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ABSTRACT

Fisheye lenses are renowned for their capacity to capture in-
credibly broad perspectives, often reaching up to 180 degrees.
Their versatility extends beyond computer vision tasks and
encompasses various fields. While applying computer vision
techniques directly to fisheye images can yield suboptimal
results, this article aims to introduce an uncomplicated and
straightforward adaptation of the well-known Bayesian based
particle filter. Through a few minor adjustments, we will
demonstrate the potential to enhance the particle filter’s per-
formance when dealing with such images, particularly for
tracking purposes. In this study, we investigate the applica-
bility of particle filters based on features such as: color space,
Local Binary Pattern, Histogram of Oriented Gradients, and
their combinations. Eventually, experiments and evaluations
were carried out on hand annotated real videos with a top view
fisheye camera in motion.

Index Terms— Fisheye camera, particle filter, his-
tograms, object tracking

1. INTRODUCTION

Tracking with fisheye cameras presents challenges due to ex-
treme wide-angle views, distortion, and complex perspective
transformations, as detailed in [1, 2]. Particle Filters can play
a crucial role in addressing these challenges by providing a
flexible and adaptable framework for tracking objects in non-
linear, wide-angle scenes. Indeed, they can handle the unique
characteristics of fisheye images, such as distortion correc-
tion and probabilistic state estimation, making them a valu-
able tool for robust object tracking in fisheye camera setups.

Recent deep-learning-based techniques are efficient to de-
tect and track people, even using fisheye sensors [3, 4, 5, 6, 7,
8, 9] require large datasets, may struggle with non-linearity,
and lacks the same level of interpretability. Particle Filters
(PF) offer advantages over deep learning approaches in sce-
narios with limited data, nonlinear systems, and the need for
interpretability. Often referred to as Sequential Monte Carlo
methods [10], they are a class of probabilistic algorithms used

for state estimation and tracking in various fields, including
computer vision, robotics, and signal processing [11, 12].
These filters provide a versatile framework for estimating the
state of a dynamic system over time based on noisy obser-
vations by testing several hypothesized target positions as a
function of extracted features. PF provide transparency in
state estimation; they are particularly well-suited for scenar-
ios where the underlying system is complex, nonlinear, and
exhibits non-Gaussian behavior [13]. Briefly, PF remain valu-
able for state estimation and tracking tasks, complementing
the capabilities of deep learning in various applications.

This work focuses on a single target with a slightly mov-
ing camera. Getting a usable dataset is difficult in this very
specific field, so we filmed and annotated videos that we will
publicly release. The developed approach is based on a parti-
cle filter and the features correspond to color space [14], Lo-
cal Binary Pattern (LBP) [15] and Histogram of Oriented Gra-
dients (HOG) [16]. As the appearance of the pedestrians vary
strongly passing in front of the video, we show the reliability
and efficiency of the weights given to these features, depend-
ing of the position in the image, as a consequence, the HOG
differs too, as illustrated in Fig. 1.

Image A, 110×110 Gradient norm HOG (18 directions)

Image B, 110×110 Gradient norm HOG (18 directions)
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Fig. 1. Example of a pedestrian appearing in a fisheye image
in gray level, its gradient norms and tied HOGs. The Image
A is on the border of the original image whereas the Image B
corresponds to a person passing in front of the focal point.
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Fig. 2. Sequential steps used by PF for tracking. (a) Particles are initialized from prior (position at frame t-1), (b) Weights are
updated (detailed in Secs. 3.2.1 and 3.2.2). (c) Particles are resampled based on the calculated weights for a prediction in (d).

2. PARTICLE FILTERING FOR TRACKING

The Particle filter is a widely utilized method for tracking
applications. It employs a Bayesian framework where each
particle represents the probability of locating the desired
object based on particular features, as outlined in [17, 12].
The central concept involves representing the posterior den-
sity through a collection of random particles, each assigned
specific weights. Subsequently, estimated positions are cal-
culated using these samples and their corresponding weights.

Particle filtering, also known as the Sequential Monte
Carlo method [18], has been widely documented in the liter-
ature [10, 19] and is summarized in Fig. 2. The stability of
the filter hinges on the number of particles. On the one hand,
increasing the number of particles enhances filter stability
[13]. On the other hand, it leads to longer compilation times.
The object tracking implementation here relies on a combi-
nation of color histograms [17] and LBP texture features [15]
using a combination of the Bhattacharyya coefficient [20] and
Simpson index [21], as detailed in the following section.

3. FISHEYE PARTICLE FILTER FOR TOP VIEW
PEDESTRIAN TRACKING

When working with top-view fish-eye images, the particle fil-
ter must be adapted for tracking; different characteristics can
be used, and clever ways of combining them.

3.1. Extracted Features and their Combinations

The developed particle filters exploit various features for ob-
ject tracking, including color histograms, LBP or HOG, and
then explore combinations of these features.

3.1.1. Color Spaces

The choice of color space definitely plays a role in the perfor-
mance of the particle filter, significantly influencing its abil-
ity to accurately track objects in complex visual [11]. Color
spaces are representations of color information. Selecting
an appropriate color space can greatly enhance object track-
ing in various scenarios. Different color spaces [22] - such
as RGB (red, green, blue), HSV (hue, saturation, value) or

CIE L*a*b* (denoted Lab) - offer unique advantages and fea-
tures that address specific tracking challenges. The choice of
the color space affects how the particle filter interprets and
matches pixel values, impacting the tracker’s ability to distin-
guish objects from their backgrounds. As conducted in [14],
Lab is the more powerful color space for people matching in
fisheye images.

3.1.2. Histogram of Oriented Gradient (HOG)

The HOG is a descriptor that relies on the shape and con-
tours of the object [16]. Technically, each image map is par-
titioned into small fix-sized dyadic cells (8×8 or 16×16 or
more) and HOG descriptors would be computed for each cell
from its orientation map depending on both the orientation
and the magnitude of gradient. The histogram is built from a
frequency table based on the orientation angles.

3.1.3. Local Binary Pattern (LBP)

The LBP labels the pixels by comparing each pixel in gray
level with its neighborhoods and considering the result as a
binary number [15]. Utilizing LBP labels, a histogram can
effectively characterize both texture and object shape, making
it valuable for tracking purposes [17].

3.1.4. Histogram length

The histogram length depends on the discretization of the
color space, the HOG and the LBP. In our tests, the histogram
tied to Lab color space contains 24 (i.e. 8×3) bins, 18 bins to
the HOG and 8 bins appear in the LBP histogram. They can
be utilized separately or merged by concatenation according
to the proposed method detailed bellow. As an example, LBP
and RGB color space histograms are concatenated in [17].

3.2. Adapting to a fish eye camera
Fisheye overhead images are employed, resulting in distor-
tions that pose challenges for tracking when pedestrians move
across different image areas. Consequently, continuous track-
ing becomes unfeasible unless the tracked individual remains
within the same image region. When limiting the tracking
approach to color histograms, as the tracked person nears the
image center, the clothing colors become less discernible,
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Fig. 3. Detection example with the new weighted distance (in green and blue) compared to the conventional approach.

leaving primarily the top of their head and shoulders visible
(refer to Fig. 3). A similar issue arises with the object’s gradi-
ent, as the target’s shape undergoes changes while converging
toward the image center, causing the HOG representation to
flatten (similar to Image B in Fig. 1).

3.2.1. Changing the target throughout tracking

We propose to address this issue by defining a new histogram
of features as a reference, i.e. that will be compared to all the
particles’ histogram in order to compute the probability den-
sity, necessary to perform tracking. This way the particles’
features will be compared to the features of updated object
that are closer to the actual state of the object.

Thus, to estimate the position of the tracked object in the
frame t+ 1, we define the new target histogram as follows:

Ht+1 = ((1− α− β) ·Href ) + (β ·Ht) + (α ·Ht−1), (1)

where Ht+1 is the target histogram for the frame t+1, Ht and
Ht−1 are respectively the histograms for frames t and t − 1.
Also, Href is the histogram of the tracked object at frame 0
and given as an input for the tracking. Finally α and β are
two parameters defined empirically (in our tests, α=0.3 and
β=0.2). A pipeline optimizing these parameters could be in-
teresting in any future works. To our knowledge, no reference
exists about this subject.

(a) Person in the image edge (b) Person in the image center
Fig. 4. Depending if the tracked person is in the center or in
the edge of the fish-eye image particle similarity function will
base more on HOG or in HC and LBP using a weighted sum.
Weights are calculated using Simpson index.

3.2.2. Weighted contribution from HOG: Simpson Index

Despite the above function, the tracker still loses the target
near the center. By assuming that with fisheye top view cam-
eras, when pedestrians pass close to the center so that only the
head top and shoulders are visible, the HOG gives much less
information than it should (the signal is relatively flat).

In this way, the HOG makes more sense and is more
useful when the tracked objects stay on the image perimeter,
while the most meaningful descriptor to use near the center
is the color histogram. Consequently, we propose to weight
the distances between histograms with the distance of the
particles from the center of the image. In that respect, the
closer the particles are to the center, the more weight both the
color and the texture histogram will carry, and the fewer par-
ticles will be compared using the HOG (as represented by the
flowchart presented in Fig. 4). They weights are calculated
as a function of the Simpson index [21] (see Eq. (2)).

There exists a certain number of functions to discrim-
inate between highly specific (signals containing thin and
high peaks) or sparse histograms (flat signals). In this con-
text, the Simpson index is more reliable, as compared in
[23]. Let {hk}k=1...N be the set of values of a histogram H
built on a partition made of N bins with n observations (i.e.
n =

∑N
k=1 hk). The Simpson index S is defined by:

S (H) =

∑N
k=1 hk · (hk − 1)

n · (n− 1)
. (2)

The most peaked histogram will lead to maximizing
S (H) with large values [21]. Consequently, as the HOG
contains more peaked histograms on the image border, the
weights are computed as a function of the index S and the
particle coordinates. For this to happen, a function tending
to 1 when the HOG signal is flat and to 0 when the HOG
contains sharp bins could be: µ = e1−S (HOG).

Now, let’s assume that HF represents the feature his-
tograms taken as references (HF is the concatenation of the
color histogram in a specific color space and the LBP labels).
Let p(i) be the ith particle, and let H(i)

OG and H
(i)
F be respec-

tively histogram of oriented gradient and feature histogram of
the particle. In order to compare particles’ histograms to the
target ones, we propose the following distance:
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Fig. 5. Comparison of Box Plot presenting IoU, Prec and Rec computed on all the videos weighted by the number of frames.

d = µ · B
(
H ref

OG, H
(i)
OG

)
+ (1− µ) · B

(
H ref

F , H
(i)
F

)
, (3)

with µ = e1−S (HOG), representing the weight contribution
wanted for the HOG histograms. Here, B represents the
Bhattacharyya distance [20] defined by:

B(H1, H2) =

√√√√1− 1√
H̄1 · H̄2 ·N2

N∑
k=1

H1(k) ·H2(k), (4)

with N the number of bins in the normalized histogram
Hi,i∈{1,2} and H̄i,i∈{1,2} = 1

N

∑N
k=1 Hi(k).

4. EXPERIMENTAL RESULTS AND EVALUATIONS

4.1. Experimental protocol: moving fisheye camera
The proposed tracking method is evaluated and compared
with the performance of the basic particle filter (having HOG,
LBP or/and color space(s) as features). To do this, we used
our own dataset containing 6 videos filmed with a moving
top view fisheye camera. The videos contain a total of 5, 023
frames which are annotated. In the presented tests, 50 parti-
cles are distributed according to a normal distribution around
the tracked object with a standard deviation of 5.

Several well-known metrics are computed to report the
reliability of the methods, namely Intersection over Union
(IoU), Precision (Prec) and Recall (Rec), which represent
confusion matrix-based evaluations, pixel per pixel by com-
paring the ground truth and the detected object.

4.2. Evaluation and Comparison
Fig. 5 displays box plots representing the three measures,
computed across all videos and weighted by the frame count.
These plots employ color coding, with the orange line indi-
cating the median value and the green line representing the
mean. The performance evaluation of the particle filter is pre-
sented for different histogram combinations: Lab, LBP, and
HOG. Notably, the incorporation of HOG into the particle fil-
ter algorithm significantly enhances its overall performance.

For the basic particle filter, which relies solely on the
Lab color space and even when augmented with the LBP his-
togram, the median performance score is observed to be 0.
This outcome suggests that the tracker frequently loses the
target object earlier compared to other histogram combina-
tions. However, the introduction of HOG demonstrates su-
perior tracking capabilities, thanks to our novel histogram

comparison methodology, particularly when the tracked ob-
ject does not pass near the center of the image. In such sce-
narios, the basic approach suffices for satisfactory tracking.
In contrast, the tracker using the basic approach loses track
of the target in other instances, while the proposed approach
continues to perform effectively, as illustrated in Fig. 3. Con-
sequently, the weighted distance metric outperforms the con-
ventional method in these scenarios, leading to a significant
improvement in overall performance. This improvement is
reflected in an almost 50% increase in the average Intersec-
tion over Union (IoU) in the video set. It is also worth not-
ing that with the proposed method, the tracked object is only
rarely lost, which is remarkable given the challenges posed by
distortions, changes in object size, and camera movements.
When the tracker does lose the object, it rapidly recovers it.

Finally, it’s worth mentioning that the video results are
available at the address provided in [24].

5. CONCLUSION AND FUTURE WORKS
Tracking with a top-view fisheye camera presents consider-
able complexity, particularly when applying deep learning
techniques, due to the scarcity of available annotated data.
The particle filter remains an interesting alternative; however,
the conventional version may fall short in the specific context
of our scenario. In this article, we delve into the multitude
of features that can be employed with the particle filter, sug-
gesting innovative combinations. The proposes technique is
evaluated via three metrics (IoU, Prec and Rec) on videos
containing a total of 5, 023 frames. The performance results
clearly demonstrate the superiority of our approach when
compared to conventional methods, as exemplified in [17],
particularly within the context of top-view fisheye images.
The proposed distance is employed to compare particles’
histograms, using the shape of the HOG. Depending on the
position of the tracked object, the elements of its body will
be more or less apparent, and so its HOG will be more or
less flat. By computing the Simpson index, the flatness of
this histogram is evaluated, by assigning various weights to
the HOG coupled with the other features. Indeed, it effec-
tively addresses the distortion challenges encountered when
the tracked object comes into proximity to the image center.

To conclude, based on the works in [25] and [19], it is
possible to run the particle filter in real time with limited com-
puting resources. Furthermore, the proposed Simpson-index
technique can be combined with a neural network to enhance
specific object detection/tracking tasks.
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