclusion of
additional cues of leadership and cohesion could be
considered, for example, based on a larger group size
and/or a larger number of features to capture addi-
tional kinds of movements (for instance, rotations
and arm movements).

- A deeper and multimodal analysis of the available data
could be performed, relating physical signals measured
by means of different data acquisition techniques and
characterized by distinct time scales [25, 26].

- A dataset with an increased degree of multimodality
could be acquired, with the aim of assessing, for exam-
ple, the influence of different background soundscapes
(e.g., intrusive/annoying soundscape vs. naturalistic/
pleasant soundscape) on the selected midlevel move-
ment features, and their relationship with soundscape-
induced synchronization [27].

- Suitable cooperative game-theoretical models could be
developed, based on movement features, to evaluate
the importance of each member of the group to deter-
mine movement fluidity, degree of cohesion, and
strength of leadership. Possible measures of impor-
tance are the Shapley value and its generalizations

3

3

3

1

1

1

2

2

2

Figure 5: The “work” needed to deform the triangle T t into the
triangle T t + 1 is the sum of the lengths of the two “red”
segments. In the figure, the leader is Person 2.
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[28, 29], which were recently applied in various con-
texts such as the analysis of human movement [14],
human–robot interaction [30], sports team perfor-
mance [31, 32], transportation networks [33], and
international trade [34]. Beside MoCap, eye-tracking
techniques [35] could be used to define movement-
related features (e.g., gaze direction) for novel such
cooperative game-theoretical models.

- Additional features could be included in the analysis,
starting from the directions of the heads of the group
members: this would provide information about who
was seeing whom in a frame, taking such directions
are proxies of gaze direction (alternatively, one could
directly use eye-tracking techniques). On the one
hand, this would allow one to detect a possible error
in the neat identification of the leader based on the
approach delineated in this work, for example, if in a
frame such a person turned out to be not seen by
another group member. On the other hand, verifying
the occurrence of a small fraction of frames (compared
to the total number of frames) containing this kind of
error would constitute a reasonableness check of the
proposed approach to identify the leader. Moreover,
a ground truth for leadership (at least at a high level
of the analysis) could be provided by a further study
of the answers to the leadership questionnaire.

Finally, an alternative analysis of leadership is reported
in the Appendix, based on block-wise Granger causality
[36], i.e., loosely speaking, on a measure of how the leader
anticipate her followers with her movements. Making a
comparison with the analysis proposed in Section 3.1 could
allow one to detect frames in which leadership is particularly
“strong”.

Appendix

Alternative Measurement of Leadership Based
on Block-Wise Granger Causality

A second way of analyzing leadership was considered, based
on block-wise Granger causality for vector-valued time
series (in discrete time). Loosely speaking, a vector-valued
time series X t “block-wise Granger causes” a second
vector-valued time series Y t if the prediction of the current
value of Y t based on a suitable regression model and on
past values of Y t is improved significantly by the inclusion
in that model of past values of X t , together with the inclu-
sion of past values of Y t [36]. In other words, to assess

block-wise Granger causality, one needs to check that the
coefficients in the latter model, associated with past values
of X t , are significantly different from 0. This occurs when
a suitable block-wise Granger causality test (e.g., chi-square)
is passed, which is implemented, for instance, by the “gctest”
MATLAB function. Classical Granger causality [37] is
obtained when X t and Y t are replaced by univariate time
series x t and y t . In the context of movement analysis, clas-
sical Granger causality was applied by [38] to investigate
musicians’ movements in an orchestra. To conclude, it is
worth mentioning that classical Granger causality and its
generalizations can also be defined starting from more
sophisticated regression models, such as multivariate Gauss-
ian process regression [39–41].

In the present application of block-wise Granger causal-
ity to movement analysis, each of the vectors X t and Y t
was replaced by the 2D relative position vector (with respect
to the centroid of the triangle T t ) of one distinct individual
of the group. The relative position was chosen (in place of
the absolute position) to enforce, as much as possible, the
stationarity of the time series in each time window of the
analysis (details on the time windows are reported in the
next paragraph). All the time series were subsampled, mak-
ing any two successive frames be separated by 0.4 s. This
was motivated by the relatively high time scale needed for
prediction improvement in the successive frame, due to the
inclusion of features of the candidate leader in the regression
model. We say that the leader was neatly identified (using
the block-wise Granger causality approach) as the unique
person whose 2D relative position vector time series passed
the largest number (two or one) of block-wise Granger cau-
sality tests—the first one with respect to the 2D relative posi-
tion vector time series of one of the other 2 persons, and the
second one with respect to the 2D relative position vector
time series of the remaining person—in case each of the lat-
ter 2 vector time series passed a strictly smaller number (one
or zero) of similarly defined block-wise Granger causality
tests. Otherwise, when the conditions above were not met,
we say that the leader was not neatly identified. The reason
for which it was not required for the leader to always pass
both block-wise Granger causality tests is that, in some
frames, one of the participants was not moving, behaving
as the center of rotation for a rotational movement guided,
indeed, by the leader.

The details of the block-wise Granger causality tests
performed are as follows. For each pair of persons, a sta-
tionary VAR 1 model (i.e., a stationary vector auto regres-
sive model with p = 1 time lags) was estimated for the whole
vector of four associated scalar time series (the 2D relative
position components for each person). Then, starting from
this model, the block-wise Granger causality test was per-
formed, specifying as “causes” the first 2D time series (asso-
ciated with one person), and as “effects” the second 2D time
series (associated with the second person). A significance
level α = 0 05 was used for each test. Its value was justified
by the desire to reject the null hypothesis of no block-wise
Granger causality only in case of quite strong evidence
against it. In each repetition, all the various time series were
evaluated on a time window of size W = 20 s. Consecutive

Table 1: Results of the analysis of the answers to the leadership
questionnaire, for group 1.

Mean
rating

Red player
(P1)

Yellow player
(P2)

Magenta player
(P3)

Self 5.2 5.6 5.0

Others 5.4 5.1 5.6

Overall 5.3 5.3 5.4
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time windows were shifted by 1 s, resulting in an overlap of
19 s. For each block-wise Granger causality analysis, the first
observation was used as a pre-sample for the VAR 1
model, whereas the other 24 observations formed the set
of response data used to estimate its 4 + 16p = 20 parame-
ters. The total number of observations was large enough
to obtain noninvertible matrices when computing their esti-
mates. Finally, the fraction of time windows in which each
person in the group was neatly identified as the leader
was calculated.

Preliminary results of the block-wise Granger causality
analysis for one group of people are reported in Figure 8.
Such results are partially in agreement with those obtained
in the first subfigure of Figure 7. Discrepancies could be
explained by the different way of measuring leadership
(e.g., evaluated on a time window vs. computed frame by
frame). Finally, in the block-wise Granger causality approach,
the large fraction of time windows with no leader neatly
identified could be explained by the presence of a transition
of leadership within the same time window.
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