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Introduction: Dementia is a neurological disorder associated with aging that

can cause a loss of cognitive functions, impacting daily life. Alzheimer’s disease

(AD) is the most common cause of dementia, accounting for 50–70% of

cases, while frontotemporal dementia (FTD) a�ects social skills and personality.

Electroencephalography (EEG) provides an e�ective tool to study the e�ects of

AD on the brain.

Methods: In this study, we propose to use shallow neural networks applied to

two sets of features: spectral-temporal and functional connectivity using four

methods. We compare three supervised machine learning techniques to the CNN

models to classify EEG signals of AD / FTD and control cases. We also evaluate

di�erent measures of functional connectivity from common EEG frequency bands

considering multiple thresholds.

Results and discussion: Results showed that the shallow CNN-based models

achieved the highest accuracy of 94.54% with AEC in test dataset when

considering all connections, outperforming conventional methods and providing

potentially an additional early dementia diagnosis tool.
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1. Introduction

Dementia is a neurodegenerative disease that results in the destruction of nerve cells

in the brain, leading to various symptoms that affect cognition, emotion, and movement

(1). It becomes more common as people age, and can have many different effects, some of

which may be reversible. Early-onset dementia, which occurs before the age of 65 years, is

most frequently caused by Alzheimer’s disease (AD) or frontotemporal dementia (FTD). In

contrast, late-onset dementia occurs after the age of 65 (2). AD is characterized by amnesia,

fluent aphasia, and visuospatial difficulties. On the other hand, FTD is characterized by

changes in personality and behavior (3). AD affects neurons and disrupts neurotransmitters

responsible for storingmemories and transmittingmessages, while FTD causes degeneration

in the frontal and anterior temporal lobes. However, neuropsychological tests aiming to

differentiate between FTD and AD often yield uncertain or contradictory results (4). It is

crucial to distinguish between the two, as they impact different cortical regions and exhibit

distinct clinical findings.

Neuroimaging techniques have made a significant contribution to the identification of

AD and FTD (5). Over the past two decades, electroencephalography (EEG) has gained

significant interest in clinical practice and research as a non-invasive tool for diagnosing
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dementia and determining its severity. EEG signals record the

electrical activity of the brain, and have the potential to serve as

a biomarker for AD and other neurodegenerative diseases (6). EEG

analysis involves extracting useful information from EEG signals

using various features such as time, frequency, and time-frequency.

The time domain analysis involves statistical features such as

mean, median, and standard deviation. The frequency domain

features involve decomposing the signal into different frequency

sub-bands such as delta, theta, alpha, beta, and Low-gamma.

These features are commonly used in machine learning algorithms

for AD classification. Time-frequency features involve using a

spectrogram image as an alternative method for representing the

characteristics of raw EEG data. The spectrogram displays the

variation in energy values and frequency responses over time,

using different magnitudes. In comparison to other manual or

supervised feature extraction techniques, spectrograms are more

effective in classifying signal/time-series data since they include

more unknown and valuable features (7).

Functional connectivity (FC) (8) is among the most commonly

used techniques for studying brain function. It aims to characterize

the observational similarity between different brain regions and

how such similarity changes due to patients’ pathology or even

under different mental tasks. This kind of analysis has been applied

in various experimental contexts, ranging from high-resolution

fMRI data to more recently, EEG data, to provide more detailed

temporal information. There is mounting evidence suggesting that

Alzheimer’s disease and various psychiatric disorders are associated

with disruptions or enhancements in FC (9).

The aim of this work is to improve diagnostic accuracy of

dementia by exploring EEG signals using shallow Convolutional

Neural Network (CNN) to classify subjects with AD, FTD,

and healthy control (HC) group. Our approach involves feature

extraction in both the time-frequency domain and functional

connectivity analysis. We also compared our results with

conventional classification methods, such as Linear discriminant

Analysis (LDA), Support Vector Machine (SVM), and K-nearest

neighbors (kNN), which rely on temporal and frequency feature

extraction.

2. Data and models

2.1. Dataset

In this study, we explored the publicly available dataset

collected by Miltiadous et al. (10). The original dataset consisted

of 19 EEG channels, with a sampling rate of 500 Hz, recorded

from the scalp of 88 participants, including 36 AD patients, 23

FTD patients, and 29 healthy control subjects. The mean age and

standard deviation (SD) for the AD group were 66.4 (SD = 7.9), for

the FTD group were 63.6 (SD = 8.2), and for the HC group were

67.9 (SD = 5.4). The cognitive decline and functional performance

of patients with AD were evaluated using the Mini Mental State

Examination (MMSE) score. The EEG signals were obtained from

participants who were seated, relaxed, and had their eyes closed,

following a clinical protocol. The released data were subjected to

initial pre-processing steps, including band-pass filtering within the

frequency range of 0.5–45 Hz and the signals were re-referenced

to A1–A2. Then, Artifact Subspace Reconstruction (ASR) was

applied to remove bad data periods exceeding the maximum

acceptable standard deviation of 17 for the 0.5 s window. To further

investigate signal enhancement, Independent Component Analysis

(ICA) was applied to the EEG signals, resulting in 19 distinct

ICA components. As part of this process, elements classified as

“eye artifacts” or “jaw artifacts” were automatically identified and

removed. The average recordings duration for AD and FTD groups

is ∼13 min, ranging from 11 to 17 min. The recordings for the HC

subjects lasted for an average of 13.8 min, ranging from 12.5 to 16.5

min.

The main question of this work is how to improve the accuracy

of dementia diagnosis by investigating EEG signals, so that we could

achieve better classification rate on three groups: AD, FTD, andHC.

We focus on feature extraction through functional connectivity

methods using various thresholding techniques. Additionally, the

study compares the outcomes with CNN based time-frequency

analysis and traditional classification approaches as benchmarking

against state-of-the-art methods. The overall workflow of this study

is illustrated in Figure 1. In the following section, we will detail the

feature extraction steps and the classification methods.

2.2. Feature extraction methods

2.2.1. Spectral-temporal feature extraction
The time-frequency analysis allows to obtain richer

information which are more appropriate to neural network

(11). In the work of (10), the EEG data was at first divided into

epochs of 5 s with a 2.5 s overlap, features in the time and frequency

domains were extracted for the classification. In this study, we

use different spectral-temporal feature extraction method: the

preprocessed data was epoched of duration 10 s, then spectral-

temporal features are extracted using Fourier Transform and

Hanning window tapering approach with EEGLab (see examples

in Figure 2). In total, 130,150 spectrograms (subjects × channels

× epochs) were extracted from the cleaned dataset. The choice

of the spectral-temporal features is supported by their ability to

capture the temporal and spectral information of EEG signals. This

approach is consistent with the existing literature, where similar

methods have demonstrated effectiveness in classifying various

forms of dementia. In (12), the authors used a time-frequency

features by applying both Fourier and Wavelet transforms to

classify patients with Alzheimer’s disease versus healthy controls.

This specific study achieved 83% accuracy using decision trees,

highlighting the potential of time-frequency features in dementia

classification.

2.2.2. Connectivity feature extraction
2.2.2.1. Functional connectivity measures

Functional connectivity refers to the interactions between brain

regions, which can be quantified using measures of dependency

between their temporal dynamics. By thresholding the connectivity

values between all pairs of brain regions, one can identify

functional connectivity networks that show which brain regions

interact with each other. In EEG-based functional connectivity
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FIGURE 1

Main workflow of this study.

networks, nodes are represented by EEG channels, and links are

connections between channel pairs (9). The relationship between

channels can be quantified using various methods, such as phase

synchronization index (PSI), imaginary part of coherency (ImCoh),

Pearson correlation (Corr), and Amplitude Envelope Correlation

(AEC) (13, 14).

Functional connectivity features offer an effective way to

extract relevant information from EEG signals, as demonstrated

by previous studies (15, 16) which used functional connectivity

methods to discriminate between different groups, including

AD/HC, AD/FTD, and FTD/HC, using SVMmodels. These studies

provided valuable insights, with accuracies ranging from 72.2 to

87.67%. The use of functional connectivity features is motivated

by their ability to unveil complex interactions within EEG data,

enabling the identification of distinct patterns that can differentiate

between various neurological conditions. This study employed

four functional connectivity estimation methods, namely PSI,

ImCoh, Corr, and AEC to compare the performances of time-

and frequency-domain measures in classifying AD, FTD, and HC.

For each participant, we generated a connectivity matrix between

all pairs of electrodes using the four functional connectivity

measures separately. We applied three thresholding strategies on

each connectivity matrix:

1. an absolute threshold with one commonly fixed value of 0.7,

2. a proportional threshold varied from 10 to 90% with steps of

10%, and

3. no thresholding (raw connectivity matrix without any

thresholding). These resulting matrices were then compared

to evaluate the effects of thresholding on the classification

performance.

We evaluated the effects of thresholding on classification

performance by comparing the resulting matrices. A total of 6,850

connectivity matrices were then generated for each functional

connectivitymethod, and thesematrices were used for classification

using a shallow Convolutional Neural Network.
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FIGURE 2

Examples of the three classes (AD, FTD, HC), and three electrode channels (Fz, Cz, Pz).

2.2.2.1.1. Phase synchronization index

Phase Synchronization Index measures how two or more

signals are synchronized in terms of their phase relationship.

It ignores the effect of amplitude and detects the correlation

between different signal pairs only takes only into account the

instantaneous phase relationship between the signals. Supposing

the instantaneous phases of two signals x(t) and y(t) being φx(t)

and φy(t), then the phase synchronization index (PSI) is defined as:

PSI =
1

T

∣

∣

∣

∣

∣

T
∑

t=1

exp{j(φx(t)− φy(t))}

∣

∣

∣

∣

∣

(1)

The PSI is sensitive to phase change and its value ranges from

0 to 1. The PSI value of 1 indicates strict phase locking between the

signals. On the other hand, a value of 0 indicates that the phases are

uniformly distributed and there is no synchronization between the

signals.

Examples of connectivity matrices with these four methods can

be found in the following Figure 3.

2.2.2.1.2. Imaginary part of coherency

Coherency is a standard method to determine the spectral

similarity between two signals. The coherency can be split into

real and imaginary parts and different quantities can be analyzed

further. Volume conduction in EEG recordings significantly affects

coherence estimators. Electrical activity of the cortex disparately

spreads across scalp electrodes at some distance from its generators

allowing the same cortical activity to be measured by multiple

neighboring electrodes at the same time, i.e., with zero phases

(17). This method is calculated from the coherency measure and

is defined by:

ImCoh =

∣

∣Imag(Pxy)
∣

∣

√

|Pxx|
∣

∣Pyy
∣

∣

(2)

where Imag is the imaginary part of the power spectral density

between the x and y signals, Pxy and Pyy denote the power spectral

densities of x and y with themselves. This measure is between 0

and 1. If the value is close to 1, it means that there is a real link

between the two signals. If the value is close to 0, it indicates that the

signals are independent. Indeed, this link is realized by the volume

conduction and therefore a false positive.

2.2.2.1.3. Pearson correlation coefficient

Correlation (Corr) is used to estimate the level of linear

dependence between two signals x(t) and y(t) in the time domain.

The correlation is given by the following:

Corr =
Cov(x, y)

σxσy
(3)

where Cov(x, y) is the covariance between electrodes x and y; σx

and σy are the standard deviations of x and y, respectively. Corr
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FIGURE 3

Examples of connectivity matrices assessed by Corr, ImCoh, PSI, and AEC for AD, FTD, and HC subjects, thresholded at 0.7 and z-score normalized.

value varies between 1 and−1, where 1 is a complete positive linear

correlation, 0 is no linear correlation, and −1 is a total negative

linear correlation. The greater the absolute value of Corr becomes,

the stronger the correlation is.

2.2.2.1.4. Amplitude envelope correlation

The Amplitude Envelope Correlation (AEC) (18) is a

commonly used method to measure the synchrony of cortical

oscillations. This method involves calculating the Amplitude

Envelope (AE) of a given cortical oscillation, which represents the

energy fluctuations of the oscillation over time and is defined as the

absolute value of the Hilbert transform. The AEC is then computed

by correlating the AE of two oscillatory brain signals. High AEC

values indicate synchronous AE fluctuations between oscillations

or networks. Therefore, the AEC can provide important insights

into the functional connectivity of different brain regions.

2.2.2.2. Graph analysis

The core idea of functional connectivity can actually be

considered as a network. One type of the most common tools to

evaluate network is based on graph theory. Graph theory utilizes

a mathematical framework to represent the connections between

objects, where the objects are referred to as vertices, and the links

that connect them are known as edges. The application of Graph

theory to brain imaging data has demonstrated its potential as

an understandable and adaptable method for representing brain

networks (9). Regarding brain networks in sensor space, the vertices

in a graph can symbolize electrodes, and the edges can represent

a certain measure of connectivity between these electrodes. The

most common metrics to evaluate a graph are: mean degree

(measures how interconnected the neighbors of a node are),

clustering coefficient (a measure of local connectivity), efficiency

(measures how efficiency information is transmitted across the

graph), and betweeness centrality (quantifies the importance of a

node in facilitating communication between other nodes). Usually,

before computing graph metrics, to eliminate the background

noise or other perturbations, random threshold or other justified

thresholding is selected, and edge weights falling below this

threshold are then adjusted to zero (and removed from the final

graph) (19).

2.2.3. Conventional feature extraction
Although the EEG signal’s complexity makes it challenging

to achieve clinically acceptable classification performance using

feature engineering alone, it is still worthwhile to benchmark
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the performance of conventional machine learning models, as

their computation costs are lower than those of deep learning

models. In this study, we extracted the conventional time

and frequency domain features from each epoch to setup

the classification dataset. Five basic EEG frequency bands are

considered: delta, theta, alpha, beta, and Low-gamma. For the

frequency domain features, we calculated the energy of each

frequency band, while for the time-domain feature, we computed

the minimum, maximum, mean, median, variance, standard

deviation, kurtosis, and skewness. We considered these features

because they have demonstrated their relevance in the EEG-based

dementia classification task and their potential to capture distinct

patterns. Many studies have used temporal analysis and energy

assessments of EEG rhythms. For instance, Tǎutan et al. (20)

used temporal features from EEG signals (including maximum,

minimum, mean, skewness, and kurtosis) as well as changes in

signal energy. The authors achieved 83.1% accuracy in binary

classification (distinguishing Alzheimer’s patients from healthy

controls) using the random forest classifier. Furthermore, our

selection of frequency-domain features is supported by previous

studies demonstrating their potential as informative markers

for Alzheimer’s disease classification. In particular, Miltiadous

et al. (10), Lindau et al. (21), and Safi and Safi (22) have

used dominant EEG frequency bands in their classification

frameworks. These approaches yielded remarkable accuracies

in distinguishing Alzheimer’s patients from healthy subjects or

frontotemporal dementia patients reaching 93% for a binary

classification.

2.3. Classification

2.3.1. Convolutional neural network based
models

Convolutional neural network (CNN) models are powerful

tools for automatic feature extraction and classification,

outperforming conventional machine learning methods (11).

The effectiveness of CNN model design depends on several

factors, including the number of layers, configurations, and

training requirements. 2D CNN models excel at extracting two-

dimensional features from images, potentially leading to superior

performance. In this study, we aim to classify two types of input:

1. two-dimensional spectral-temporal features of dimension 224×

224 from EEG signals, which can be treated as images. This size

is the common size of state of the art CNN based models.

2. functional connectivity matrices of dimension 19× 19 extracted

from each FC (19 EEG electrodes).

To achieve this, we propose a shallow CNN model consisting

of two blocks of 2D convolutional layers (Conv2D) that extract

the most relevant features from the inputs. Each Conv2D layer is

followed by a batch normalization layer, which speeds up training

and improves model convergence. Both Conv2D layers use a

Rectified Linear Unit (ReLU) activation and are equipped with 50

filters with a kernel size of 5 × 5 to disrupt the network’s linear

structure and make it sparse. The two blocks of Conv2D layers

are connected by a max pooling layer with a size of 2 × 2, which

reduces the number of parameters in the network and improves

computational efficiency.

2.3.2. Multi-frequency bands functional
connectivity classification

In our study, we utilized a weighted approach to construct

functional connectivity matrices. This involved applying a

thresholding technique to the generated connectivity matrices.

Thresholding is a widely employed method in research literature

to eliminate weaker connections, as they are more susceptible to

experimental noise (23). Two common approaches for thresholding

in functional connectivity analysis are the absolute threshold

and the proportional threshold. The absolute threshold approach

involves choosing edges with connectivity values exceeding a

specified threshold value. On the other hand, the proportional

threshold approach involves selecting the strongest percentage of

connections within each network.

To classify the three groups (AD, FTD, and HC), we initially

calculated the functional connectivity within the three groups

using four different methods. We employ a thresholding technique

on the resulting connectivity matrices, retaining only the highest

connectivity values. In the case of a proportional threshold,

we explore nine thresholding values ranging from 10 to 90%

in increment of 10%. Subsequently, based on the CNN model

classification results, we determine the optimal threshold value

from the nine options. Using this optimal threshold value, we

generate four functional connectivitymatrices in the four frequency

bands [Theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and Low-

gamma (30–45 Hz)] for the functional connectivity methods that

showed the best classification performance (AEC, Corr, and PSI).

We then compare the classification performance of the optimal

proportional value with that of the absolute threshold and with no

thresholding applied.

2.3.3. Reference methods with conventional
machine learning algorithms

In order to further evaluate the performances of the studies

shallow CNN models, we also utilized conventional machine

learning techniques to conduct epoch-based classification of three

groups: AD, FTD, and healthy control group. We utilized both

temporal and frequency features in our approach. To address

three distinct classification problems, we tested three commonly

used classification algorithms in EEG studies: Linear Discriminant

Analysis (LDA), Support Vector Machines (SVM), and K-Nearest

Neighbors (kNN). We used a 10-fold cross-validation testing

method to evaluate the performance of each algorithm. These three

methods server as the baseline methods.

2.4. Training and evaluation

In summary, three feature sets were tested to discriminate

between AD, FTD patients, and HC subjects: (1) statistical features,

(2) functional connectivity features, and (3) time-frequency

representation. Each set of features was used independently as

input for the CNN model, which was trained using the same

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2023.1270405
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ajra et al. 10.3389/fneur.2023.1270405

configuration for all sets of features. We utilized the Stochastic

Gradient Descent with Momentum (SGDM) optimizer, with a

learning rate fixed at 0.001. The maximum number of training

epochs was set to 50, with a batch size of 128. The same early

stopping rule was applied, with a validation patience of 20 and a

validation frequency of every eight iterations. Keeping the original

subject/trial ratios from the raw data, samples from all features sets

were randomly split into TRAINING (70%), VALIDATION (15%),

and TEST (15%). To prevent over-fitting, 10 random triple-sets were

generated and used for the CNNmodels. The median values of four

metrics (Accuracy, Specificity, Sensitivity, and F1-score) on TEST

sets are reported from the 50 epochs-long training.

The four specific quantitative indexes of the model’s

classification performance are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Specificity =
TN

TN + FP
(5)

Sensitivity =
TP

FN + TP
(6)

F1− score =
2× Precision× Sensitivity

Precision+ Sensitivity
(7)

Where Precision is defined as:

Precision =
TP

TP + FP
(8)

In these equations, TP denotes the correct classifications of

positive cases, TN denotes the correct classifications of negative

cases, FP denotes the incorrect classifications of negative cases

into class positive, and FN denotes the incorrect classifications of

positive cases into class negative.

3. Results

3.1. Classification performances: absolute
threshold

Table 1 presents the classification performance of different

methods, where an absolute threshold of 0.7 for FC was used,

and median accuracy is reported. The three conventional machine

learning models, SVM, LDA, and kNN, were tested under the same

training conditions, and the results showed poor performance,

with a global median accuracy of only at 58.68, 57.89, and

59.77%, respectively. These values were significantly lower than the

results obtained with the CNN model. The CNN-based models

were able to achieve an accuracy of 83.14, 87.82, 73.29, 85.87,

and 81.97% for Time-Frequency analysis, PSI, ImCoh, Corr, and

AEC methods, respectively. However, it is important to note

that different approaches may be necessary to determine the

brain regions involved since there’s no universal method for

determining functional connectivity (24). In fact, identifying the

TABLE 1 The classification performance of di�erent methods with an

absolute threshold of 0.7 for FC (median%).

Methods ACC Sensitivity Specificity F1 score

LDA 57.89 35.93 68.03 35.91

SVM 58.68 37.03 67.98 36.94

KNN 59.77 35.41 67.77 33.93

CNN-TF 83.14 82.41 91.28 82.66

CNN-PSI 87.82 86.89 93.43 87.69

CNN-ImCoh 73.29 71.07 86.87 72.60

CNN-Corr 85.87 87.56 92.24 86.44

CNN-AEC 81.97 84.83 90.15 83.24

TF denotes Time-Frequency. The bold values represent the best results obtained by the

proposed CNN.

optimal method to infer these connections between brain regions

remains a challenge in the field of network neuroscience (25).

Regarding functional connectivity, the PSI method provided the

best performance in the CNNmodel.

Further result details regarding Table 1 can be found in

Table 2. As observed, the choice of the FC used to create the

matrices of connections has a significant impact on the overall

predictive performance. For the AD group, Corr, PSI, and AEC

yielded the best performance in the classification task with a

sensitivity of 86.62, 86.15, and 85.21%, respectively. Conversely, in

the case of HC subjects, Corr outperformed the other methods.

Additionally, among all functional connectivity methods, the

FTD group exhibited the lowest classification performance, with

sensitivities ranging between 76.64 and 66.39%. Given that there’s

no universal approach to deduce connections and achieve precise

results, it is crucial to explore various methods to establish a

dependable framework for automatically diagnosing dementia. Our

proposed method, which involves using a matrix of connections as

input to a CNN, provides more accurate results than conventional

classification methods that require a prior feature engineering step.

Since EEG signals are highly complex in nature, conventional

techniques cannot always guarantee satisfactory classification

performance. The reasons behind the high performance of our

CNN-based approach can be attributed to the synergy between

CNN and functional connectivity features. Functional connectivity

features, which incorporate the complex interactions between

distinct brain regions, offer a comprehensive representation of

brain dynamics. Conventional methods often struggle to take

advantage of this lack of information, relying primarily on manual

feature engineering that can ignore crucial patterns. In contrast,

CNN’s hierarchical architecture excels at detecting patterns that

consistently align with the complexities inherent in functional

connectivity features. In addition, the integration of time-frequency

features into the CNN learning process enriches its ability to

understand the temporal and spectral aspects of EEG data. Overall,

the strength of the CNN model lies in its capacity to capture

features from a variety of data representations, eliminating the need

for explicit feature engineering, which is particularly beneficial for

complex signals such as EEG. The CNN’s flexibility and ability

to adapt to different types of data underline its superiority over

traditional methods in this complex context.
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TABLE 2 The performances by groups with di�erent methods, threshold of 0.7 for FC (median%).

Models
Sensitivity Specificity F1 score

AD HC FTD AD HC FTD AD HC FTD

LDA 29.06 41.68 36.06 74.66 63.23 66.16 27.90 42.95 36.89

SVM 47.25 28.83 35.02 58.68 80.33 64.95 45.58 29.36 35.89

KNN 38.67 57.21 10.34 63.38 46.28 93.66 37.69 48.63 15.48

CNN-TF 85.81 83.30 77.67 88.02 90.68 94.69 84.84 83.15 79.95

CNN-PSI 86.15 86.52 76.64 87.33 92.39 95.27 84.35 86.15 79.45

CNN-

ImCoh

77.58 71.91 66.39 81.50 84.93 92.20 75.99 71.91 69.68

CNN-Corr 86.62 87.92 74.59 88.00 92.09 95.52 84.52 86.46 78.51

CNN-AEC 85.21 84.27 73.36 85.67 91.12 95.14 82.63 83.73 77.14

TABLE 3 The performances of di�erent FC using a proportional threshold

of keeping the highest 20% of values (median%).

Methods ACC Sensitivity Specificity F1 score

CNN-PSI 87.23 89.04 93.28 88.30

CNN-ImCoh 77.19 74.59 86.27 76.47

CNN-Corr 92.59 94.38 95.22 92.82

CNN-AEC 89.86 89.91 95.07 90.12

The bold values represent the best results obtained by the proposed CNN.

3.2. Classification performances:
proportional threshold

In functional connectivity analysis, absolute thresholding

involves selecting edges with connectivity values above a fixed

threshold and setting other edges to 0. This can lead to different

network densities across subjects (19). However, since the absolute

threshold is fixed across all subjects, it may not be suitable

for datasets with varying connectivity strengths or individual

differences. To address this issue and ensure more comparable

networks across subjects, we adopted in this work a proportional

threshold. Therefore, by using a proportional threshold, we can

achieve more consistent results and better account for individual

differences in connectivity strengths, leading to a more reliable

and interpretable comparison of functional connectivity networks

across subjects.

Table 3 presents the classification performance of different

methods using a proportional threshold of the top 20% of

connection values. For this method, we applied thresholding to

the obtained real-valued connectivity matrices by selecting only

the highest 20% of connectivity values. This method was used

to ensure that we provide equal amounts of information to all

functional connectivity matrices. Indeed, absolute thresholding

used previously is a method of selecting a fixed threshold value to

determine which connections in a network should be considered

significant. However, the threshold selection is generally far from

being an automated procedure, especially when using different

functional connectivity metrics. Using a fixed threshold value

across all analysesmay not be appropriate for all methods and could

potentially bias the results. Proportional thresholding, on the other

hand, is a flexible thresholding method that adjusts the threshold

value based on the distribution of the data. In this method, a

percentage of the highest values of connections is selected as the

threshold. The highest classification performance is observed with

the Corr method, achieving an accuracy of 92.59%, as shown in this

table. On the other hand, the ImCoh shows the lowest classification

performance with an accuracy of only 77.19%.

3.3. Classification performances: varying
thresholds

In this section, we aimed to determine the most effective

threshold for each connectivity method to enhance the

classification accuracy of the CNN model, ultimately improving

the accuracy and reliability of our functional connectivity-based

classification approach. To achieve this, we applied a proportional

thresholding on the obtained connectivity matrices from 10 to

90% with steps of 10%. The performance of the CNN classifier

in discriminating AD, FTD, and HC with the four functional

connectivity methods is presented in Table 4. Notably, the

Corr and AEC methods demonstrated the highest classification

performance, with accuracy values ranging from 82.55 to 92.59%

across the nine proportional thresholding values. Particularly,

we observe that retaining only 20% of the strongest connections

yields the best classification performance, achieving an accuracy

of 92.59% with Corr method. The comparison of the performance

of functional connectivity methods across various proportional

thresholding values is illustrated in Figure 4.

3.4. Classification performances without
any thresholding on connectivity matrix

Table 5 reports the classification performance of different

weighted FC without any thresholding. Interestingly, using

raw (non-thresholded) connectivity matrices led to the highest

classification performance, compared to using thresholded

matrices. This means that setting a threshold may cause important
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TABLE 4 Performance evaluation of CNNmodel with proportional thresholding (PT): exploring nine PT values from 10 to 90% across di�erent

functional connectivity methods.

Threshold (%) Methods ACC Sensitivity Specificity F1 score

10 CNN-PSI 80.51 79.49 92.58 82.46

CNN-ImCoh 75.15 72.75 87.46 74.11

CNN-Corr 89.18 90.17 94.76 90.53

CNN-AEC 85.19 86.52 93.73 86.91

20 CNN-PSI 87.23 89.04 93.28 88.3

CNN-ImCoh 77.19 74.59 86.27 76.47

CNN-Corr 92.59 94.38 95.22 92.82

CNN-AEC 89.86 89.91 95.07 90.12

30 CNN-PSI 86.74 86.62 93.43 86.82

CNN-ImCoh 76.12 76.97 85.67 74.36

CNN-Corr 89.77 88.48 95.37 89.74

CNN-AEC 89.96 88.20 96.27 90.36

40 CNN-PSI 87.62 87.08 94.18 87.94

CNN-ImCoh 75.54 73.77 87.01 74.84

CNN-Corr 91.03 92.42 95.82 91.73

CNN-AEC 89.67 88.97 84.17 90.24

50 CNN-PSI 86.65 88.2 92.84 87.3

CNN-ImCoh 77.68 75 86.57 75.63

CNN-Corr 90.35 88.20 96.93 90.89

CNN-AEC 89.38 89.89 94.63 89.89

60 CNN-PSI 84.8 85.92 91.83 85.25

CNN-ImCoh 76.61 76.97 86 74.36

CNN-Corr 88.79 88.76 93.88 88.64

CNN-AEC 88.5 87.64 95.37 89.27

70 CNN-PSI 82.26 81.92 91.79 82.51

CNN-ImCoh 77.88 73.88 89.85 76.56

CNN-Corr 87.52 87.56 93.73 88.18

CNN-AEC 86.26 86.85 94.33 86.45

80 CNN-PSI 82.46 80.9 92.97 83.43

CNN-ImCoh 77 72.75 88.36 74.75

CNN-Corr 85.96 87.09 92.69 86.89

CNN-AEC 86.45 87.08 93.88 87.02

90 CNN-PSI 79.92 82.02 89.4 81.22

CNN-ImCoh 78.17 76.12 87.16 77.16

CNN-Corr 81.77 80.34 93.99 83.72

CNN-AEC 82.55 80.05 90.50 82.77

The bold values represent the best results obtained by the proposed CNN.

information about connections between brain regions to be

lost. Discarding weaker connections by setting a threshold

can reduce the classifier’s accuracy in distinguishing between

groups. Additionally, the optimal threshold value can vary

depending on the used FC method, making it difficult to choose

an appropriate threshold. Therefore, using non-thresholded

connectivity matrices may better represent the connectivity

patterns and capture subtle differences between groups. We

compared four functional connectivity methods and found that

the AEC method was the most effective, while the ImCoh method

was the least effective, in distinguishing between AD, FTD, and HC

subjects.
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FIGURE 4

Performance comparison of functional connectivity methods at

di�erent proportional thresholding values.

TABLE 5 The performances of di�erent weighted FC without any

thresholding (median%).

Methods ACC Sensitivity Specificity F1 score

CNN-PSI 93.37 93.66 96.59 93.22

CNN-ImCoh 77.10 78.09 85.50 75.85

CNN-Corr 93.47 92.02 96.17 93.22

CNN-AEC 94.54 95.22 96.72 94.56

The bold values represent the best results obtained by the proposed CNN.

When we compare FC matrices using AEC among AD, FTD,

and HC subjects, we observed that FTD patients had stronger

connections in frontal and temporal regions than HC subjects

(Figure 5). These results align with a study that used fMRI to

investigate functional connectivity in mild cognitive impairment

(MCI) and AD patients compared to healthy controls by (26). They

found that AD patients had increased functional connectivity in the

prefrontal cortex compared to healthy controls. Additionally, FTD

patients showed disruptions in functional connectivity that were

more widespread, particularly in regions affected by the disease,

such as the frontal and temporal lobes (27).

3.5. Comparison of FC methods across
various frequency bands

The division of EEG signals into frequency bands is a widely

adopted approach in Alzheimer’s disease research due to the

distinct neural activity patterns observed at different frequency

ranges. Certain frequency bands have been associated with specific

cognitive functions and brain regions affected by the disease. For

instance, abnormalities in the low-gamma frequency range have

been linked to memory impairment and cognitive decline, while

changes in delta and theta bands may indicate disruptions in

attention and executive function. By examining EEG signals in

frequency bands, several studies (28, 29), aim to capture these

specific neural signatures related to Alzheimer’s disease pathology,

thus enhancing the ability of classification models to detect disease-

related patterns.

For the delta frequency band, the corresponding connectivity

matrix has only extremely high values whichmake the classification

fail. Therefore, we focus solely on the four other frequency bands

(theta, alpha, beta, low-gamma) for analysis.

Tables 6–8 present the classification performance of the

CNN model across different functional connectivity methods,

considering various frequency bands and thresholding techniques.

Among the three threshold techniques, the CNN classification

model utilizing functional connectivity measures without any

thresholding demonstrated superior performance, surpassing the

accuracy of the model employing functional connectivity methods

with both absolute and proportional thresholds, achieving an

accuracy of 60.33%.

In terms of classification performance of the three groups,

the EEG Low-gamma band information exhibited the highest

performance across all functional connectivity measures. Notably,

when using the AEC method without any thresholding, a

significant accuracy improvement was observed, resulting in an

accuracy of 60.33%. However, when comparing the classification

of EEG frequency bands and the whole EEG spectrum, we can

conclude that the classification of all EEG spectrum frequencies

ranging from 0.5 to 45 Hz outperformed the classification based on

individual EEG frequency bands. This suggests that considering the

entire EEG spectrum provides valuable information for accurate

discrimination of the three groups—AD, FTD, and HC—using the

CNNmodel with functional connectivity measures.

3.6. Evaluation of metrics from graph
analysis

In addition to evaluating the performances of functional

connectivity classification using the proposed CNN model,

we have explored an alternative approach using the graph

analysis, where graph metrics are employed to assess functional

connectivity. This approach allows us to gain insights into the

network-level properties and dynamics, providing a comprehensive

understanding of the brain’s functional organization in our study.

In this study, we chose to present only the results of the Corr,

PSI, and AEC methods for assessing graph properties in each EEG

frequency band across the three groups. The decision to exclude

the ImCoh method from the presentation of results is based on its

lower classification performance when compared to the other three

methods for all thresholding techniques and across all three groups.

In order to analyze the properties and characteristics of the

brain network, Table 9 displays the graph metrics for functional

connectivity networks in different frequency bands with an

absolute threshold of 0.7 using AEC method for three distinct

groups: AD patients, HC, and FTD subjects. The graph metrics

provide valuable insights into the topology and efficiency of

brain networks in each group. Figure 6 illustrates the network

connectivity between 19 electrodes of AD, FTD, and HC groups on
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FIGURE 5

Mean FC matrices across all epochs (upper) and topologically significant local connectivity patterns among three groups: AD, FTD, and HC (lower).

TABLE 6 Performance comparison of FC methods across various frequency bandswithout any thresholding (median%).

FC method Frequency band ACC Sensitivity Specificity F1 score

AEC Theta 52.92 58.15 68.66 53.56

Alpha 51.66 52.11 69.33 52.37

Beta 54.09 49.53 62.61 55.31

Low-gamma 60.33 56.10 80.33 61.05

Corr Theta 47.86 32.58 83.73 39.93

Alpha 50.97 29.49 88.96 39.25

Beta 51.36 51.4 72 49.39

Low-gamma 53.51 53.29 71.50 55.10

PSI Theta 52.24 47.47 76.72 49.63

Alpha 54.58 47.89 78.33 53.68

Beta 57.12 52.53 80.6 55.57

Low-gamma 58.09 63.48 70.75 58.10

The bold values represent the best results obtained by the proposed CNN.

the Theta, Alpha, Beta and Low-gamma bands using AEC method

and with an absolute threshold of 0.7.

Regarding the clustering coefficient metric, in the Alpha

frequency band, the HC group shows the highest clustering

coefficient, indicating a stronger tendency for nodes to

form clusters in their brain networks. However, in the Beta

and Low-gamma frequency bands, the FTD group have

high clustering coefficients, indicating significant clustering

in their brain networks. Concerning efficiency metric, the

FTD group exhibits the highest efficiency in the Theta and

Beta frequency bands, implying that their brain networks

facilitate information transmission more effectively compared

to the AD and HC groups. With reference to betweenness

centrality metric, in Theta, Beta, and Low-gamma frequency
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TABLE 7 Performance comparison of FC methods across various frequency bands with an absolute threshold of 0.7 (median%).

FC method Frequency band ACC Sensitivity Specificity F1 score

AEC Theta 48.64 48.03 68.96 46.53

Alpha 52.05 52.11 71 53.74

Beta 50.1 47.19 71.34 46.93

Low-gamma 58.48 49.72 82.84 54.63

Corr Theta 51.46 50.56 70.6 49.11

Alpha 46.98 50.41 74.3 43.31

Beta 46.1 37.36 75.52 40.74

Low-gamma 49.81 41.85 77.46 45.43

PSI Theta 48.83 42.02 75.17 47.48

Alpha 50.39 42.96 75.67 48.48

Beta 50.39 39.75 88.49 45.01

Low-gamma 52.92 42.98 80.60 47.89

The bold values represent the best results obtained by the proposed CNN.

TABLE 8 Performance comparison of FC methods across various frequency bands using a proportional threshold of keeping the highest 20% of values

(median%).

FC method Frequency band ACC Sensitivity Specificity F1 score

AEC Theta 44.74 30.28 82.33 39.09

Alpha 42.11 38.2 65.67 37.67

Beta 50.1 54.92 78.01 48.73

Low-gamma 56.82 41.80 86.42 50.62

Corr Theta 46 27.93 85.67 37.72

Alpha 45.32 22.47 84.33 29.57

Beta 48.25 53.05 67 48.37

Low-gamma 50.88 44.37 77.33 50.33

PSI Theta 45.61 29.81 84 39.14

Alpha 36.55 36.52 71.94 38.58

Beta 47.66 21.07 89.7 30

Low-gamma 48.44 50.84 67.76 48.07

The bold values represent the best results obtained by the proposed CNN.

TABLE 9 Comparison of graph metrics using AEC method with an absolute threshold in AD, HC, and FTD groups.

Frequency
bands

Mean degree Clustering coe�cient E�ciency Betweenness centrality

AD HC FTD AD HC FTD AD HC FTD AD HC FTD

Theta 11.89 10.95 17.05 0.93 0.89 0.91 0.65 0.62 0.83 13.05 13.15 2.94

Alpha 13.68 15.89 12.84 0.92 0.99 0.98 0.68 0.80 0.68 5.36 5.26 10.73

Beta 13.26 10.84 14.32 0.94 0.83 0.99 0.69 0.62 0.73 9.57 12.10 8.10

Low-gamma 13.05 12.42 13.47 0.91 0.88 1.00 0.64 0.61 0.64 3.89 5.15 2.94

The bold values represent the best results achieved for different graph metrics.

bands, the HC group consistently shows higher betweenness

centrality than the AD and FTD groups, indicating a

relatively higher influence of specific nodes in their brain

networks.

Overall, the results suggest that the FTD group tends to

have more interconnected brain networks (higher mean degree)

with efficient information transmission (higher efficiency)

compared to the AD and HC groups. On the other hand,
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FIGURE 6

Connectivity network of the AD (left), FTD (middle), and HC (right) groups on the (A) theta, (B) alpha, (C) beta, and (D) Low-gamma bands with an

absolute threshold of 0.7.

FIGURE 7

Relationship between MMSE scores and prediction probabilities for AD, HC, and FTD groups, at trial level. All healthy subjects/patients included.

the HC group shows stronger clustering tendencies (higher

clustering coefficient) and more prominent nodes facilitating

communication between other nodes (higher betweenness

centrality) in their brain networks. These findings highlight

the distinct characteristics of brain networks in each group,

potentially providing valuable insights into the underlying

neurodegenerative processes and the healthy brain’s functional

organization.
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TABLE 10 Comparison of the classification accuracy of AD patients with other previous studies.

References Feature set Classifier Classes Best Acc

Jiao et al. (30) Absolute power, relative power, Hjorth

metrics (activity, mobility, and complexity)

and time-frequency property (STFT)

LDA, SVM AD/MCI/HC Acc = 70%, (LDA)

Acc = 70.2% (SVM)

Tǎutan et al. (20) Temporal features from EEG (maximum,

minimum, mean, skewness, and kurtosis),

signal energy changes and TEP peaks

Random forest AD/HC Acc = 83.1%

Prado et al. (31) Functional connectivity features in source

space from EEG

eXtreme gradient

boosting

AD/HC AD/FTD Acc = 87.1%

Acc = 86.7%

Herzog et al. (32) High order functional connectivity features

from EEG source space

Random forest FTD/HC AD/HC Acc = 93.15%

Acc = 89%

Miltiadous et al. (10) Energy of EEG rythms, mean, variance, and

IQR features

Decision trees, random

forest, ANN, SVM,

Naive Bayes, and KNN

AD/HC FTD/HC

AD/FTD

Acc = 99.1%

Acc = 98%

Acc = 91%

Safi and Safi (22) Hjorth parameters EEG frequency bands,

using DWT

SVM, RLDA, and KNN AD/HC Acc = 97.64% (KNN)

Adebisi et al. (15) Functional connectivity features SVM AD/HC Acc = 87.67%

Fiscon et al. (12) Time-frequency features by applying both the

Fourier and Wavelet transforms

Decision trees AD/HC Acc = 83%

Dottori et al. (16) Functional connectivity features SVM FTD/HC Acc = 72.7%

AD/FTD Acc = 72.2%

AD/HC Acc = 44.9%

Nishida et al. (33) EEG rythms energy from source space KNN FTD/HC AD/FHC

FTD/AD

Acc = 85.8%

Acc = 92.8%

Acc = 89.9%

Lindau et al. (21) EEG frequency bands features (from delta

and theta bands)

Logistic regression AD/FTD Acc = 93.3%

3.7. Exploring the clinical implications of
functional connectivity analysis

In this paper, our analysis of functional connectivity holds

significant promise for clinical applications in the early diagnosis

and management of dementia. By examining brain network

interactions via EEG signals, we can potentially identify subtle

changes preceding cognitive decline, thus serving as sensitive

biomarkers for early detection. The high accuracy achieved by

our shallow neural network model in classifying AD/FTD/HC

cases underlines the diagnostic potential of functional connectivity

analysis.

In Figure 7, we illustrate the relationship between the

prediction probabilities of the AD, HC, and FTD groups

and the MMSE scores identified in the testing set results.

In the AD group (left), a higher MMSE score was linked

to a lower prediction probability, while among HC subjects

(middle), a higher MMSE score was associated with an increased

prediction probability. For the FTD group (right), a higher

prediction probability was observed when the MMSE score

ranged between 18 and 27. These findings align with clinical

observations, where a lower MMSE score typically indicates a more

pronounced cognitive decline. Notably, for the present dataset,

the average MMSE score was 17.75 (SD = 4.5) for the AD

group, 22.17 (SD = 8.22) for the FTD group, and 30 for the

HC group.

Consequently, the classification probabilities assigned to each

group could serve as a measurable indicator of dementia

progression, providing clinicians with an objective index for

monitoring disease progression and evaluating treatment. This

information could not only enhance clinical decision-making, but

also facilitate personalized treatment strategies and improve patient

care in the field of dementia. Beyond diagnosis, these results

hold promise for monitoring disease progression and evaluating

treatment efficacy, offering clinicians with a versatile set of tools

to improve early detection and patient-centered care in dementia

disorders.

3.8. Compared with previous studies

Table 10 illustrates the comparison between the classification

result in our study and that of previous EEG studies. In recent

years, several studies have explored the classification of dementia

using EEG, employing various approaches. However, a particular

study (30), stands out as it tested the performance of SVM and

LDA models on a group of 890 subjects during their resting state.

The study aimed to classify individuals into three levels: healthy

controls (HC), mild cognitive impairment (MCI), and Alzheimer’s

disease (AD). The SVM model, utilizing features extracted from

EEG such as absolute and relative power, Hajorth metrics, and

time-frequency properties, achieved the highest accuracy of 70.2%.
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It’s worth noting that most other studies focused on binary

classification between different groups, such as AD/HC, FTD/HC,

and AD/FTD.

4. Conclusion

In this work, we propose an automatic diagnosis method

for AD, FTD, and HC subjects using EEG time series and deep

learning. We use four different approaches to infer the matrix of

connections between brain areas: Phase Synchronization Index,

Pearson’s correlation, Imaginary part of Coherency, and Amplitude

Envelope Correlation. These matrices are trained with CNN-

based models. In addition, we compared the performance of

conventional methods, including SVM, LDA, and KNN, with the

shallow CNN model for different feature extraction paradigms—

time-frequency features and functional connectivity features.

Our comparisons revealed that the CNN model outperformed

conventional methods in dementia classification for both time-

frequency and functional connectivity features. The comparison of

the four different approaches shows that our CNN-based method

is more accurate, demonstrating the importance of network

topology in describing brain data. Our findings revealed that

the CNN-AEC without any thresholding method is the most

effective among the methods we studied, reaching 94.54% cross-

validation accuracy. The results suggest that EEG-based measures

of functional connectivity, when combined with convolutional

neural network, provide an accurate, reliable and rapid method of

dementia classification and can significantly improve the efficiency

of AD diagnosis. The high performance of the basic CNN

model suggests that a simple neural network architecture may

be adequate for classifying dementia diseases. The pipeline is

general and could be used for other mental disorder in which

EEG time series can be recorded. In future work, it would

be interesting to convert the EEG recordings captured at the

scalp level into EEG time series data in the source space using

source reconstruction. The CNN classifier will be assessed by

comparing its performance in both the sensor space and the

source space.
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