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Abstract
Audio is one of the most used ways of human communication, but at the same time it can be easily misused to trick 
people. With the revolution of AI, the related technologies are now accessible to almost everyone, thus making it sim‑
ple for the criminals to commit crimes and forgeries. In this work, we introduce a neural network method to develop 
a classifier that will blindly classify an input audio as real or mimicked; the word ‘blindly’ refers to the ability to detect 
mimicked audio without references or real sources. We propose a deep neural network following a sequential model 
that comprises three hidden layers, with alternating dense and drop out layers. The proposed model was trained on a 
set of 26 important features extracted from a large dataset of audios to get a classifier that was tested on the same set 
of features from different audios. The data was extracted from two raw datasets, especially composed for this work; an 
all English dataset and a mixed dataset (Arabic plus English). For the purpose of comparison, the audios were also clas‑
sified through human inspection with the subjects being the native speakers. The ensued results were interesting and 
exhibited formidable accuracy, as we were able to get at least 94% correct classification of the test cases, as against the 
85% accuracy in the case of human observers.

Article Highlights

• A neural network method for blindly classifying audio inputs as genuine or mimicked, without prior references or 
information.

• Deals a scenario wherein exactly only one speech sample, either fake or real but not both, of the purported speaker 
is available.

• On datasets composed of both English and its combination with Arabic speech samples, the method achieves a 
remarkable accuracy of at least 94% in differentiating between real and spoofed voices, surpassing human observer 
accuracy of 85%.
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1 Introduction

In today’s digital age, falsehoods propagate faster than truths, fueled by the proliferation of social media platforms. 
The rise of ‘deep fakes’, enabled by advancements in deep learning algorithms, has further exacerbated the spread 
of misinformation. Fake multimedia content, spanning texts, audios, images, and videos, has become increasingly 
sophisticated, with ‘deep fakes’ posing a significant threat to individuals’ reputations and livelihoods. High quality 
fake audios/videos are commonplace and, sometimes, threatening to ruin lives. Add to it statistics, and you would 
find keen recipients everywhere in the world, in this post‑truth era, from almost every age group and with every 
educational background. In the words of Mark Twain [1], quoting former British PM Benjamin Disraeli, “There are 
three kinds of lies: lies, damned lies, and statistics.”

However, it is essential to acknowledge the crucial role of authentic multimedia content in documenting global 
events and holding perpetrators accountable. Audiovisual media is one of the most important instruments to high‑
light not only atrocities/genocides across the globe, but also fixing the responsibility of a given crime on the guilty. 
Its importance in a court of law, as well as the court of the people, cannot be underestimated. Hence, we cannot 
undermine altogether important means of evidence merely on the suspicion of being fake. Consequently, there is a 
pressing need for robust methods to verify the authenticity of multimedia content, including audios. In this context, 
one important aspect of non‑machine voice impersonation is mimicking someone’s voice to attribute to him/her 
something which was never said in one go in a context that may be uncomfortable.

The detection of human audio mimicry, performed by skilled voice actors, remains challenging, particularly in 
cases of blind mimicry, where there is either partial or complete absence of the authentic recorded voice of the 
attributed person. This difficulty lies in identifying mimicked audio without any reference‑be it original, mimicked, 
or impersonated. This challenge forms the crux of the research problem addressed in this study. Specifically, we seek 
to determine whether a given audio is human‑mimicked or authentic, without relying on prior knowledge of the 
purported speaker. Leveraging recent advances in machine learning, particularly neural networks and deep learning, 
we aim to extract meaningful features from audio data to train models capable of discerning genuine recordings from 
forgeries. Additionally, we may explore the influence of spoken language in our study. Our underlying assumption 
is that the system has never encountered the purported speaker before.

The recent advances in Machine Learning (ML)—especially neural networks and deep learning—can be exploited 
in forgery detection in audiovisual data. With the potential amount of available data being huge, deep learning can 
be the best way to classify it. The idea is to extract important features from a lot of audios and feed it to a neural/
deep network that will help the model to learn how to identify the real audios from faked audios.

The rest of the paper is arranged as follows. Section 2 briefly describes the background speech processing concepts 
needed for the comprehension of this article. The related work from literature is outlined in Sect. 3 which is followed 
by Sect. 4 to introduce our dataset for this work. Section 5 explains our methodology which is then trained and tested 
on the dataset presented in Sect. 6 that analyses all the ensued results. Section 7 outlines the benchmarking results. 
Finally, Sect. 8 concludes the paper.

2  Speech pocessing

It is important to know the difference between audio and speech. While an audio is a waveform data in which the 
amplitude changes with respect to time, speech is the oral communication [2] and pertains to the act of speaking 
and expressing thoughts and emotions by sounds and gestures. The human brain processes and analyses everything 
around to help the body with the right response or reaction, and it does the same for the voices [3]. To be able to 
hear and process a voice, the inside of a human ear is equipped with small hair of various sizes; some are short and 
respond to resonate with low frequency voices while others are long that resonate with the high frequency voices. 
Each of these hairs is connected to a nerve that carries a signal to the brain for processing [4].

An audio signal is a representation of sound in function to the vibration of sound that is audible to the human ear 
[5]. Audio frequency [6] is the periodic variation of sound, with the human audible frequency being 20 Hz to 20 kHz 
[7]. For a machine, the processing of an audio is different from humans. In order for the machine to get a sound it 
should have the needed devices that are able to record and save the audio in machine processable formats like the 
well‑known mp3, WMA, WAV, or others.
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Features from speech signals can be broadly classified as temporal and spectral features. The temporal features 
are time domain features having simple physical interpretation and easy to compute. Examples are signal’s energy, 
maximum amplitude, zero crossing rate, minimum energy etc [8]. The spectral features, on the other hand, are 
frequency‑based features that are extracted after passing the time domain signal to the frequency domain using 
Fourier or other similar transforms. Examples are frequency components, fundamental frequency, centroid, spectral 
flux, spectral density, roll‑off etc [8]. In the context of audio signals such features may be helpful in the identification 
of pitch, notes, rhythm and melody etc.

Spectrum and cepstrum are two important frequency‑based concepts in audio processing. A spectrum is math‑
ematically a Fourier transform of a signal which converts a time‑domain signal into frequency domain [9], i.e. spec‑
trum is the audio signal in frequency domain. A cepstrum is the log of the magnitude of the spectrum followed by an 
inverse Fourier transform. That’s why its domain is neither frequency nor the time; its domain is called quefrency [9]. 
Cepstrum can be said of as a sequence of numbers that characterize a frame of speech [10]. Since the Fourier trans‑
form is a linear operation, so is consequently the cepstrum; the spectrums of the wavelet and reflectivity series are 
additively combined in the cepstrum [11].

Following are some important features [12] exploited in speech processing:

• Zero crossing rate: It indicates the number of times the value of the signal changes between positive and nega‑
tive and vise versa. It is also used to measure the noise in a signal, and it usually gives high value in case of a noisy 
signal [13].

• Spectral centroid: It is a feature based on frequency which indicates the location of the center of mass of the 
spectrum. In audios, it is known as a good predictor of “ brightness” of a sound [14].

• Spectral roll off: This feature is used to differentiate between the harmonic sound (below roll off ) and the noise 
sound (above roll off ). It is known as the energy spectrum under a specific percentage that is defined by the used 
(85% by default) [15].

• Spectral bandwidth: The difference between the higher and lower frequencies in a group of continuous frequen‑
cies.

• Chroma: This representation for audio where the spectrum is divided onto 12 bins representing the 12 distinct semi‑
tones (or chroma) of the musical octave.

• Root Mean Square Energy (RMSE): RMSE represents the energy of the signal, and shows how loud the signal is [16].
• Spectral flux: It measures how quick the power spectrum of a signal is changing, and it is calculated by comparing 

the changes of the power spectrum between one frame and the frame before it[17].
• Spectral density: It is the measure of signal’s power content against frequency [18].
• Cepstral Features: These are, as stated above, quefrency domain features with the following being considered impor‑

tant:

• Mel Frequency Cepstral Coefficients (MFCCs [19, 20]): MFCCs are widely used features for speech recognition. The 
Mel‑frequency scale represents subjective or perceived pitch as its construction is based on pairwise comparisons 
of sinusoidal tones. The conversion between Hertz (f) and Mel frequencies (m) can be generalized as: 

 MFCCs are obtained by applying a short time Fourier transform to window‑based slices from the audio signal, 
followed by calculating the power spectrum and consequently filter banks (triangular in shape). The filter bank 
coefficients are highly correlated and one way to de‑correlate them is by applying a Discrete Cosine Transform 
DCT to get a compressed representation in the form of MFCC. Typically, MFCC 2–13 (i.e. 12 coefficients) are kept, 
and the rest are discarded [21].

• Gammatone Frequency Cepstral Coefficients (GFCCs) [22]: used in a number of speech processing applications, 
such as speaker identification. A Gammatone filter bank approximates the impulse response of the auditory nerve 
fiber thus emulating human hearing and its shape can be likened to a Gamma function ( e−2�(fc)bt ) modulating the 
tone ( cos(2�fct + �) ) [23]: 

(1)m =2595 ⋅ log

(

1 +
f

700

)

,

(2)f =700 ⋅ (10m∕2595 − 1).
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 Where a is peak value, n the order of the filter, b the bandwidth, fc the characteristic frequency and � is initial 
phase. fc and b can be derived from Equivalent Rectangular Bandwidth (ERB) scale, using the following equa‑
tion [24]: = 

 For GFCC, FFT treated speech signal is multiplied by the Gammatone filter bank, reverted by IFFT, noise is sup‑
pressed by decimating it to 100 Hz and rectified using a non‑linear process. The rectification is carried out by 
applying a cubic root operation to the absolute valued input  [24]. Approximately, the first 22 features are called 
GFCC and these may be very useful in speaker identification. For a concise comparison on MFCC and GFCC, the 
reader can further consult [22].

   Linear Prediction Cepstral Coefficients (LPCCs) and Linear Prediction Coefficients (LPCs) were the main features 
used in automatic speech recognition before MFCC specially with Hidden Markov Model (HMM) classifiers [10]. Some 
other important Cepstral features are Bark Frequency Cepstral Coefficients (BFCCs) and Power‑Normalized Cepstral 
Coefficients (PNCCs).

3  Related work

Digital Multimedia forensics has garnered significant attention in recent years, primarily focusing on image forgery 
detection [25], particularly in the realm of copy/move forgery detection [26]. However, digital audio forgery detection 
has not received commensurate attention. It is crucial in multimedia forensics to ensure the authenticity and integrity of 
the data before it is used as evidence. The primary objective of audio forensics is to ascertain the integrity of the audio, 
distinguishing between real and fake recordings and identifying the individuals speaking. The applications of audio 
forensics vary, from legal proceedings to preempting social media or paparazzi rumors.

3.1  The spectrum of voice impersonation

Digital impersonation involves creating speech that can deceive people or machines into attributing it to a legitimate 
source, potentially leading to social or economic harm. An important aspect of audio impersonation involves mimicking 
someone’s voice to falsely attribute statements to them in uncomfortable contexts. The output of voice impersonation 
must be convincing, both to humans and machines, in being naturally uttered by the target speaker. This requires mim‑
icking the signal qualities, like pitch, as well as the speaking style of the target [27]. In this age of deep fakes, seamless 
machine‑based impersonation is a reality. The method in [27] relies on using a neural network‑based framework that 
uses Griffin‑Lim method [28] which can learn to mimic a person’s voice and style and then produce a voice that mimics 
the persons’ voice.

3.1.1  Voice cloning

Cloning technologies can learn the characteristics of the target speaker and utilize prepared models to mimic a person’s 
voice from only a few sound samples. The developments in cloned speech generation technologies can create a fake 
machine speech that is similar to the real voice of the target speaker [29]. There have been research efforts focusing on 
how to detect this kind of audio and how to enable systems to recognize them, such as the anti‑Spoofing works [30–33]. 
In this context, the ASVspoof series of challenges are an important mention in dealing with spoofing in automatic speaker 
verification systems. ASVspoof baseline systems are based in modern deep learning architectures and having deep‑ and 
handcrafted features. although related, the problem we are dealing here is yet to be taken up in these challenges, to 
the best of our knowledge at least.

(3)g(t) = atn−1e−2�(fc )bt cos(2�fct + �)

(4)ERB(fc) =24.7 ⋅

(

4.37 ⋅
fc

1000
+ 1

)

(5)b =1.019 × ERB(fc)
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3.1.2  Voice disguise

Voice disguise refers to altering one’s voice deliberately to conceal one’s identity. Impersonation is concerned with a 
voice disguise aimed at sounding like another person who exists [34]. While impersonation may be easily detectable, it 
is a hard task to trace back a disguised voice, of presumably a person who never existed, to the original speaker. A study 
in [35] reaffirms the importance of phonetically trained specialists in subjective voice disguise identification after an 
untrained audience failed to identify known speakers in case of falsetto disguise. Another study along similar lines [34], 
reports that naive listeners can better distinguish between an impersonator and a target rather than identifying voice 
disguise. Readers are recommended a review of similar studies [36]. The system proposed in [37] relies on the magnetic 
field produced by loudspeakers to detect machine‑based voice impersonation attacks. The reported results in combina‑
tion with a contemporary system against human impersonation attacks, are incredible, viz. 100% accuracy and 0% Equal 
Error Rate (EER) [38].

3.1.3  Human mimicry

Human attempted voice impersonation (or voice imitation) is mimicry of another speaker’s voice characteristics and 
speech behavior [39] without relying on computer related spoofing; in fact, ruling out the quest for technical artifacts in 
the suspected audio. The focus is mainly on voice timbre and prosody of the target [40]. Being a “technically valid speech”, 
mimic attacks may not be detectable, especially in Automatic Speaker verification (ASV) environments. A professional 
impersonator is likely to target all lexical, prosodic [41] and idiosyncratic aspects of the subject speaker; exaggeration 
may be inevitable [39]. The study reported in [42] states that speech patterns, pitch contours, formant contours, and 
spectrograms etc. from speech signals of maternal twins are at least almost identical, if not exactly the same. Hence, even 
a mere verification may be a difficult task in the case of identical twins. Therefore, more exploration of discriminating 
speech features is needed, as suggested about half a century ago [43]. Even a paternal twin may be hand, as in a recent 
incident related to phone banking [44, 45], a non‑identical twin mimic the voice of his brother, a BBC reporter, to deceive 
the system [46]. The literature contains many such incident of fraud [47].

3.2  Detecting human mimicry

Even extensive works, like [48, 49], do little to touch the subject of impersonation, especially the human mimicry, i.e., 
mimicking someone’s voice to attribute to him/her something which was neither ever said nor uttered in one go. Here, 
we are talking of an audio that has never been tampered; other than the usual pre‑processing, filtering and compression 
etc. As of datasets, there exist quite a few forensic databases [50], but even these don’t touch the aspect of impersona‑
tion in the form of human mimicking.

The problem of human mimicry may be the earliest one addressed in the literature and can be traced back to as far 
as 1970 s. For example, an old study [51] employed four professional experts to identify voice disguises from the spec‑
trogram of two sentences uttered by a sample of 30 subjects (15 reference + 15 matching) in undisguised as well as five 
disguised modes. Even without any disguise, the experts could go as far as 56% accuracy in matching the speakers. To 
classify speakers, another early days’ simulation in [52] uses such parameters as fundamental frequency, word duration, 
vowel/nasal consonant spectra, voice onset time and glottal source spectrum slope. The parameters were estimated at 
manually identified locations from speech events within utterances. A later study [53], on a professional impersonator 
and one of his voice impersonations, showed that the impersonator not only focused on the voice of the target, but also 
matched the speech style and intonation pattern as well as the accent and pronunciation peculiar to the target.

A voice impersonator may be identified by finding the features a typical impersonator chooses to exploit and what 
he ignores in the targeted voice, as had been tried in [54] whereby two professional and one amateur impersonators 
were asked to mimic the same target in order to observe whether they have chosen the same features to change with 
the same degree of success.

The work described in [55] used professional impersonators1 to mimic a person’s voice to identify the acoustic char‑
acteristics that each impersonator attempts to change to match the target. A comparison of the impersonated voices 
and the actual voice of the impersonator affirmed the importance of the pitch frequencies and vocal/glottal acoustics of 

1 One interesting aspect of mimicry detection, in addition to employing professionals, could be to employ twins [43], at least of reference.
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the target speaker and impersonator. A similar work in [56], involving three voice impersonators with nine distinct voice 
identities, recorded synchronous speech and Electro Glotto Graphic (EGG) signals. An analysis based on the EGG and the 
vocal traces—including speech rate, vowel formant frequencies, and timing characteristics of the vocal folds—led to 
the conclusion that each impersonator modulated every parameter during imitation. In addition, vowel pronunciations 
were observed to have a high dependency on the vowel category.

More recently, the method in [57] uses a Support Vector Machine (SVM) to create speaker models based on the pro‑
sodic features (intonation, loudness, pitch dependent rhythm, intensity and mimic duration in addition to jitter, shimmer, 
energy change, and various duration measures) from the original speech of celebrities and professional mimicry artists; 
as well as the original speech of the latter. A related effort [58] uses Bayesian interpretation in combination with SVM. 
A similar prosodic features‑based method [59], analyzes the ability of impersonators to estimate the prosody of their 
target voices while using both intra‑gender and cross‑gender speeches.

4  The dataset

It seems that a standard dedicated speech impersonation database may not be publicly available, e.g., the study reported 
in  [60] used the YOHO database that was designed for ASV systems. The best one can get is to collect from online sources, 
like YouTube, audios of celebrities and their mimicked versions by various professionals. Alternatively, one may exploit 
the public datasets, like voxceleb [61] that contain the original voices of celebrities; one may still vie for human mimicked 
version voices of these celebrities on YouTube. A related dataset is [62].

To collect the raw data, we went through a number of social media apps and sites and downloaded the audios which 
were then edited to conform to the proposed model by limiting it to a maximum duration of 20 s in WAV format. One 
part of the dataset consists of all English audios (both real and mimicked). The second part of the dataset contains a mix 
of both English and Arabic audios. The audio files are named so that the first four characters are digits to represent the 
index and the fifth character is either ‘r’ or ‘f’ to label the voice as real or faked, respectively.

Our goal is to blindly identify whether a given voice is mimicked or otherwise. Hence, for our experiments, a set of 
independent real and faked audios was required to create the dataset; real and faked voices uttered independently of 
what is being said and who said it and independent of the language. We employed 933 distinct English spoken audio 
samples, divided into 746 for training (including 20% for cross validation) and 187 for testing. To ensure language versa‑
tility, an additional 194 Arabic medium samples were included, resulting in a total of 1127 samples (901 for training and 
cross validation, and 226 for testing).

5  The proposed method

The use case of our method concerns the scenario of a complete blindness wherein no prior or side information is avail‑
able about the speaker. The idea is to accept/reject an input voice, right at the outset, without any recourse to the already 
available record. Our emphasis is on classifying the speech, as faked, or otherwise, under the assumption that no other 
recorded voice of the speaker is available; whether genuine or disguised. The purported speaker is only represented 
once in the training data; that too, either as real or mimicked, but not both. Potentially, our method may be very useful 
in improving efficiency of many audio processing methods, especially, when applied at the pre‑processing stage.

The method we used is loosely based on the one described in [63] for recognizing the spoken digits (0–9) from the 
audio samples of six people.

The proposed model is outlined in Fig. 1 that follows the steps given below.

5.1  Input

For the training set, it is essential that: 

1. Exactly one sample pertains to a purported speaker.
2. Either the real or the faked voice of a given speaker is part of the dataset; in fact, they should be mutually exclusive.
3. The spoken words are not required to be identical.
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Keeping the above in view, We extracted our dataset from the raw dataset to contain 933 English‑only audio samples 
and 1127 samples in both English and Arabic.

The input is constituted by the WAV files corresponding to the above that are stored in a suitable data structure. The 
model works in labeling our data based on the last letter (‘f’ or ‘r’) in the name of the file before storing it in a separate 
array of labels. The array is mapped to a separate perspective array of features obtained after the subsequent two steps.

5.2  Feature extraction

The model works on extracting the needed features using the Python librosa [64] package. The main features we 
relied on were 26 in total:

• RMSE (E for Energy),
• Zero crossing rate,
• Spectral centroid,
• Spectral bandwidth,
• Roll off,
• Chroma,
• 20 MFCCs.

These features are already described in Sect. 2 with some details. All these 26 features would be normalized and concat‑
enated, before being fed to the neural network, as input, during the training phase.

5.3  Pre‑processing the dataset

Using sklearn.model_selection, the feature set is first partitioned to training and testing sets. During the train‑
ing phase, the training set is dynamically partitioned to training and validation parts, as is the case with cross validation. 
By employing the sklearn.preprocessing.StandardScaler class, the data is normalized in order to better 
structure it for visualization and analyses. The data is standardized, which means that they will have a mean of 0 and a 
standard deviation of 1.

5.4  The neural network

The next step is the deep neural network outlined in Fig. 1 that follows a sequential model that has three hidden layers. 
The reason to choose the sequential model is its simplicity and the ability to add up more layers easily.

The model has alternating dense and dropout layers. The dropout layer is used for toning down too many feature 
associations during training in order to avoid over‑fitting; a phenomenon called regularization. The relevant hyper‑
parameter p, called ‘dropout rate’, is set to 0.5. For hidden layers, in general, the Rectified Linear Unit function (ReLU) 
is the activation function of choice. Being a binary classification, for the output layer, we are relying on the sigmoid 
activation function. We chose the sigmoid activation function for binary classification due to its ability to provide 

Fig. 1  The proposed model
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clear class probabilities between 0 and 1. While softmax is typically used for multi‑class classification, sigmoid is 
well‑suited for binary outcomes. Note that:

Fig. 2 gives a snapshot of the layers involved in an example execution in the form of model summary.
After preparing the model, we pass on the data for training the model via the usual fit() function. We use the 

adaptive moment estimation (adam) as optimizer [65] for its efficiency, manageable memory requirements and its 
amenability for larger data/parameters. As we have only two possible labels (real or faked), for better accuracy, the 
loss function is based on the sparse categorical cross entropy. The number of epochs were set to 140 which is the 
number of times the model will train before it completes the training process. The batch‑size was set to 128 and cor‑
responds to the number of samples processed before the model is updated. Finally, the testing phase involved the 
usual prediction function (predict()) with subsequent comparison of the predicted labels with the actual labels 
from the dataset. The learning rate was optimized to 0.0003.

6  Experimental results

It must be noted that although the size of our dataset is almost double the sample size we are reporting (every voice 
had a faked and real versions), for the sake of blindness either the real or fake version was included in the dataset. In 
other words, our sample has either a real or mimicked version of an individual’s voice, but not both. 

1. The model was first trained and tested with all‑English audios already described in the previous section. It consisted 
of 933 samples which were partitioned into 746 training ( 20% cross validation) and 187 test cases. The resultant 
confusion matrix corresponding to the training of the model on 933 samples was: 

(6)ReLU(x) =max(0, x),

(7)Sigmoid(x) =
1

1 + e−x

Fig. 2  Model summary
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 where TP is the True positives, TN is the True Negatives, FP is the False Positives, FN is the False Negatives.
  Over the same dataset, the resultant confusion matrix par rapport the testing, based on 187 samples, was observed 

to be: 

 Based on the above confusion matrices, for all English dataset, the resultant training accuracy was found to be 
0.977(97.7%) as against the testing accuracy of 94.1% . These results are interesting in the face of the fact that the 
method is blind and no additional information is made available to our method.

2. To check whether the spoken language has any bearing upon the results, we chose a test case of 194 Arabic language 
audios from the mixed set of data taken from the raw dataset. When tested on the model trained on the English‑only 
datset, we got a classification accuracy of 59.9% . This implied that the spoken language also seems to be a deciding 
factor. We therefore ought to revisit the training part using a mix of English and Arabic audios. In fact we combined 
the three sets to get our mixed set to retrain our network on. It must be noted that our use case has one and only 
one sample per purported speaker; ‘real’ or ‘fake’ as our use of the terms blind and zero prior knowledge dictates. That 
is to say, if there’s a ‘fake’ speech sample of a given purported speaker, then there’s no ‘real’ speech sample, and vice 
versa. Neither has the proposed system ever encountered the purported speaker, whether fake or real. With that in 
mind, we must have no spoken language barrier in training our network. That is why we combined the English and 
Arabic speech samples in the mixed data set to nullify language dependence in our use case.

3. The mixed set of 1127 audios was partitioned into 901 training samples, including 20% for cross validation, and the 
rest 226 constituted the test set. The resultant confusion matrix was: 

 The computed training accuracy was thus found to be 97.6% in classifying the real and faked audios. The test accuracy 
for the mixed part was however 94.2% as can be deduced from the following confusion matrix: 

Figure 3 indicates that our model has a good learning curve, albeit noisy at later part. Note that we optimized based 
on the mixed data; hence the better curve (Fig. 3.b). Although we fixed the number of epochs to 140, most of the conver‑
gence is realized well before 60 epochs; only some refining need further epochs. The curves of loss decrease to a point 
of stability, although one can observe a small gap of validation loss with the training loss.

Table 1 sums up all the results par rapport both the all English and mixed parts of the dataset. For a better idea about 
the obtained results, the Receiver Operating Characteristic (ROC) curves for both the parts are illustrated in Fig. 4. The 
model has enviable efficiency as demonstrated by the high ROC AUC scores of 0.974 and 0.963 with respect to All‑English 
and Mixed samples, respectively. A very important ROC based metric is the equal error rate (EER) which is the location on 
a ROC curve where the false acceptance rate and false rejection rate are equal. In general, a lower EER indicates highly 
accurate classification. The EER2 in our case was 0.053 for English‑only and 0.057 for the mixed part.

(8)Train (all English)

(

TP FP

FN TN

)

=

(

372 13

4 357

)

,

(9)Test (all English) =

(

85 9

2 91

)

.

(10)Train (Mixed) =

(

450 13

9 429

)

.

(11)Test (Mixed) =

(

108 10

3 105

)

.

2 https:// stack overfl ow. com/ quest ions/ 28339 746/ equal‑ error‑ rate‑ in‑ python. Accessed 07 June 2023.

https://stackoverflow.com/questions/28339746/equal-error-rate-in-python
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7  Benchmarking results

Even after a thorough search, we were not able to find a reference method that could benchmark the research prob‑
lem we are after. There are methods, like [66], but they are non‑blind, i.e., to say these methods require a recording 
of the original voice. One may argue in favor of spoofing detection literature, especially the one‑class methods, like 
OC‑Softmax [67] and its variants [68–70], but the main method concerns machine generated speech. Hence, it was 

Fig. 3  Training and test‑
ing losses vs the number of 
epochs
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decided to come up with reference data by inspection through human subjects/volunteers. We gathered a group of 
10 native Arabic speakers and 20 native English speakers. Each volunteer would have to listen the audios from our 
dataset and tabulate it as real or faked as per his/her observation. Due to the scarcity of native English speakers, we 
had to contact the volunteers through social media and carry out the process live online.

By conducting the tests on two groups of people, the English native speakers were able to blindly identify 85% of the 
English audios given as real or fake correctly. In contrast, the proposed model got 94% accuracy in classifying the real 
and faked audios using the all‑English dataset. With the native Arab speakers, 89% of the Arabic audios were identified 
correctly, however.

After conducting the human subject test and the results of the model test we found that there were some audios on 
which both tests agreed being faked audios, where in fact those audios were real, see Table 2. The probable cause, of 
the failure of the test participants in identifying those audios, may be the background noise that may have made them 
think that those audios were real.

8  Conclusion

The results reveal that, assuming zero prior knowledge about the speaker and his speech, our system can classify a given 
speech as faked or otherwise, on the fly. We had at our disposal only English and Arabic audios, but still we were able 
to deduce that the nature of spoken language may be important, as we got less than 60% accuracy in classifying Arabic 
audios using a network trained solely on English data. Following the incorporation of Arabic audio data, approximately 
one‑fifth the size of the original English training dataset, and subsequent retraining of the network, a significant improve‑
ment in classification results was observed. This suggests that while spoken language may influence classification, its 
impact can be mitigated by introducing a small number of additional samples. Thus, maintaining a strict 1 : 1 ratio 
between languages in the training dataset may not be essential for addressing the language factor. However, further 
investigation into this aspect may be warranted, potentially by incorporating audio data from additional languages. In 
precise terms, the performance of our model is evidenced by its accuracy, which consistently exceeded 94% (specifically, 
achieving 94.1% for the English dataset and 94.2% for the mixed dataset, as outlined in Table 1). A Comparison with results 
by inspection from human subjects proves that our model can identify real and faked audios with a better accuracy.

As a future improvement, we first aim to collect more data to improve the Arabic dataset and make it available for 
researchers. Secondly, there is a need of diversity in the form of the inclusion of audios in other languages too. This may 
improve the classification capability of the model. Last but not least, deploying the model in mobile based software may 
help against impersonation offenses. Fundamentally, for an audio clip to be classified with high accuracy as being fake, 
without any references, original, mimicked, or impersonated target even exist, a much deeper analysis will be needed 
to provide a plausible feature‑set upon which such a decision is being made by the model.

Table 1  Metrics calculations for both the English and Mixed parts of the dataset

Metric Formula All English dataset (933) The Mixed dataset (1127)

Train. (746) Test (187) Train. (901) Test (226)

Sensitivity/recall/true positive rate (TPR) TP

TP+FN
0.989 0.977 0.980 0.973

Specificity/true negative rate (TNR) TN

TN+FP
0.965 0.910 0.971 0.913

Fall out/false positive rate (FPR) FP

FP+TN
0.035 0.09 0.029 0.087

Miss rate/false negative rate (FNR) FN

FN+TP
0.011 0.023 0.02 0.027

Precision/positive predictive value (PPV) TP

TP+FP
0.966 0.904 0.972 0.915

Accuracy TP+TN

FN+TP+FP+TN
0.977 0.941 0.976 0.942

Balanced accuracy (BA) Sensitivity + Specificity

2

0.977 0.944 0.976 0.943

F
1
 score 2 ×

Precision×Recall

Precision + Recall
0.977 0.939 0.925 0.976
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Fig. 4  Receiver operating 
characteristic (ROC) curves
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