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Abstract 

 

Semantic measures are widely used today to estimate the strength of the semantic relationship 

between elements of various types: units of language (e.g., words, sentences, documents), con-

cepts or even instances semantically characterized (e.g., diseases, genes, geographical locations). 

Semantic measures play an important role to compare such elements according to semantic prox-

ies: texts and knowledge representations, which support their meaning or describe their nature. 

Semantic measures are therefore essential for designing intelligent agents which will for example 

take advantage of semantic analysis to mimic human ability to compare abstract or concrete ob-

jects.  

 

This paper proposes a comprehensive survey of the broad notion of semantic measure for the 

comparison of units of language, concepts or instances based on semantic proxy analyses. Se-

mantic measures generalize the well-known notions of semantic similarity, semantic relatedness 

and semantic distance, which have been extensively studied by various communities over the last 

decades (e.g., Cognitive Sciences, Linguistics, and Artificial Intelligence to mention a few). Def-

initions, related contributions in cognitive sciences, practical applications, and the several ap-

proaches used for the definitions of semantic measures are presented. In addition, protocols and 

benchmarks for their evaluations, as well as, software solutions dedicated to them are introduced. 

The general presentation of the large diversity of existing semantic measures we propose is 

further completed by a detailed survey of a specific type of measures relying on knowledge rep-

resentation analysis. This technical presentation mainly focuses on measures based on graph 

analyses. These measures are of particular interest for numerous communities and have recently 

gained a lot of attention in research and application, by taking advantage of several types of 

graph-based knowledge representations to compare words, concepts, or instances.  

We conclude this work by highlighting some of the challenges offered to the communities in-

volved in the study of semantic measures. 

Keywords: semantic measures, semantic similarity, semantic relatedness, semantic distance, word simi-

larity, concept similarity, knowledge representations, ontologies, semantic graphs, semantic networks. 
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1 Introduction 
 

Semantic measures (SMs) are widely used today to estimate the strength of the semantic relationship 

between elements such as units of language, concepts or even semantically characterized instances, ac-

cording to information formally or implicitly supporting their meaning or describing their nature. They are 

based on the analysis of semantic proxies from which semantic evidences can be extracted. These evi-

dences are expected to directly or indirectly characterize the meaning/nature of the compared elements. 

The semantic likeness of terms or concepts is sometimes better understood as the probability of a mental 

activation of one term/concept when another term/concept is discussed. Notice that the notion of SM is 

not framed in the rigorous mathematical definition of measure. It should instead be understood as any 

theoretical tool or function which enables the comparison of elements according to semantic evidences. 

SMs are therefore used to estimate the degree of the semantic relatedness
i
 of elements through a numerical 

value.  

 

Two broad types of semantic proxies can be used to extract semantic evidences. The first type corre-

sponds to unstructured or semi-structured texts
ii
 (e.g., plain texts, dictionaries). These texts contain infor-

mal evidences of the semantic relationship(s) between units of language. Intuitively, the more two words 

are related semantically, the more frequently they will co-occur in texts. For instance, the word coffee is 

more likely to co-occur with the word sugar than with the word cat, and, since it’s common to drink cof-

fee with sugar, most will agree that the pair of words coffee/sugar is more semantically coherent than the 

pair of words coffee/cat. It is therefore possible to use simple assumptions regarding the distribution of 

words to estimate the strength of the semantic relationship between two words based on the assumption 

that words semantically related tend to co-occur.  

 

The other type of semantic proxy from which semantic evidences can be extracted is more general. It 

encompasses a large range of computer-readable and understandable resources, from structured vocabular-

ies to highly formal knowledge representations (KRs). Contrary to the first type of semantic proxy (i.e., 

texts), proxies of this type are structured and explicitly model knowledge about the elements they define. 

As an example, in a knowledge representation defining the concepts Coffee and Sugar, a specific relation-

ship will explicitly define that Coffee - can be drink with - Sugar. SMs based on knowledge analysis rely 

on techniques used to take advantage of semantic graphs (e.g., thesaurus, taxonomies, lightweight ontolo-

gies), or even highly formal KRs such as ontologies based on (description) logic. 

 

A large diversity of measures exist to estimate the similarity or the dissimilarity between specific data 

structures (e.g., vectors, matrices, graphs) and data types (e.g., numbers, strings, dates). The specificity of 

SMs relies in the fact that they are based on the analysis of semantic proxies to take into account the se-

mantics in the definition of the function which will be used to drive the comparison of elements. As an 

example, the measures used to compare two words according to their sequences of characters cannot be 

considered as SMs – only the characters of the words and their ordering is taken into account, not their 

meaning. Therefore, according to such measures, the two words foal and horse will be regarded as unre-

lated words.  

 

From gene analysis to recommendation systems, SMs have recently found a broad field of applications 

and are today essential to leverage data mining, data analysis, classification, knowledge extraction, textual 

processing or even information retrieval based on text corpora or formal KRs. Due to their essential roles 

in numerous treatments requiring the meaning of compared elements (i.e., semantics) to be taken into ac-

                                                      
i The broad notion of semantic relatedness will be rigorously introduced later, e.g., through the definition of semantic distance and simi-

larity to cite a few. 
ii Discourse is here considered as a text 
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count, the study of SMs has always been an interdisciplinary effort. Psychology, Cognitive Sciences, Lin-

guists, Natural Language Processing, Semantic Web, and Biomedical informatics are among the most 

active communities which contribute to the study of SMs (2013). Due to this interdisciplinary nature of 

SMs, last decades have been very prolific in contributions related to the notion of semantic relatedness, 

semantic similarity or semantic distance, to mention a few. Before defining the technical terminology re-

quired to further introduce SMs, let’s focus on their large diversity of applications. 

 

 

1.1 Semantic Measures in Action 
 

SMs are used to solve problems in a broad range of applications and domains. They enable to take ad-

vantage of the knowledge encompassed in unstructured/semi-structured texts corpora and KRs to compare 

things. They are therefore essential tools for the design of numerous algorithms and treatments in which 

semantics matters. Diverse practical applications which involve SMs are presented in this section. Three 

domains of applications are considered in particular: (i) Natural Language Processing, (ii) Knowledge 

Engineering/Semantic Web and Linked Data, and (iii) Biomedical informatics and Bioinformatics. Addi-

tional applications related to information retrieval and clustering are also briefly considered. The list of 

usages of SMs presented in this section is far from being exhaustive and only gives an overview of the 

large diversity of perspectives they open. Therefore, as a supplement to this list, an extensive classification 

of contributions related to SMs is proposed in appendix 1. This classification underlines the broad range of 

applications of SMs and highlights the large number of communities involved - it can thus be used to gain 

more insight on their usages in numerous contexts. 

 

1.1.1 Natural Language Processing 

 

 Linguists have, quite naturally, been among the first to study SMs in the aim of comparing units of lan-

guage (e.g., words, sentences, paragraphs, documents). The estimation of words/concepts relatedness 

plays an important role to detect paraphrase, e.g., duplicate content and plagiarism (Fernando & Stevenson 

2008), to generate thesaurus or texts (Iordanskaja et al. 1991), to summarize texts (Kozima 1993), to iden-

tify discourse structure, and to design question answering systems (Bulskov et al. 2002; Freitas et al. 2011; 

C. Wang et al. 2012) to mention a few. The effectiveness of SMs to resolve both syntactic and semantic 

ambiguities have also been demonstrated multiple times, e.g., (Sussna 1993; Resnik 1999; Patwardhan et 

al. 2003).  

Several surveys relative to usages of SMs and to the techniques used for their design for natural lan-

guage processing can be found in (Curran 2004; S. M. Mohammad & Hirst 2012). 

 

 

1.1.2 Knowledge Engineering, Semantic Web and Linked Data 

 

Communities associated to Knowledge Engineering, Semantic Web and Linked Data play an import 

role in the definition of methodologies and standards to formally express machine-understandable KRs. 

They extensively study the problematic associated to the expression of structured and controlled vocabu-

laries, as well as ontologies, i.e., formal and explicit specification of a shared conceptualisation defining a 

set of concepts, their relationships and axioms to model a domain
i
 (Gruber 1993). These models rely on 

structured KRs in which the semantics of the concepts (classes) and relationships (properties) are rigor-

                                                      
i More about ontologies:  e.g., (Gruber 1995; Guarino et al. 2009; Fernandez-Lopez & Corcho 2010) 
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ously and formally defined in an unambiguous way. Such KRs are therefore proxies of choice to compare 

the concepts and the instances of the domain they model. As we will see, a taxonomy of concepts, which 

is the backbone of most if not all KR, is particularly useful to estimate the degree of similarity of two con-

cepts.  

 

SMs are essential to integrate heterogeneous KRs and more generally for data integration. They play an 

important role to find correspondences between ontologies (ontology alignment
i
), in which similar con-

cepts defined in different ontologies must be found (Euzenat & Shvaiko 2007). SMs are also used for the 

task of instance matching, in the aim of finding duplicate instances across data sources. Applications to 

provide inexact search capabilities based on KR analysis have also been proposed, e.g., (Hliaoutakis 2005; 

Varelas et al. 2005; Hliaoutakis et al. 2006; Kiefer et al. 2007; Sy et al. 2012; Pirró 2012). SMs have also 

been successfully applied for learning tasks using Semantic Web technologies (D’Amato 2007). Their 

benefits to take advantage of the Linked Data paradigm in the definition of recommendation systems have 

also been stressed in (Passant 2010; Harispe, Ranwez, et al. 2013a). 

 

1.1.3 Biomedical Informatics & Bioinformatics 

 

A large number of SMs have been defined for biomedical or bioinformatics studies. Indeed, in these 

domains, SMs are commonly used to take advantage of biomedical ontologies to study various types of 

instances (genes, proteins, drugs, diseases, phenotypes) which have been semantically characterized 

through a KR, e.g., ontologies or controlled vocabularies
ii
. Several surveys relative to usages of SMs in 

the biomedical domain can be found; we orient the reader to (Pedersen et al. 2007; Pesquita, Faria, et al. 

2009; Guzzi et al. 2012). 

 

The Gene Ontology (GO) (Ashburner et al. 2000) is the example of choice to highlight the large success 

encountered by ontologies in biology
iii
. Indeed, the GO is extensively used to conceptually annotate gene 

products on the basis of experimental observations or automatic inferences. These annotations are used to 

formally characterize gene products regarding their molecular functions, the biological processes they are 

involved in or even their cellular location. Thus, using SMs, these annotations make possible the automat-

ic comparisons of genes’ products not on the basis of particular gene properties (e.g. sequence, structural 

similarity, gene expression) but rather on the analysis of biological aspects formalized by the GO. There-

fore, genes can further be analysed by considering their representation in a multi-dimensional semantic 

space expressing our current understanding of particular aspects of biology. In such cases, conceptual an-

notations bridge the gap between global knowledge of biology (e.g., organisation of molecular functions 

or cellular component) and fine-grained understanding of specific instance (e.g., the specific role of a gene 

at molecular level). SMs enable to take advantage of this knowledge to analyse instances, here genes and, 

open interesting perspectives to infer new knowledge about them.  

 

Various studies have highlighted the relevance of SMs for assessing the functional similarity of genes 

(Wang et al. 2007; Z. Du et al. 2009), building gene clusters (Sheehan et al. 2008), validating and studying 

protein-protein interactions (Xu et al. 2008), analysing gene expression (Xu et al. 2009), evaluating gene 

sets’ coherence (Diaz-Diaz & Aguilar-Ruiz 2011) or recommending gene annotations (Couto et al. 2006), 

to mention a few. A survey dedicated to SMs applied to the GO can be found in (Guzzi et al. 2012). 

                                                      
i The reader interested to ontology alignment may also consider the related problematic of schema matching and mapping (Bellahsène et 

al. 2011). The classification of the elementary matching approaches proposed by (Euzenat & Shvaiko 2007) is also an interesting start-

ing point for a broad overview of the large diversity of measures and approaches proposed for alignment tasks. 
ii Biology and biomedicine are heavy users of ontologies and controlled vocabularies, e.g. BioPortal, a portal dedicated to ontologies 

related to biology and the biomedical domain, references hundreds of ontologies (Whetzel et al. 2011). 
iii More than 11k citations between 2000 and 2013!  
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1.1.4 Other Applications 

 

1.1.4.1 Information Retrieval 

 

 SMs are used to overcome limitations of information retrieval techniques based on plain lexicographic 

term matching, i.e., simple models consider that a document is relevant according to a query, only if the 

terms specified in the query are used in the document. SMs can be used to take into account the meaning 

of words by going over syntactic search, and can therefore be used to refine models, e.g., synonyms will 

not be considered as words totally different anymore. SMs have successfully been used in the design of 

ontology-based information retrieval systems and for query expansion, e.g., (Hliaoutakis 2005; Varelas et 

al. 2005; Hliaoutakis et al. 2006; Baziz et al. 2007; Saruladha, Aghila & Raj 2010b; Sy et al. 2012).  

 SMs based on KRs also open interesting perspectives for the field of information retrieval as they ena-

ble to analyse and to query non-textual resources, e.g. genes annotated by concepts (Sy et al. 2012). 

 

 

1.1.4.2 GeoInformatics  

 

 GeoInformatics actively contributes to the study of SMs. In this domain, SMs have, for instance, been 

used to compute the similarity between locations according to semantic characterizations of their geo-

graphic features (Janowicz et al. 2011), e.g. estimating the semantic similarity of tags defined in the 

OpenStreetMap Semantic Network (Ballatore et al. 2012). Readers interested in the applications of SMs in 

this field may also refer to the various references proposed in Appendix 1, e.g. (Akoka et al. 2005; 

Rodríguez et al. 2005; Formica & Pourabbas 2008; Janowicz et al. 2008). 

 

 

1.2 Organization of this Survey 
 

This contribution proposes both a general introduction to SMs and a technical survey regarding a specif-

ic type of measures based on KR analysis. It is organized as follows:  

 

Section 2 introduces general notions related to SMs. Several cognitive models defined to better under-

stand human cognition regarding his appreciation of similarity are briefly presented. As we will see, these 

cognitive models play an essential role for the design of SMs and are critical to deeply understand tech-

nical aspects of the measures. Several mathematical notions related to the notions of distance and similari-

ty are also introduced. They are needed to formally define SMs in mathematical terms by taking into con-

sideration key mathematical contributions related to distance and similarity. In this section, the reader is 

also introduced to the commonly adopted terminology associated to SMs; notions of semantic similarity, 

dissimilarity, distance, relatedness, or even taxonomical distance will be defined.  

 

Based on the introduction of the broad notion of SMs, section 3 presents a classification of the large di-

versity of strategies proposed for the definition of SMs. The proposed classification relies on the analysis 

of:  

 The type of compared elements (units of language, concepts/classes, instances semantically 

characterized). 

 The canonical form used to represent these elements. 
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 The semantic proxy which is used to extract the semantics associated to the compared elements, 

i.e.., corpora of texts, KRs.  

 According to the type of semantic proxy on which is based the comparison, three families of SMs are 

further distinguished:  

 Distributional measures which mainly analyse corpora of texts. 

 Knowledge-based measures which take advantage of structured knowledge to extract the seman-

tics on which the SMs rely. 

 Hybrid measures which take advantage of both, text corpora and KRs.  

Section 4 is dedicated to the practical computation and evaluation of SMs. Several software solutions 

for the computation and the analysis of measures are presented. We also discuss the protocols and meth-

odologies commonly used to assess the accuracy and the performance of measures in specific usage con-

texts.  

 

Section 5 is dedicated to a technical and in-depth presentation of a specific type of SMs based on KR 

analysis. In this section we focus on SMs based on graph analysis, a highly popular approach used to 

compare structured terms, concepts, groups of concepts or even instances defined in KRs such as ontolo-

gies. 

  

At the light of this study, section 0distinguishes some of the challenges faced by SMs designers and sci-

entific communities contributing to the topic. A general conclusion ends this article. 

 

  



SEMANTIC MEASURES FOR THE COMPARISON OF UNITS OF LANGUAGE, CONCEPTS AND INSTANCES FROM 

TEXTS AND KNOWLEDGE REPRESENTATION ANALYISIS 

11 

 

2 General Notions and Definitions 
 

SMs have been studied through various notions and not always in rigorous terms. Some definitions are 

even still subject to debate and not all communities agree on the semantics carried by the terminology they 

use. Thus, the literature related to the topic manipulates notions of semantic similarity, relatedness, dis-

tance, taxonomic distance and dissimilarity (I let your creativity speak); these notions deserve to be rigor-

ously defined. This reflects the difficulty to limit the semantic similarity, as detected by humans, inside 

formal (and partial) logical mathematical models. 

 

This section first introduces generalities related to the domain and a more precise definition of the no-

tion of SM is proposed. The main models of similarity defined in cognitive sciences are next introduced. 

As we will see, they play an important role to understand the (diversity of) approaches adopted to design 

SMs. Several mathematical definitions and properties related to distance and similarity are next presented. 

These definitions will be used to distinguish mathematical properties of interest for the characterization 

and the study of SMs. 

 

2.1 Semantic Measures: Generalities 
 

2.1.1 Semantic Measures: Definition 

 

Human cognitive system is sensitive to similarity, which explains that the capacity to estimate the simi-

larity of things is essential in numerous treatments. It is indeed a key element to initiate the process of 

learning in which the capacity to recognize similar situations
i
, for instance, helps us to build our experi-

ence, to activate mental traces, to make decisions, to innovate applying experience gained in previously 

solved problem to similar problems
ii
 (Holyoak & Koh 1987; Ross 1987; Novick 1988; Ross 1989; 

Vosniadou & Ortony 1989; Gentner & Markman 1997). According to the theories of transfer, the process 

of learning is also subject to similarity since new skills are expected to be easier to learn if they are similar 

to skills already learned (Markman & Gentner 1993). Similarity is therefore a central component of 

memory retrieval, categorization, pattern recognition, problem solving, reasoning, as well as social judg-

ment, e.g., refer to (Markman & Gentner 1993; Hahn et al. 2003; Goldstone & Son 2004) for associated 

references.  

 

In this context, the goal of SMs is easy to understand – they aim to capture the strength of the semantic 

interaction between elements (e.g., words, concepts) regarding their meaning. Are the words car and auto 

more semantically related than the words car and mountain? Most people will agree to say yes. This has 

been proved in multiple experiments, inter-human agreement on semantic similarity ratings is high, e.g. 

(Rubenstein & Goodenough 1965; Miller & Charles 1991; Pakhomov et al. 2010)
iii
.  

 

Appreciation of similarity is obviously subject to multiple factors. Our personal background is an ex-

ample of such a factor, e.g., elderly persons and teenagers will probability not associate the same score of 

semantic similarity between the two concepts Phone and Computer
iv
. However, most of the time, a con-

                                                      
i Cognitive models based on categorization consider that human classify things, e.g., experience of life, according to their similarity to 

some prototype, abstraction or previous examples (Markman & Gentner 1993). 
ii  The similarity is here associated to the notion of generalization and is measured in terms of probability of inter-stimulus-confusion 

errors (Nosofsky 1992).  
iii  As an example, considering three benchmarks, (Schwartz & Gomez 2011) observed 73% to 89% human inter-agreement between 

scores of semantic similarity associated to pairs of words. 
iv Smartphone are today kinds of computers and very different from the first communication device patented in 1876 by Bell. 
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sensus regarding the estimation of the strength of the semantic link between elements can be reached - this 

is what makes the notion of SMs intuitive and meaningful
i
.  

 

The majority of SMs try to mimic human capacity to assess the degree of relatedness between things 

according to semantic evidences. However, strictly speaking, SMs evaluate the strength of the semantic 

interactions between things according to the analysis of semantic proxies (texts, KRs), that’s it. Therefore, 

not all measures aim at mimicking human appreciation of similarity. Indeed, in some cases, SMs’ design-

ers only aim to compare elements according to the information defined in a semantic proxy, no matter if 

the results produced by the measure correlate with human appreciation of semantic similarity/relatedness. 

This is, for instance, often the case in the design of SMs based on KRs. In these cases, the KR can be as-

sociated to our brain and the SM can be regarded as our capacity to take advantage of our knowledge to 

compare things. The aim is therefore to be coherent with the knowledge expressed in the semantic proxy 

considered, without regard on the coherence of the knowledge modelled. As an example, a SM based on a 

KR built by animal experts will not consider Sloth and Monkey to be similar, even if most people think 

sloths are monkeys.  

 

 

Given that SMs aim at comparing things according to their meaning captured from semantic evidences, 

it’s difficult to further define the notion of SMs without defining the concepts of Meaning and Semantics.  

 

Taking the risk to disappoint the reader, this section will not face the challenge of the demystification of 

the notion of Meaning. As stressed by (Sahlgren 2006) “Some 2000 years of philosophical controversy 

should warn us to steer well clear of such pursuits”. The reader can refer to the various theories proposed 

by linguists and philosophes. In this contribution, we only consider that we are dealing with the notion of 

semantic meaning proposed by linguists: how meaning is conveyed through signs or language. Regarding 

the notion of semantics, it can be defined as the meaning or interpretation of any lexical units, linguistic 

expressions or instances semantically characterized according to a specific context.  

 

 

Definition: Semantic Measures are mathematical tools used to estimate quantitatively or qualitatively 

the strength of the semantic relationship between units of language, concepts or instances, through a nu-

merical or symbolic description obtained according to the comparison of information formally or implicit-

ly supporting their meaning or describing their nature. 

 

It is important to stress the diversity of the domain (in a mathematical sense) on which SMs can be 

used. They can be used to drive word-to-word, concept-to-concept, text-to-text or even instance-to-

instance comparison. In this paper we will therefore, as much as possible, refer to any element of the do-

main of measures through the generic term element. An element can therefore be any unit of language 

(e.g. word, text), a concept/class, an (abstract) instance semantically characterized in a KR (e.g., gene 

products, ideas, locations, persons) 

 

 

 

 

                                                      
i Despite some hesitations and interrogations regarding the notion of similarity, it’s commonly admitted that semantic measure design is 

meaningful. Examples of authors questioning the relevance of notions such as similarity are numerous, e.g. “Similari-

ty, ever ready to solve philosophical problems and overcome obstacles, is a pretender, an impostor, a quack.” (Goodman 1972)  or 

“More studies need to performed with human subjects in order to discover whether semantic distance actually has any meaning inde-

pendent of a particular person, and how to use semantic distance in a meaningful way”(Delugach 1993),  see also (Murphy & Medin 

1985; Robert L Goldstone 1994; Hahn & Ramscar 2001).  



SEMANTIC MEASURES FOR THE COMPARISON OF UNITS OF LANGUAGE, CONCEPTS AND INSTANCES FROM 

TEXTS AND KNOWLEDGE REPRESENTATION ANALYISIS 

13 

 

We formally define a SM as a function: 

 

𝜎𝑘: 𝐸𝑘 × 𝐸𝑘 →  ℛ  
 

with 𝐸𝑘  the set of elements of type 𝑘 ∈ 𝐾 and 𝐾, the various types of elements which can be compared 

regarding their semantics, e.g., 𝐾 = {words, concepts, sentences, texts, web pages, instances annotated by 

concepts, …}, and ℛ = {[0,1], ℝ+, {𝑎, 𝑏, 𝑐 … }}. 

This expression can be generalized to take into account the comparison of elements of different types. 

This could be interesting to evaluate entailment of texts or to compare words and concepts to mention a 

few. However, in this paper, we restrict our study to the comparison of pairs of elements of the same na-

ture (which is already a vast subject of research). We stress that SMs must implicitly or explicitly take 

advantage of semantic evidences. As an example, as we said in the introduction, measures comparing 

words through their syntactical similarity cannot be considered to be SMs; recall that semantics refers to 

evidences regarding the meaning or the nature of compared elements.  

 

The distinction between approaches that can and cannot be assimilated to SMs is sometime narrow; 

there is no clear border distinguishing non-semantics to semantic-augmented approaches, but rather a 

range of approaches. Some explanations can be found in the difficulty to clearly characterize the notion of 

Meaning. For instance, someone can say that measures used to evaluate lexical distance between words, 

such as edit distances, capture semantic evidences regarding the meaning of words. Indeed, the sequence 

of characters associated to a word derives from its etymology which is sometimes related to its meaning, 

e.g. words created through morphology derivation such as subset from set.  

 

Therefore, the notion of SM is sometimes difficult to distinguish from measures used to compare specif-

ic data structures. This fine line can also be explained by the fact that some SMs compare elements which 

are represented, in order to be processed by computer algorithms, through canonical forms corresponding 

to specific data structures for which specific (non-semantic) similarity measures have been defined. As an 

example, pure graph similarity measures can be used to compare instances semantically characterized 

through semantic graphs.  

 

 In some cases, the semantics of the measure is therefore not captured by the measure used to compare 

the canonical forms of the compared elements. It’s rather the process of mapping an element (e.g., word, 

concept) from a semantic space (text, KR) to a specific data structure (e.g., vector, set), which makes the 

comparison semantically enhanced. This is however an interesting paradox, the definition of the rigorous 

semantics of the notion of SM is hard to define – this is one of the challenges this contribution tries to 

face. 
 

2.1.2 Semantic Relatedness and Semantic Similarity 

 

Among the various notions associated to SMs, this section defines the two central notions of semantic 

relatedness and semantic similarity. They are among the most used in the literature related to SMs. Sever-

al authors already distinguished them in different communities, e.g., (Resnik 1999; Pedersen et al. 2007). 

Based on these works, we propose the following definitions. 

 

Definition Semantic relatedness: strength of the semantic interactions between two elements without 

restriction regarding the types of semantic links considered.  

 

Definition Semantic similarity: specialises the notion of semantic relatedness, by only considering tax-

onomical relationships in the evaluation of the semantic strength between two elements.  
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In other words, semantic similarity measures compare elements regarding the properties they share and 

the properties which are specific to them. The two concepts Tea and Cup are therefore highly related de-

spite the fact that they are not similar: the concept Tea refers to a Drink and the concept Cup refers to a 

Vessel. Thus, the two concepts only share few of their constitutive properties. This highlights a potential 

interpretation of the notion of similarity, which can be understood in term of substitution, i.e., evaluating 

the implication to substitute the compared elements: Tea by Coffee or Tea by Cup.  

 

In some specific cases, communities such as Linguists will consider a more complex definition of the 

notion of semantic similarity for words. Indeed, word-to-word semantic similarity is sometimes evaluated 

not only considering (near-) synonymy, or the lexical relations which can be considered as equivalent to 

the taxonomical relationships for words, e.g., hyponymy and hypernymy or even troponymy for verbs. 

Indeed, in some contributions, linguists also consider that the estimation of the semantic similarity of two 

words must also take into account other lexical relationships such as antonymy (S. M. Mohammad & Hirst 

2012).  

In other cases, the notion of semantic similarity refers to comparison of the elements, not the semantics 

associated to the results of the measure. As an example, designer of SMs relying on KRs sometimes use 

the term semantic similarity to denote measures based on a specific type of semantic relatedness which 

only considers meronymy, e.g., partial ordering of concepts defined by part–whole relationships. The se-

mantics associated to the scores of relatedness computed from such restrictions differ from semantic simi-

larity. Nevertheless, technically speaking, as we will see, most approaches defined to compute semantic 

similarities based on KR can be used on any restriction of semantic relatedness considering a type of rela-

tionship which is transitive
i
, reflexive

ii
 and antisymmetric

iii
 (e.g., part-whole relationships). In this paper, 

for the sake of clarity, we consider that only taxonomical relationships are used to estimate the semantic 

similarity of compared elements. 

 

Older contributions relative to SMs do not stress the difference between the notions of similarity and re-

latedness. The reader should be warned that in the literature, authors sometimes introduce semantic simi-

larity measures which estimate semantic relatedness and vice versa. In addition, despite the fact that the 

distinction between the two notions is commonly admitted by most communities, it is still common to 

observe improper use of both notions.  

 

A large terminology refers to the notion of SMs and contributions related to the domain often refer to 

the notions of semantic distance, closeness, nearness or taxonomical distance, etc. The following subsec-

tion attempts to clarify the semantics associated to the terminology commonly used in the literature.  
 

 

 

 

 

 

 

 

 

                                                      
i   A binary relation 𝑅 over a set 𝑋 is transitive if for 𝑎, 𝑏, 𝑐 ∈ 𝑋, 𝑅(𝑎, 𝑏) ∧ 𝑅(𝑏, 𝑐)  ⇒ 𝑅(𝑎, 𝑐). 
ii  A binary relation 𝑅 on a set 𝑋 is reflexive if ∀𝑎 ∈ 𝑋, 𝑅(𝑎, 𝑎). 
iii A binary relation 𝑅 on a set 𝑋 is antisymmetric if for 𝑎, 𝑏 ∈ 𝑋, 𝑅(𝑎, 𝑏) ∧ 𝑅(𝑏, 𝑎)  ⇒ 𝑎 ≡ 𝑏. 
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2.1.3 The Diversity of Types of Semantic Measures 

 

We have so far introduced the broad notion of SMs. We also distinguished the two notions of semantic 

relatedness and semantic similarity. A large terminology has been used in the literature to refer to the no-

tion of SM. We define the meaning of the terms commonly used (the list may not be exhaustive): 

 Semantic relatedness, sometimes called proximity, closeness or nearness, refers to the notion 

introduced above. 

 Semantic similarity has also already been defined. In some cases, the term taxonomical seman-

tic similarity is used to stress the fact that only taxonomical relationships are used to estimate 

the similarity. 

 Semantic distance: Generally considered as the inverse of the semantic relatedness, all semantic 

interactions between the compared elements are considered. These measures respect (most of 

the time) the mathematical properties of distances. These properties will be introduced in sub-

section 2.3.1. Distance is also sometimes denoted farness. 

 Semantic Dissimilarity is understood as the inverse of semantic similarity. 

 Taxonomical distance also corresponds to the semantics associated to the notion of dissimilari-

ty. However, these measures are expected to respect the properties of distances. 

Figure 1 presents a chart in which the various notions related to SMs are structured through semantic 

relationships. Most of the time, the notion considered to be the inverse of semantic relatedness is denoted 

semantic distance, without regard if the measure respects the mathematical properties characterizing a 

distance. Therefore, we introduce the term semantic unrelatedness to denote the set of measures which 

have a semantics which is the inverse to the one carried by semantic relatedness measures, without neces-

sary respecting the properties of a distance. This is, to our knowledge, a notion which has never been used 

in the literature
i
. 

 

 

Figure 1: Semantic graph defining the relationships between the various types of semantics which can be associ-

ated to SMs in the literature. Black (plain) relationships correspond to taxonomical relationships (i.e., subclass-of), 

inverse relationships refer to the semantic interpretation associated to the score of the measure, e.g., semantic simi-

larity and dissimilarity measures have inverse semantic interpretations.  

                                                      
i Our aim is not here to make the terminology heavier but rather to be rigorous in the characterization of measures. 
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2.2 Cognitive Models of Similarity 
 

In this subsection, we provide a brief overview of the psychological theories of similarity by introduc-

ing the main models proposed by cognitive sciences to study and explain (human) appreciation of similari-

ty. Here we do not discuss the notion of semantic similarity; the process of similarity assessment should 

be understood in a broad sense, i.e., as a way to compare objects, stimuli.  

 

Cognitive models of similarity generally aim to study the way human evaluate the similarity of two 

mental representations according to some kind of psychological space. They are based on assumptions 

regarding the KR from which the similarity will be estimated. Indeed, as stated by several authors, the 

notion of similarity, per se, can be criticized as a notion purely artificial. In (Goodman 1972), the notion 

of similarity is defined as “an imposture, a quack” as objectively, everything is equally similar to every-

thing else. This can be disturbing but, conceptually, two random objects have infinitively properties in 

common and infinitively different properties
i
, e.g. a flower and a computer are both smaller than 10m, 

9.99m, 9.98m…. An important notion to understand, which have been underlined by cognitive sciences, is 

that differential similarities emerge only when some predicates are selected or weighted more than others. 

This observation doesn’t mean that similarity is not an explanatory notion but rather that the notion of 

similarity is heavily framed in psychology. Similarity assessment must therefore not be understood as an 

attempt to compare object realizations through the evaluation of their properties, but rather as a process 

aiming to compare objects as they are understood by the agent which rule the estimation of the similarity 

(e.g., a person). The notion of similarity, therefore, only makes sense according to the consideration of a 

partial mental representation from which the estimation of objects will be based on.  

 

Contrary to real objects, representations of objects do not contain infinitesimal properties. As an exam-

ple, our mental representations of things only capture a limited number of dimensions of the object which 

is represented. Therefore, the philosophical worries regarding the soundness of similarity vanish consider-

ing that similarity aim at comparing partial representations of objects, e.g., human mental representation 

of objects (Hahn 2011). The similarity is thus estimated between mental representations. Considering that 

these representations are defined by a human agent, the notion of similarity may thus be understood as 

how similar objects appear to us. Considering the existential requirement of representations to compare 

things and to consider similarity as a meaningful notion, much of the history of research on similarity in 

cognitive sciences focuses on the definition of models of mental representation of objects. 

 

The central role of cognitive sciences regarding the study of similarity relies in the design of cognitive 

models of both, mental representations and similarity. These models are further used to study how humans 

store their knowledge and interact with it to compare objects represented as pieces of knowledge. They 

next test these models according to our understanding of human appreciation of similarity. Indeed, evalua-

tions of human appreciation of similarity help us to distinguish constraints/expectations on the properties 

an accurate model should have, which is essential to reject hypothesis and improve the models. As an ex-

ample, studies have demonstrated that appreciation of similarity is sometimes asymmetric: the similarity 

between a painter and his portrait is commonly expected to be greater than the inverse - isn’t it? Therefore, 

the expectation of asymmetric estimation of similarity is incompatible with the mathematical properties of 

a distance, which is symmetric by definition. Models based on distance axioms have therefore to be re-

                                                      
i This statement also stands if we restrict the comparison of objects to finite set of properties. The reader may refer to Andersen’s famous 

story of the Ugly Duckling. Proved by (Watanabe & Donovan 1969), the Ugly Duckling theorem highlights the intrinsic bias associate to 

classification, showing that all things are equal and therefore that an ugly duckling is similar to a swan as two swan are to each other. The 

important teaching is that inductive biases are required to make a judgment and to classify, i.e., to prefer certain categories over others. 



SEMANTIC MEASURES FOR THE COMPARISON OF UNITS OF LANGUAGE, CONCEPTS AND INSTANCES FROM 

TEXTS AND KNOWLEDGE REPRESENTATION ANALYISIS 

17 

 

vised or to be used with moderation. In this context, the introduction of cognitive models of similarity will 

be particularly useful to understand the foundations of some approaches adopted for the definition of SMs.  

 

Cognitive models of similarity are commonly organized in four different approaches; (i) Spatial models, 

(ii) Feature models, (iii) Structural Models and (iv) Transformational models. We briefly introduce these 

four models; a more detailed introduction can be found in (Goldstone & Son 2004) and (Schwering 2008). 

A captivating talk introducing to cognition and similarity, on which is based this introduction, can be also 

be found in (Hahn 2011). 

 

2.2.1 Spatial Models 

 

The spatial models, also named geometric models, rely on one of the most influencal theory of similari-

ty in cognitive sciences. They are based on the notion of psychological distance and consider objects (here 

perceptual effects of stimuli or concepts for instance) as points in a multi-dimensional metric space.  

 

Spatial models consider similarity as a function of the distance between the mental representations of 

the compared objects. These models derive from Shepard’s spatial model of similarity, in which objects 

are represented in a multi-dimensional space. The locations of the objects are defined by their dimensional 

differences (Shepard 1962).  

 

In his seminal and highly influencal work on generalization, (Shepard 1987) provides a statistical tech-

nique in the form of Multi-Dimensional Scaling (MDS) to derive the locations of objects represented in a 

multi-dimensional space. Indeed, MDS can be used to derive some potential spatial representations of 

objects from proximity data (similarity between pairs of objects). Based on these spatial representations of 

objects, Shepard derived the universal law of generalization which demonstrates that various kinds of 

stimuli (e.g., Morse code signals, shapes, sounds) have the same lawful relationship between distance (in 

an underlined MDS) and perceive similarity measures (in term of confusability) - the similarity between 

two stimuli was defined as an exponentially decaying function of their distance
i
. 

 

By demonstrating a negative exponential relationship between similarity and generalization Shepard es-

tablished the first sounded model of mental representation on which cognitive sciences will base their 

studies on similarity
ii
. The similarity is in this case assumed to be inversely proportional to the distance 

which separates the perceptual representations of the compared stimuli (Ashby & Perrin 1988). The simi-

larity defined as a function of distance is therefore constrained to the axiomatic properties of distance 

(properties which will be detailed in the following section). 

 

A large number of geometric models have been proposed. They have long been among the most popular 

in cognitive sciences. However, despite their intuitive nature and large adoptions, geometric models have 

been subject to intense criticisms due to the constraints defined by the distance axioms. Indeed, several 

empirical analysis have questioned and challenged the validity of the geometric framework (i.e., both the 

model and the notion of psychological distance), by underlying inconsistencies with human appreciation 

                                                      
i The similarity between two stimuli is here understood as the probability that a response to a stimulus will be generalized to the other 

(Shepard 1987). With 𝑠𝑖𝑚(𝐴, 𝐵) the similarity between two stimuli 𝐴, 𝐵 and 𝑑𝑖𝑠𝑡(𝐴, 𝐵) their distance, we obtain the 

tion 𝑠𝑖𝑚(𝐴, 𝐵) = 𝑒−𝑑𝑖𝑠𝑡(𝐴,𝐵), that is d𝑖𝑠𝑡(𝐴, 𝐵) = − log  𝑠𝑖𝑚(𝐴, 𝐵), a form of entropy. 
ii A reason which also explains the success encountered by spatial models is to find in their central role in another highly success-

ful formal model provided by psychology studies: the (Nosofsky 1986) generalized context model of classification. Nosofsky 

showed that a classification task, i.e., the probability that an item belongs to a category, can be explained as a function of the sum 

of the similarities between the item to categorize and all known items of a category normalized by the sum of the similarities 

between the item to categorize and all the other items (Hahn 2011).  
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of similarity, e.g., violation of the symmetry, triangle inequality and identity of the indiscernibles, e.g., 

(Tversky 1977; Tversky & Gati 1982)
i
. 

 

2.2.2 Feature Models 

 

This approach, introduced by (Tversky 1977) to answer the limitation of the geometric models, propos-

es to characterize an object through a set of features, considering that a feature “describes any property, 

characteristic, or aspect of objects that are relevant to the task under study” (Tversky & Gati 1982). Fea-

ture models evaluate the similarity of two stimuli according to a feature-matching function 𝐹 which makes 

use of their common and distinct features: 

 

𝑠𝑖𝑚(𝑢, 𝑣) = 𝐹(𝑈 ∩ 𝑉, 𝑈\𝑉, 𝑉\𝑈) 
 

The function 𝐹 is expected to be non-decreasing, i.e., the similarity increases when common (distinct) 

features are added (removed). The feature model is therefore based on the assumption that 𝐹 is monotone 

and that common and distinct features of compared objects are sufficient for their comparison. In addition, 

an important aspect is that the feature-matching process is expressed in term of matching function as de-

fined in set theory (i.e., binary evaluation). 

 

The similarity is further derived as a parameterized function of the common and distinct features of the 

compared objects. Two models, the contrast model (𝑠𝑖𝑚𝐶𝑀) and the ratio model (𝑠𝑖𝑚𝑅𝑀) have initially 

been proposed by Tversky. They can be used to compare two objects 𝑢 and 𝑣 represented through sets of 

features 𝑈 and 𝑉: 

 

𝑠𝑖𝑚𝐶𝑀(𝑢, 𝑣) = 𝛾𝑓(𝑈 ∩ 𝑉) − 𝛼 𝑓(𝑈\𝑉) − 𝛽 𝑓(𝑉\𝑈) 

 

 

𝑠𝑖𝑚𝑅𝑀(𝑢, 𝑣) =
𝑓(𝑈 ∩ 𝑉)

𝛼 𝑓(𝑈\𝑉) + 𝛽 𝑓(𝑉\𝑈) +  𝑓(𝑈 ∩ 𝑉)
 

 

The symmetry of the measures produced by the two models can be tuned according to the parameters 𝛼 

and β. This enables the design of asymmetric measures. In addition, one of the major constructs of the 

feature model is the function 𝑓 which is used to capture the salience of a (set of) feature(s).  

The salience of a feature is defined as a notion of specificity: “the salience of a stimulus includes inten-

sity, frequency, familiarity, good form, and informational content” (Tversky 1977). Therefore, the opera-

tors ∪,∩ and \ are based on feature matching and the function 𝑓 evaluates the contribution of the common 

or distinct features (distinguished by previous operators) to estimate the similarity. Notice that the concept 

of the salience of features implicitly defines the possibility to design measures which do not respect the 

identity of the indiscernibles, i.e. which enable non-maximal self-similarity. 

 

 

 

 

                                                      
i Note that recent contributions propose to answer these inconsistencies by generalizing the classical geometric framework through quan-

tum probability. Compared objects are represented in a quantum model in which they are not seen as points or distributions of points, 

but entire subspaces of potentially very high dimensionality, or probability distributions of these spaces (Pothos et al. 2013). 
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2.2.3 Structural Alignment Models 

 

Structural Models are based on the assumption that objects are represented by structured representa-

tions. Indeed, a strong critic of the feature model was that (features of) compared objects are considered to 

be unstructured, contrary to evidences suggesting that perceptual representations are well characterized by 

hierarchical systems of relations, e.g., (Markman & Gentner 1993; Gentner & Markman 1994). 

 

Structural alignment models  are structure mapping models in which the similarity is estimated using 

matching functions which will evaluate the correspondences between the compared elements (Markman & 

Gentner 1993; Gentner & Markman 1994). The process of similarity assessment is here expected to in-

volve a structural alignment between two mental representations in order to distinguish matches - the more 

the number of correspondences, more similar the objects will be considered. In some cases, the similarity 

is estimated in an equivalent manner to analogical mapping (Markman & Gentner 1990) and similarity is 

expected to involve mapping between both features and relations. 

 

Another example of structural model was proposed by (R.L. Goldstone 1994; Goldstone 1996). The au-

thors proposed to model similarity as an interactive activation and mapping model using a connectionism 

activation networks based on mappings between representations. 

 

2.2.4 Transformational Models 

 

Transformational models assumes that similarity is defined by the transformational distance between 

mental representations (Hahn et al. 2003). The similarity is framed in Representational Distortion (Chater 

& Hahn 1997) and is expected to be assessed based on the analysis of the modifications required to trans-

form one representation to another. The similarity, which can be explained in terms of Kolmogorov com-

plexity theory (Li & Vitányi 1993), is therefore regarded as a decreasing function of transformational 

complexity (Hahn et al. 2003). 

 

2.2.5 Unification of Cognitive Models of Similarity 

 

Several studies highlighted correspondences and deep parallels between the various cognitive models. 

(Tenenbaum & Griffiths 2001) propose a unification of spatial, feature-based and structure-based models 

through a framework relying on generalization of Bayesian inference (see (Gentner 2001) for critics). Al-

ternatively (Hahn 2011) propose an interpretation of the models in which the transformational model is 

presented as a generalization of the spatial, feature and structure-based models. 

 

 

 

 In this section, we have presented several cognitive models proposing to explain and study (human) 

appreciation of similarity. These models are characterized by particular interpretations and assumptions on 

the way knowledge is characterized, mentally represented, and processed. Despite several meaningful 

initiatives for the unification of the cognitive models in order to develop framework generalizing existing 

models, we have stressed that one of the fundamental differences between the models rely on their math-

ematical properties, e.g., symmetry, triangle inequality... The next section proposes an overview of math-

ematical notions required to rigorously manipulate the notions of similarity and distance. Several mathe-

matical properties which can be used to characterize semantic measures are next introduced. 
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2.3 From Distance Metrics and Similarities to Semantic Measures 
 

Are SMs mathematical measures? What are the specific properties of a distance or a similarity measure? 

Do semantic similarity measures correspond to similarity measures in the way mathematicians understand 

them? As we have seen in section 2.1, contributions related to SMs most of the time do not rely on formal 

definitions of the notion of measures or distance. Indeed, generally, contributions related to SMs rely on 

the commonly admitted and intuitive expectations regarding these notions, e.g. similarity (resp. distance) 

must be higher (resp. lower) the more (resp. less) the two compared elements share commonness
i
. Howev-

er, the notions of measure and distance have been rigorously defined in mathematics through specific axi-

oms from which particular properties derive. These notions have been expressed for weel defined objects 

(element domain). Several contributions rely on these axiomatic definitions and interesting results have 

been demonstrated according to them. This section briefly introduces the mathematical background rela-

tive to the notions of distance and similarity. It will help us to rigorously define and better characterize 

SMs in mathematical terms; this is a prerequisite to clarify the fuzzy terminology commonly used in stud-

ies related to SMs. 

 

For more information on the definition of measures, distance and similarity, the reader can refer to: (i) 

the seminal work of (Deza & Deza 2013) – Encyclopedia of Distances, (ii) the work of (Hagedoorn & 

others 2000) – chapter 2, a theory of similarity measures, and (iii) the definitions proposed by (D’Amato 

2007). Most of the definitions proposed in this section have been formulated based on these contributions, 

and more particularly based on (D’Amato 2007). Therefore, for convenience, we will not systematically 

refer to them. In addition, contrary to most of the definitions presented in these works, we here focus on 

highlighting the semantics of the various definitions according to the terminology introduced in section 

2.1. 

 

2.3.1 Mathematical Definitions and Properties of Distance and Similarity 

 

For the definitions presented hereafter, we consider a set 𝐷 which defines the elements of the domain 

we want to compare and a totally ordered set (𝑉, ≼), with 𝑚𝑖𝑛𝑉 the element of 𝑉 such as ∀𝑣 ∈ 𝑉 ∶
 𝑚𝑖𝑛𝑉 ≼  𝑣 and 𝑚𝑎𝑥𝑉 ∈ 𝑉 such as ∀𝑣 ∈ 𝑉 ∶ 𝑣 ≼  𝑚𝑎𝑥𝑉. 

 

Definition Distance: a function 𝑑𝑖𝑠𝑡: 𝐷 × 𝐷 → 𝑉 is a distance on 𝐷 if, ∀𝑥, 𝑦 ∈ 𝐷, the function is: 

 Non-negative, 𝑑𝑖𝑠𝑡(𝑥, 𝑦) ≽ 𝑚𝑖𝑛𝑉 and 𝑚𝑖𝑛𝑉 = 0. 

 Symmetric, 𝑑𝑖𝑠𝑡(𝑥, 𝑦) = 𝑑𝑖𝑠𝑡(𝑦, 𝑥). 

 Reflexive 𝑑𝑖𝑠𝑡(𝑥, 𝑥) = 𝑚𝑖𝑛𝑉 and ∀𝑦 ∈ 𝐷 ∧ 𝑦 ≠ 𝑥 ∶  𝑑𝑖𝑠𝑡(𝑥, 𝑥) < 𝑑𝑖𝑠𝑡(𝑥, 𝑦). 

To be considered as a distance metric, i.e., a distance in a metric space, the distance must additionally 

respect two properties: 

 The identity of indiscernibles also known as strictness property, minimality or self-identity, that is 

𝑑𝑖𝑠𝑡(𝑥, 𝑦) = 𝑚𝑖𝑛𝑉 if and only if 𝑥 = 𝑦. 

 The triangle inequality, the distance between two points must be the shortest distance along any 

path: 𝑑𝑖𝑠𝑡(𝑥, 𝑦)  ≤  𝑑𝑖𝑠𝑡(𝑥, 𝑧)  +  𝑑𝑖𝑠𝑡(𝑧, 𝑦). 

 

                                                      
i The works of (D’Amato 2007; Blanchard et al. 2008) are among the exceptions.  



SEMANTIC MEASURES FOR THE COMPARISON OF UNITS OF LANGUAGE, CONCEPTS AND INSTANCES FROM 

TEXTS AND KNOWLEDGE REPRESENTATION ANALYISIS 

21 

 

 

Despite the fact that some formal definitions of similarity have been proposed, e.g., (Hagedoorn & 

others 2000; Deza & Deza 2013), contrary to the notion of distance, there is no axiomatic definition of 

similarity that sets the standard in mathematics. The notion of similarity appears in different fields of 

mathematics, e.g., figures with the same shape are denoted similar (in geometry), similar matrices are ex-

pected to have the same eigenvalues, etc. In this paper, we consider the following definition. 

 

 Definition Similarity: a function 𝑠𝑖𝑚: 𝐷 × 𝐷 → 𝑉 is a similarity on 𝐷 if, for all 𝑥, 𝑦 ∈ 𝐷, the function 

sim is non-negative (𝑚𝑖𝑛𝑉 = 0), symmetric and reflexive, i.e., 𝑠𝑖𝑚(𝑥, 𝑥) = 𝑚𝑎𝑥𝑉 and ∀𝑦 ∈ 𝐷 ∧ 𝑦 ≠ 𝑥 ∶
 𝑠𝑖𝑚(𝑥, 𝑥) > 𝑠𝑖𝑚(𝑥, 𝑦). 

 

Definition Normalized function: Any function 𝑓 on 𝐷 with values in 𝑉 (e.g. similarity, distance) is said 

to be normalized if: ∀𝑥, 𝑦 ∈ 𝐷 ∶ 0 ≤ 𝑓(𝑥, 𝑦) ≤ 1, i.e., 𝑚𝑖𝑛𝑉 = 0 and 𝑚𝑎𝑥𝑉 = 1.  

 

 

Notice that a normalized similarity 𝑠𝑖𝑚 can be transformed to a distance 𝑑𝑖𝑠𝑡 considering multiple ap-

proaches (Deza & Deza 2013). Inversely, a normalized distance can also be converted to a similarity. 

Some of the approaches used for the transformations are presented in appendix 5. 

 

As we have seen, distance and similarity measures are formally defined in mathematics as functions 

with specific properties. They are most of the time defined considering 𝑚𝑖𝑛𝑉 = 0. They are extensively 

used to demonstrate results and develop proofs. However, the benefits to fulfil some of these properties, 

e.g., triangle inequality for distance metric, have been subject to debate among researchers. As an exam-

ple, (Jain et al. 1999) stress that the mutual neighbour distance used in clustering tasks do not satisfy the 

triangle inequality but perform well in practice - to conclude by “This observation supports the viewpoint 

that the dissimilarity does not need to be a metric“.  

 

A large number of properties not presented in this section have been distinguished to further character-

ize distance or similarity functions, e.g. (Deza & Deza 2013). These properties are important as specific 

theoretical proofs require studied functions to fulfil particular properties. However, as we have seen, the 

definition of SMs proposed in the literature is not framed in the mathematical axiomatic definitions of 

distance or similarity. In some case, such a distortion among the terminology creates difficulties to bridge 

the gap between the various communities. As an example, in the encyclopaedia of distances, (Deza & 

Deza 2013) do not distinguish the notions of distance and dissimilarity, which is the case in the literature 

related to SMs (refer to section 2.1.3). In this context, the following section defines the terminology 

commonly adopted in the study of SMs, with regard to the mathematical properties already introduced. 

 

2.3.2 Flexibility of Semantic Measures Regarding Mathematical Properties 

 

Notice that we didn’t introduced the precise and technical mathematical definition of a measure pro-

posed by measure theory. This can be disturbing considering that this paper extensively refers to the no-

tion of SM. The notion of measure we use is indeed not framed in the rigorous mathematical definition of 

the mathematical concept of measure. It refers to any “measuring instruments” which can be used to “as-

sess the importance, effect, or value of (something)” (Oxford dictionary 2013) – in our case, any functions 

answering the definitions of semantic distance/relatedness/similarity… proposed in section 2.1. 
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Various communities have used the concepts of similarity or distance without considering the rigorous 

axiomatic definitions proposed in mathematics but rather using their broad intuitive meanings
i
. To be in 

accordance with most contributions related to SMs, and to facilitate the reading of this paper, we will not 

limit ourselves to the mathematical definitions of distance and similarity. 

 

The literature related to SMs generally refers to a semantic distance as any (non-negative) function, de-

signed to capture the inverse of the strength of the semantic interactions linking two elements. Such func-

tions must respect: the higher the strength of the semantic interactions between two elements is, the lower 

their distance. The axiomatic definition of a distance (metric) may not be respected. A semantic distance is 

most the time what we define as a function estimating semantic unrelatedness (please refer to the organi-

zation of the measures proposed in section 2.1.3). However, to be in accordance with the literature, we 

will use the term semantic distance to refer to any function designed to capture semantic unrelatedness. 

We will explicitly precise that the function respects (or not) the axiomatic definition of a distance (metric) 

when required. 

 

Semantic relatedness measures are functions which are associated to an inverse semantics to the one as-

sociated to semantic unrelatedness: the higher the strength of the semantic interactions between two ele-

ments is, the higher the function will estimate their semantic relatedness. 

 

 In this paper, the terminology we use (distance, relatedness, similarity), refers to the definitions present-

ed in sections 2.1.2 and 2.1.3. To be clear, the terminology refers to the semantics of the functions, not 

their mathematical properties. However, we further consider that SMs must be characterized through 

mathematical properties. Table 1 and Table 2 summarize some of the properties which can be used to 

formally characterize any function designed in order to capture the intuitive notions of semantic distance 

and relatedness/similarity. These properties will be used in the next sections to characterize some of the 

measures we will consider. They are essential to further understand the semantics associated to the 

measures and to distinguish SMs which are adapted to specific contexts and usages. 

 

Properties Definitions 

Non-negative 𝑑𝑖𝑠𝑡(𝑥, 𝑦) ≥ 𝑚𝑖𝑛𝑉 and 𝑚𝑖𝑛𝑉 = 0 

Symmetric 𝑑𝑖𝑠𝑡(𝑥, 𝑦) = 𝑑𝑖𝑠𝑡(𝑦, 𝑥) 

Reflexive 𝑑𝑖𝑠𝑡(𝑥, 𝑥) = 𝑚𝑖𝑛𝑉 

Normalized 
0 ≤ 𝑑𝑖𝑠𝑡(𝑥, 𝑦) ≤ 1, 

 i.e. 𝑚𝑖𝑛𝑉 = 0 and 𝑚𝑎𝑥𝑉 = 1  

identity of indiscernibles 𝑑𝑖𝑠𝑡(𝑥, 𝑦) = 𝑚𝑖𝑛𝑉 if and only if 𝑥 = 𝑦 

Triangle inequality 𝑑𝑖𝑠𝑡(𝑥, 𝑦)  ≤  𝑑𝑖𝑠𝑡(𝑥, 𝑧)  +  𝑑𝑖𝑠𝑡(𝑧, 𝑦) 

Table 1: Properties which can be used to characterize any function which aims to estimate the notion of distance 

between two elements. 

 

 

 

                                                      

i As we have seen, researchers in cognitive science have demonstrated that human expectations regarding (semantic) distance 

challenges the mathematical axiomatic definition of distance. Thus, the communities involved in the definition of SMs mainly 

consider a common vision of these notions without always clearly defining their mathematical properties. 
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Properties Definitions 

Non-negative 𝑠𝑖𝑚(𝑥, 𝑦) ≥ 𝑚𝑖𝑛𝑉 and 𝑚𝑖𝑛𝑉 = 0 

Symmetric 𝑠𝑖𝑚(𝑥, 𝑦) = 𝑠𝑖𝑚(𝑦, 𝑥) 

Reflexive 𝑠𝑖𝑚(𝑥, 𝑥) = 𝑚𝑎𝑥𝑉 

Normalized 
0 ≤ 𝑠𝑖𝑚(𝑥, 𝑦) ≤ 1 

i.e. 𝑚𝑖𝑛𝑉 = 0 and 𝑚𝑎𝑥𝑉 = 1 

identity of indiscernibles 𝑠𝑖𝑚(𝑥, 𝑦) = 𝑚𝑎𝑥𝑉 if and only if 𝑥 = 𝑦 

Integrity 𝑠𝑖𝑚(𝑥, 𝑦)  ≤  𝑠𝑖𝑚(𝑥, 𝑥) 

Table 2: Properties which can be used to characterize any function which aims to estimate the notion of similari-

ty/relatedness between two elements.  

 

 

We have so far introduced the cognitive models used to study the notions of similarity as well as the 

formal mathematical definitions of the notion of distance and similarity. Several mathematical properties 

which can be used to characterize SMs have also been presented. Before we look at the classification of 

SMs we will first introduce the notion of knowledge representation (KR). 

 

 

2.4 A Brief Introduction to Knowledge Representations 
 

Here we use the term computational or formal knowledge representation (KR in short), to refer to any 

computational model or computational artefact used to formally express knowledge in a machine under-

standable form
i
. This section doesn’t aim to introduce the reader to knowledge engineering or to present 

the various computational models which can be used to formally express knowledge in a machine under-

standable form. We only aim to give an overview of the notion of KRs in order to introduce SMs which 

take advantage of them. For more information, the reader can refer to some of the seminal contributions 

related to the topic, e.g., (Minsky 1974; Sowa 1984; Davis et al. 1993; Gruber 1993; Borst 1997; Studer et 

al. 1998; Baader 2003; Guarino et al. 2009; Robinson & Bauer 2011; Hitzler et al. 2011).  

 

2.4.1 Generalities 

  

From simple taxonomies and terminologies to complex KRs based on logics, a large spectrum of ap-

proaches has been proposed to express knowledge. Figure 2 presents several approaches which can be 

used to express KRs going from weak semantic descriptions of terms and linguistic relationships, to more 

refined and complex conceptualization associated to strong semantics. 

 

 

 

                                                      
i The notion of Computational/formal knowledge representation refers to the notion introduced by (Davis et al. 1993) in which they refer 

to knowledge representation technologies. As stress in (Guarino et al. 2009), ‘For AI Systems, what exists is that which can be repre-

sented’ 
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Figure 2: From non-formal semantics to formal knowledge representations, adapted from (Jimeno-Yepes et al. 

2009). 

 

The challenging problematic tackled by the field of knowledge engineering, how to formally express 

knowledge, have gained a lot of attention in artificial intelligence. Such a success is naturally explained by 

the large implications of formal expressions of knowledge in computer science, it gives computers and 

algorithms an access door to our knowledge. Therefore, over the last decades, contributions relative to 

computational KRs have been numerous. Ontology is probably the most famous and mysterious word of 

this domain. It has been overused to the point of becoming a propaganda tool, and to be honest, as well as 

reinsuring those which have been lost in the translation, it is today difficult to find two knowledge engi-

neers which will give the same definition of an ontology – no offense to the seminal contributions which 

focused on the demystification of the notion of ontology, e.g. (Guarino et al. 2009), it’s today a concrete 

reality in both academic and industrial fields. Indeed, based on (Gruber 1993; Borst 1997), an ontology is 

often defined in highly abstract terms, as “a formal, explicit specification of a shared conceptualization” 

(Studer et al. 1998). However, despite its popularity, this definition relies on the informal and rarely ques-

tioned definition of conceptualization (Guarino et al. 2009).  

 As we will see, a conceptualization can partially be seen as a formal expression of a set of concepts and 

instances within a domain, as well as the relationships between these concepts/instances. For others, a 

conceptualization of a domain relies on the definition of its vocabulary. In this section, based on (Guarino 

et al. 2009), we will adopt a specific definition of the notions of ontology and conceptualization; these 

notion are (commonly) admitted in knowledge engineering but may differ to usages in other communities. 

 

 As we already said, we will use the general term KR to refer to all formal and machine understandable 

representation of knowledge, e.g. all the range of structured and logic-based approaches which appear in 

Figure 2. This choice has been motivated by the difficulty to consider several formal KRs as ontologies 

(and by the will to differentiate them from conceptualizations), e.g., lexical databases or term-oriented 

models of thesaurus structure which use terms as primitive elements and not concepts (thesaurus, classifi-

cation scheme, etc.). However, to ease the presentation of the various KRs, we denote any abstract view of 

a set of common things through the generic term class or concept.  
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2.4.2 Knowledge Representations as Conceptualization 

 

Regardless of the particularities of some domain-specific KRs and regardless of the language consid-

ered for the modelling, all approaches used to represent knowledge share common components: 

 Classes or Concepts used to denoted set of things sharing common properties, e.g., Human. 

 Instances, i.e. members of classes, e.g., alan (an instance of the class Human). 

 Predicates, the types of relationships which define the semantic relationships which can be es-

tablished between instances or classes, e.g., taxonomic relationships. 

 Relationships, concrete links between classes and instances which carry a specific semantics, 

e.g., (alan, isA, Human), (alan, worksAt, Bletchley Park). 

 Attributes, properties of instances or classes, e.g.; (Alan, hasName, “Turing”) 

 Axioms, for instance defined through properties of the predicates, e.g. “taxonomical relation-

ships are transitive”, or constraints on properties and attributes, e.g., “Any Human has exactly 2 

legs”. 

 

A simple knowledge representation (KR) can therefore be formally defined by 𝑂: {𝐶, 𝑅, 𝐸, 𝐴𝑂}, with: 

 𝐶 the set of classes/concepts and 𝑅 the set of predicates which can be used to link two classes or 

two predicates, e.g., {subClassOf, partOf, subPredicateOf}. A predicate 𝑟 ∈ 𝑅 is also 

named a type of relationship. The set of classes and predicates are expected to be disjoint, i.e. 

𝐶 ∩ 𝑅 = ∅.  

 𝐸 ⊆  𝐶 × 𝑅 ×  𝐶 ∪ 𝑅 × 𝑅 ×  𝑅, the set of oriented relationships of a specific type 𝑟 ∈ 𝑅 which 

link a pair of classes or a pair of predicates. Any relationship is therefore characterized by a tri-

plet (𝑢, 𝑡, 𝑣) with 𝑢, 𝑣 ∈ 𝐶 or 𝑢, 𝑣 ∈ 𝑅 and 𝑡 ∈ 𝑅. Note that a triplet is also called a statement. 

 𝐴𝑂  a set of axioms defining the interpretations of each class and predicat. 

 

 Only considering 𝑂: {𝐶, 𝑅, 𝐸} leads to a labelled graph structuring classes and relationships through 

labelled oriented edges. A vocabulary can be associated to any class and predicate. In addition, a lexical 

reference (didactical device) is generally considered to be used to refer, in an unambiguous manner, to a 

specific class/predicate, e.g., the string Mammal refers to a specific clade of animals. In practice, the 

unique identifier is generally an Internationalized Resource Identifier (IRI)
 i
. 

 

 The semantics of a class/predicate is so far implicitly defined by the definition of unambiguous (lexical) 

references. As we will see, the formal semantics of the KR expressed in the graph is specified by the set of 

axioms 𝐴𝑂. 

 

 The set of axioms 𝐴𝑂 defines that 𝑂: {𝐶, 𝑅, 𝐸} is not a simple graph data structure. They will be used to 

define the interpretations of the classes and predicates. The set of axioms for instance defines the proper-

ties associated to the predicates. Among the numerous properties which can be used to characterize predi-

cates, we can distinguish the transitivity, reflexivity and anti-symmetry. These specific properties charac-

terize taxonomical relationships used to define a partial ordering among classes and predicates. We name 

subClassOf the taxonomical relationship which specifies that a class is subsumed by another
ii
 and sub-

                                                      
i Which is a generalization of the Uniform Resource Identifier (URI) in which specific characters (from ISO 10646) can be used. 
ii In some contributions, the isA relationship commonly refers to the taxonomical relationship. However, the relationships characterized 

by the predicate subClassOf define taxonomies of concepts/classes and the those corresponding to isA relationship are used to type 

instances, i.e. to define that an instance is of a specific type (see rdf:type in RDF specification). 
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PredicateOf the taxonomical relationship defining that a predicate inherits from another predicate
i
. As 

an example, it can be defined that: 

 
Mammal subClassOf Animal 

isFatherOf subPredicateOf isParentOf 

 

The semantics associated to the predicates through the axiomatic characterization of their properties 

leads to the definition of both taxonomies of classes and predicates. These taxonomies are expressed by 

the relationships defined in 𝐸. We distinguish: 

 

 ≼𝐶 ⊆ 𝐸, the taxonomy of classes which defines a partial ordering of classes. We note 𝑢 ≺ 𝑣 if 

𝑢 is subsumed by 𝑣 (or 𝑣 subsumes 𝑢). As an example, the statement Mammal ≺ Animal for-

mally means that all mammals are animals. The taxonomical relationship between classes is the 

type of relationship the most represented in ontologies. Therefore, for convenience, we use the 

term taxonomical relationship to refer to taxonomical relationship between classes. The taxon-

omy of classes forms a Directed, Acyclic, and connected Graph (DAG). Indeed, a unique class, 

denoted the root, is generally considered to subsume all the classes. A fictive root is considered 

if none is explicitly specified (e.g., Thing).  

 ≼𝑅⊆ 𝐸 the taxonomic structuration of the predicates, isFatherOf ≺ isParentOf. Like for 

≼𝐶 , a root predicate is expected to be defined and the graph defined by ≼𝑅 is also a directed, 

acyclic, and connected. 

 

 

 𝐴𝑂 can further describe constraints on interpretations associated to predicates by defining a domain and 

a range (co-domain) of any predicate of 𝑅. They can be used to define a specific interpretation of a type of 

relationship, e.g., the domain and the range of the predicate isParentOf are defined to be the class Per-

son, which means that for all statement (x,isParentOf,y) we can infer that x and y are members of 

the class Person. 

 The axiomatic definition of classes and predicates can be based on a large variety of logical con-

structs (e.g., negation, conjunction, and disjunction). They are used to further constraint the interpretation 

of classes and predicates, and enable more complex expressions of knowledge. The presentation of the 

various logical constructors which can be used is out of the scope of this paper; please refer to (Baader 

2003) for an introduction to logic-based KR. Hereafter, we only briefly present some knowledge expres-

sions which can be based on logical constructs: 

 

 The classes Man and Women are disjoint as the sets of instances of the two classes are expected to 

be disjoint, i.e., 𝑀𝑎𝑛 ⊓ 𝑊𝑜𝑚𝑎𝑛 ≡ ⊥, that is to say, with 𝐼(𝑀𝑎𝑛), the set of instances of the class 

𝑀𝑎𝑛, we have 𝐼(𝑀𝑎𝑛) ∩  𝐼(𝑊𝑜𝑚𝑎𝑛)  = ∅. 

 The class Man refers to instances which are both Male and Person, i.e., 𝑀𝑎𝑛 ≡  𝑀𝑎𝑙𝑒 ∧
𝑃𝑒𝑟𝑠𝑜𝑛. 

 The class Man refers to instances which are Person and not Women, i.e., 𝑀𝑎𝑛 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓
¬ 𝑊𝑜𝑚𝑎𝑛. 

 The predicate subClassOf is transitive, i.e., Man ≺ Person ⇒ 𝐼(𝑀𝑎𝑛) ⊆  𝐼(𝑃𝑒𝑟𝑠𝑜𝑛). 
 

 

                                                      
i Generally named subPropertyOf, e.g, in RDFS. 
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 The literature generally distinguishes lightweight ontologies from highly formal ontologies depending 

on the degree of complexity of 𝐴𝑂 (e.g., predicate properties, logical constructs). 

 

2.4.3 More Refined Knowledge Representations 

 

In knowledge modelling, the general abstract KR 𝑂: {𝐶, 𝑅, 𝐸, 𝐴𝑂}, (i.e., classes and predicates defini-

tions, class relationships and axioms) is generally distinguished from the knowledge relative to the in-

stances of the considered domain. The conceptualization of the general abstract knowledge is named the 

TBox (Terminological Box). The statement ‘All Mammals are Animals’, i.e. (Mammal, subClassOf, 

Animal), is an example of statement found in the TBox. However, KR is not only about conceptualiza-

tion. In some cases you may also want to express knowledge about specific instances of your domain, i.e., 

specific realization of the classes defined in 𝑂. 

 

Knowledge relative to instances of a domain are expressed in the form of statements, e.g., (bob, 

isA, Man). These statements must be compliant with the TBox. As an example, if it’s defined that Man 

and Women are two disjoint classes, the conceptualization is violated by the definition of both statements 

(bob, isA, Man) and (bob, isA, Women). The set of statements related to instances are defined by 

the term ABox (Assertional box).  

 

To be compliant with the introduction of information relative to instances, the formal definition of a KR 

introduced above must be revisited. To this end, we introduce a set of instance 𝐼 and we authorize both the 

definition of statements between instances and between both instances and class, 𝐸 ⊆  𝐶 × 𝑅 ×  𝐶 ∪
 𝑅 × 𝑅 ×  𝑅 ∪  𝐼 × 𝑅 ×  𝐶 ∪  𝐼 × 𝑅 ×  𝐼. We denote 𝐼(𝑋) the set of instances of the class 𝑋. 

 

Note that in some cases, data values of specific data type can also be used to further characterize classes 

or instances, e.g. to specify the age of a person (bob, hasAge, 52). Example of models introducing 

attributes of specific data types to classes can be found in (Ehrig et al. 2004). In this case, a set of 

datatypes and their structuration ≼𝐷 can be defined. A set of attributes of a specific type can therefore be 

associated to a data type. An attribute can be represented as a specific predicate (type of relationship). A 

data value can therefore be considered as an instance of a specific data type
i
 and a specific semantic rela-

tionship between a concept and a data value can be used to represent the value of an attribute which is 

associated to a class. 

 

Formally, to enable data value to be used considering the model introduced so far, it is needed to: 

 Distinguish a set of data values associated to specific data type (which can also be structured in 

some cases),  

 Further extends 𝐸 such as statements enabling data value to be used are possible.  

 

However, to facilitate the reading we will not introduce further notations.  

 

 

 

 

 

                                                      
i This is a figment of imagination, RDF graph do not enable Literals to be used as subject of a triple, it is therefore not possible to express 

statement such as (“London”, rdf:type, String). More information at http://www.w3.org/TR/2011/WD-rdf11-concepts-20110830  

http://www.w3.org/TR/2011/WD-rdf11-concepts-20110830
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2.4.4 Knowledge Representations as Semantic Graphs 

 

In this paper, we consider a semantic graph as any declarative KR in which unambiguous resources are 

represented through nodes interconnected through semantic relationships associated to a controlled seman-

tics. We therefore consider that any synsets/concepts/classes structured through a semantic graph can be 

considered in an equivalent manner
i
. A semantic graph is therefore a specific type of KR in which the axi-

omatic definitions do not relies on complex logical constructs such as negation, conjunction, disjunction 

and so far (e.g., lightweight ontologies). 

 

A semantic graph is composed of a set of statements, each of them composed of a triplet subject-

predicate-object, e.g. (Human, subClassOf, Mammal). The name of a class will be used to refer to both 

the conceptualization and the corresponding node in the graph. Any node which refers to a realization of a 

class will be named an instance. Notice that we always use the term relationship to refer to a binary rela-

tionship between a subject and an object even if we consider that all relationships are associated to a pred-

icates.  

 

Figure 3 presents a basic example of a simple KR represented as a semantic graph. The graph structures 

few classes through taxonomical relationships (plain black relationships) and relationships carrying a spe-

cific meaning (e.g., hunts).  

 

 

Figure 3: Basic example of a semantic graph defining a set of classes, their taxonomical structuration (plain black 

relationships), and other relationships (dotted), e.g. (Cat, hunts, Mouse). 

 

As we have seen, some semantic graphs represent a KR which not only contains TBox statements but 

also knowledge relative to the instances of the domain. As an example, in WordNet, instances are distin-

guished from the classes. Figure 4 presents a more complex representation of a semantic graph which 

corresponds to a KR involving classes, predicates, instances and data values. Various classes defined in 

the graph are taxonomically structured in the layer C. Several types of instances are also defined in layer I, 

e.g. music bands, music genres. These instances can be characterized according to specific classes, e.g., 

(rollingStones, isA, MusicBand) and can be interconnected through specific predicate, e.g., 

                                                      
i We therefore consider hyponymy (hyperonymy) as a taxonomical relationship of specialization (generalization, equivalent of ‘subclass 

of’ for terms). 



SEMANTIC MEASURES FOR THE COMPARISON OF UNITS OF LANGUAGE, CONCEPTS AND INSTANCES FROM 

TEXTS AND KNOWLEDGE REPRESENTATION ANALYISIS 

29 

 

(rollingStones, hasGenre, rock). In addition, specific data values (layer D) can be used to speci-

fy information relative to both classes and instances, e.g., (rollingStones, haveBeenFormedIn, 

1962). All relationships linking the various nodes of the graph are directed and semantically character-

ized, i.e., they carry an unambiguous and controlled semantics. Notice that extra information such as the 

taxonomy of predicates or axiomatic definitions of predicate properties are not represented in this figure. 

 

We consider that a semantic graph doesn’t rely on complex logic-based semantics, i.e., logical construc-

tors (such as disjunction) are not required to understand the semantics associated to the KR. Specific map-

ping techniques can be used to reduce any KR to a semantic graph. In addition, the knowledge defined in 

highly formal KR might not be explicit and a reasoner can be required to deduce implicit knowledge, e.g. 

applying entailment rules or inference mechanisms, prior to applying mapping techniques. We will not 

broad this technical subject in this section, detailed information relative to the construction of a semantic 

graph from several types of KR is presented in section 5.2. 

A semantic graph is therefore considered as any declarative KR which can be expressed through a graph 

and which carries a specific semantics, e.g., a semantic network/net, a conceptual graph, a lexical database 

(WordNet), an RDF(S) graph
i
, a lightweight ontology, to mention a few.  

 

 
 

Figure 4: Example of a semantic graph involving classes, instances and data values (Harispe, Ranwez, et al. 

2013a). 

 

 

 

                                                      
i RDF graph are in some cases expected to be entailed, i.e. the semantics requires to be taken into account in order to materialize specific 

relationships implicitly defined in the graph, e.g. using RDFS. A discussion related to the subject is provided in appendix 4.  
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2.4.5 Conceptual annotations as a Semantic Graph 

 

In some cases, a collection of instances is annotated by concepts structured in a KR. In those cases, the 

knowledge base is expected to be composed of a collection of annotations and a KR. To ease the reading, 

we consider that an instance which is characterized through a set of conceptual annotations can also be 

represented in a semantic graph, i.e., the instance can be represented by a node which establishes semantic 

relationships to the concepts associated to its annotations.  

As an example, if a document is annotated to a specific concept/class, let’s say the document docA is 

annotated to a set of concepts structured in a KR {Physics, Gravitation}, we can create the rela-

tionship (docA, isAnnotatedBy, Physics) and (docA, isAnnotatedBy, Gravitation) to 

model this knowledge through a unique KR. 

 

 

2.4.6 Examples of Knowledge Representations Commonly Processed as Semantic Graphs 

 

Several KR considered as semantic graphs, have been used to design and evaluate SMs. Among the 

most used we distinguish:  

 WordNet
i
 (Miller 1998; Fellbaum 2010) is widely used in natural language processing and 

computational linguistics. It models the lexical knowledge of native English speakers in a lexi-

cal database structured through a semantic network composed of synsets/concepts linked by 

semantic and lexical relations. In WordNet, concepts are associated to a specific meaning de-

fined in a gloss. They are also characterized by a set of cognitive synonyms (synset) which can 

be composed of nouns, verbs, adjectives, adverbs. According to the official documentation, 

WordNet 3.0 is composed of 117 000 concepts (synsets), which are linked together by different 

types of semantic relationships, e.g., hyperonymy, hyponymy. SENSUS (Swartout et al. 1996) 

is another semantic graph derived from WordNet. 

 

 Cyc
ii
 (OpenCyc), an ontology defining concepts (called constants), instances, and relationships 

between the concepts and instances. Other constructs are also provided  

 

 The Gene Ontology
iii

 and gene product annotations. The Gene Ontology (GO) defines a struc-

tured vocabulary related to molecular biology. It can be used to characterize various aspects of 

gene products (molecular function, biological processes, and cellular component). 

 

 MeSH
iv
 – Medical Subject Headings, structured controlled vocabulary defining a hierarchy of 

biological and medical terms. The MeSH is provided by the U.S. National Library of Medicine 

and is used to index PubMed articles.  

 

  
                                                      

i http://wordnet.princeton.edu/  
ii http://www.cyc.com/  
iii http://www.geneontology.org/  
iv http://www.ncbi.nlm.nih.gov/mesh  

http://wordnet.princeton.edu/
http://www.cyc.com/
http://www.geneontology.org/
http://www.ncbi.nlm.nih.gov/mesh


SEMANTIC MEASURES FOR THE COMPARISON OF UNITS OF LANGUAGE, CONCEPTS AND INSTANCES FROM 

TEXTS AND KNOWLEDGE REPRESENTATION ANALYISIS 

31 

 

3 Classification of Semantic Measures 
 

We have seen that various mathematical properties can be used to characterize technical aspects of SMs. 

This section distinguishes other general aspects which may be interesting to classify SMs. They will be 

used to introduce the large diversity of approaches proposed in the literature. We first present some of the 

general aspects of SMs which can be relevant for their classification. We next introduce two general clas-

ses of measures. 

 

 

3.1 How to Classify Semantic Measures 
 

The classification of SMs can be made according to several aspects; we propose to discuss four of them: 

 The type of elements the measures aim to compare. 

 The semantic proxies used to extract the semantics required by the measure. 

 The semantic evidences and assumptions considered during the comparison. 

 The canonical form adopted to represent an element and to handle it. 

 

3.1.1 Types of Elements to Compare: Words, Concepts, Sentences… 

 

SMs can be used to compare various types of elements: 

 Units of language: words, sentences, paragraphs, documents. 

 Concepts/Classes, groups of concepts. 

 Instances semantically characterized. 

 

 We considered the notion of concept through a broad sense, i.e., class of instances which can be of any 

kind (abstract/concrete, elementary/composite, real/fictive) (Smith 2004). We also consider that a concept 

can also be represented through a synset, i.e., group of data elements considered semantically equivalent. 

A concept can therefore be represented as any set of words referring to the same notion, e.g., the terms 

dog, Canis lupus familiaris refer to the concept Dog. Note that we use both the notions of concept and 

class interchangeably. However, we will, as much as possible, favour the use of the term class as specifi-

cations used to express KRs generally refer to it, e.g. RDF(S)
i
. 

 

The notion of instance semantically characterized encompasses several situations in which an object is 

described through information from which semantic analyses can be performed. A semantic characteriza-

tion could be the RDF description of the corresponding instance, a set of conceptual annotations associat-

ed to it, a set of tags, or even a subgraph of an ontology, to mention a few.  

 

SMs can therefore be classified according to the type of elements they aim to compare. 

 

 

 

                                                      
i  Note that in OWL a class is denoted a concept. The introduction of RDF (Resource Description Framework), RDFS (RDF-Schema) 

and OWL (Web Ontology Language) as languages for the expression of knowledge representations is considered out-of-the-scope of 

this paper. Please refer to the official documentation proposed by the W3C. The book of (Hitzler et al. 2011) proposes an easy-to-read 

comprehensive introduction to semantic web technologies. 
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3.1.2 Semantic Proxies from which Semantics is Distilled 

 

A semantic proxy is considered as any source of information from which the semantics of the compared 

elements, which will be used by a SM, can be extracted. Two broad types of semantic proxies can be dis-

tinguished: 

 Unstructured or semi-structured texts: Text corpora, controlled vocabularies, dictionaries. 

 Structured: thesaurus, structured vocabularies, and ontologies. 

 

3.1.3 Semantic Evidences and the Assumptions Considered 

 

 Depending on the semantic proxy used to support the comparison of elements, various types of se-

mantic evidences can be considered. The nature of these evidences conditions the assumptions associat-

ed to the measure. 

 

3.1.4 Canonical Forms Used to Represent Compared Elements 

 

The canonical form, i.e. representation, chosen to process a specific element can also be used to distin-

guish the measures defined for the comparison of a specific type of elements. Since the representation 

adopted to process an element corresponds to a specific reduction of the element, the degree of granularity 

with which the element is represented may highly vary depending on it. The selected canonical form is of 

major importance since it influences the semantics associated to the score produced by a measure, that is 

to say, how a score must be understood. This particular aspect is essential when inferences must be driven 

from the scores produced by SMs. 

 

A SM is defined to process a given type of element represented through a specific canonical form. 
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3.2 Landscape of Semantic Measures 
 

 

 

Figure 5: Partial Overview of the landscape of the types of semantic measures which can be used to compare var-

ious types of elements (words, concepts, instances …). 
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3.3 Distributional Measures 
 

 Semantic Proxy: unstructured/semi-structured texts. 

 Type of elements compared: units of language, i.e., words, sentences, paragraphs, documents. 

 

Distributional measures enable the comparison of units of language through the analysis of unstructured 

texts. They are mainly used to compare words, sentences or even documents studying the repartition of 

words in texts (number of occurrences, location in texts)
i
. An introduction to this type of measures for the 

comparison of pair of words can be found in (Curran 2004; S. M. Mohammad & Hirst 2012).  

 

Several contributions have been proposed to tackle the comparison of pairs of sentences or documents 

(text-to-text measures). Some of these measures derive from word-to-word SMs; others rely on specific 

strategies based on lexical/ngram overlap analysis, Latent Semantic Analysis extensions (Lintean et al. 

2010), or even topic model using Latent Dirichlet Allocation (Blei et al. 2003). Text-to-text SMs are not 

presented in this section; we here focus on distributional measures which can be used to compare the se-

mantics of two words regarding a collection of texts. Additional information and pointers regarding text-

to-text measures are provided in appendix 2. 

 

Distributional measures rely on the distributional hypothesis which considers that words occurring in 

similar contexts tend to be semantically close (Harris 1981). This hypothesis is one of the main tenets of 

statistical semantics. It was made popular through the idea of (Firth 1957): “a word is characterized by the 

company it keeps”
ii
. Considering that the context associated to a word can be characterized by the words 

surrounding it, the distributional hypothesis states that words occurring in similar contexts, i.e., often sur-

rounded by the same words, are likely to be semantically similar as “similar things are being said about 

both of them” (S. M. Mohammad & Hirst 2012). It is therefore possible to build a distributional profile of 

a word according to the contexts in which it occurs. 

 

A word is classically represented through the vector space model: a geometric metaphor of meaning in 

which a word is represented as a point in a multidimensional space modelling the diversity of the vocabu-

lary in use (Sahlgren 2006). This model is used to characterize words through their distributional proper-

ties in a specific corpus of texts
iii
. To this end, words are generally represented through a matrix of co-

occurrence – it can either be a word-word matrix or more generally a word-context matrix in which the 

context is any lexical unit (surrounding words, sentences, paragraphs or even documents). Such a charac-

terization of a word regarding a specific corpus, sometimes denoted as word space model (Sahlgren 2006), 

is analogue to the vector space model widely known in Information Retrieval (Salton & McGill 1986).  

 

Generally, the design of a SM for the comparison of words corresponds to the definition of a function 

which will assess the similarity of two context vectors. The various distributional measures are therefore 

mainly distinguished by the: 

                                                      
i In the literature, distributional measures are sometimes defined as a specific type of a more general type of measures denoted corpus-

based measures (Panchenko & Morozova 2012). In this survey we consider distribution measures as any measure which relies on loca-

tion and number of occurrences of words in text and there is therefore no need to distinguish them from corpus-based measures.  
ii Also implicitly discussed in (Weaver 1955) originally written in 1949 (source: wiki of the Association for Computational Linguistics 

http://aclweb.org/aclwiki accessed 09/13) 
iii According to (Sahlgren 2006), numerous limitations in the design of semantic measures to compare words are a consequence of the 

distributional methodology adopted as a discovery procedure. 

http://aclweb.org/aclwiki
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 Type of context used to build the co-occurrence matrix. 

 Frequency weighting (optional). The function used to transform the raw counts associated to 

each context in order to incorporate frequency and informativeness of the context (Curran 

2004). 

 Dimension reduction technique (optional) used to reduce the co-occurrence matrix. This aspect 

defines the type of co-occurrences which is taken into account (e.g. first order, second order, 

etc.). 

 Vector measure used to assess the similarity/distance of the vectors which represent the words 

in the co-occurrence matrix. In some cases, vectors will be regarded as (fuzzy) sets. 

 

Several distributional measures have been proposed. Here, we only briefly introduce the three main 

types of approaches; Spatial/Geometric, which evaluate the relative positions of the two words in the se-

mantic space defined by the context vectors, and the Set-based and Probabilistic approaches which are 

based on the analysis of the overlap of the contexts in which the words occurs, e.g. (Ruge 1992). 

 

3.3.1 Geometric Approach 

 

The geometric approach is based on the assumption that compared elements are defined in a semantic 

space corresponding to the intuitive spatial model of similarity proposed by cognitive sciences (see section 

2.2). A word is for instance considered as a point in a multi-dimensional space representing the diversity 

of the vocabulary in use. Two words are therefore compared regarding their location in this multi-

dimensional space. The dimensions considered to represent the semantic space are defined by the context 

used to build the co-occurrence matrix. Words are represented through their corresponding vector in the 

matrix and are therefore compared through measures used to compare vectors. Among the most used, we 

can distinguish: 

 Scalar product or measures from the Lp Minkowsky family – L1 Manhattan distance, L2 Euclid-

ian distance. 

 Cosine similarity, the cosine of the angle between the vectors of the compared words (the 

smaller is the angle, the stronger the likeness will be considered). Measures of correlation can 

also be used in some cases (Ganesan et al. 2003). 

 

 

3.3.2 (Fuzzy) Set-based Approach 

 

 Words are compared regarding the number of contexts in which they occur which are common and dif-

ferent (Curran 2004). The comparison can be made using classical set-based measures (e.g., Dice index, 

Jaccard coefficient). Several set-based operators have for instance be used to compare words (Terra & 

Clarke 2003; Bollegala 2007b). Extensions have also been proposed in order to take into account a 

weighting scheme through fuzzy sets, e.g. (Grefenstette 1994). Set-based measures relying on information 

theory metrics have also been proposed, they are introduced in the following subsection which presents 

the measures based on probabilistic approaches. 

 

3.3.3 Probabilistic Approach 

 

The distributional hypothesis enables to express the semantic relatedness of words in term of probability 

of co-occurrence, i.e. regarding both, the contexts in which compared words appear and the contexts in 
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which the two words co-occur. These two evidences can intuitively be used to estimate the strength of 

association between two words. This strength of association can also be seen as the mutual information of 

two words. The mutual information can be expressed regarding the probability the two words occur in the 

corpus, as well as the probability the two words co-occur in the same context. Once again a large diversity 

of measures have been proposed, only those which are frequently used are considered (Dagan et al. 1999; 

S. Mohammad & Hirst 2012):  

 Maximum likelihood estimate (MLE). 

 Pointwise Mutual Information (PMI) (Fano 1961). The PMI was first adapted for the compari-

son of words by (Church & Hanks 1990). It is based on the analysis of the number of co-

occurrences and individual occurrences of words, e.g., in paragraphs or sentences – examples of 

use are discussed in (Lemaire & Denhière 2008; S. M. Mohammad & Hirst 2012). To overcome 

the fact that PMI is biased towards infrequent words, various adaptations and correction factors 

have been proposed (Pantel & Lin 2002; S. Mohammad & Hirst 2012). Other related measures 

are Mutual Information and the Lexicographers Mutual Information, to mention a few.  

 Confusion probability. 

 

The vectors obtained from the co-occurrence matrix can also be seen as distribution functions corre-

sponding to distribution profiles. Notice that these vectors can also correspond to vectors of strength of 

association if one of the metrics presented above have been used to convert the initial co-occurrence ma-

trix. As an example, co-occurrence vectors can be transformed to mutual information vectors modifying 

the co-occurrence matrix using the PMI function. In both cases, the comparison relies on the comparison 

of two distribution functions/vectors. Therefore, despite their conceptual differences, the probabilistic 

approaches generally rely on the mathematical tools used by the geometrical approaches. The functions 

commonly used are:  

 Kullback-Leibler divergence (information gain or relative entropy) is a classic measure used to 

compare two probability distributions and is often characterized as the loss of information when 

a probability distribution is approximated by another (Cover & Thomas 2012). 

 Jensen-Shannon divergence. This function also measures the similarity between two probability 

distributions. It is based on the Kullback-Leibler divergence with the interesting properties of 

being symmetric and to always produce a finite value. 

 Skew Divergence (Lee n.d.), denoted 𝛼 SD (𝛼 stands for asymmetrical). 

 Measures presented in the geometric approaches can also be used: L-Norm, cosine similarity. 

 

An excerpt of the similarity functions which can be used to compare probability distributions can be 

found in (Pantel & Lin 2002); a comprehensive survey presenting a large collection of measures is also 

proposed in (Cha 2007)
i
. 

 

Several combinations can therefore be used to mix both the strength of association (weighting scheme, 

e.g., PMI) and the measures used to compare the probability functions/vectors. Fuzzy Metrics can also be 

used to compare words according to their strength of association, refer to (S. Mohammad & Hirst 2012) 

for detailed examples. 

 

 

 

 

                                                      
i An interesting correlation analysis between measures is also provided. 
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3.3.4 Capturing Deeper Co-occurrences 

 

The probabilistic approach presented so far can be used to estimate the similarity of words regarding 

their first order co-occurrence, i.e., the similarity is assessed regarding if the two words occur in the same 

context. However, a strong limitation of first order co-occurrence studies is that similar words may not co-

occur. As an example, some studies of large corpus have observed that the words road and street almost 

never co-occurs, although they can be considered as synonyms in most cases (Lemaire & Denhière 2008). 

Specific techniques have therefore been proposed to highlight deeper relationships between words, e.g., 

second order co-occurrences. These techniques will transform the co-occurrence matrix to enable evidenc-

es of deeper co-occurrence to be captured. The measures presented to compare words through the vector 

space model (see above) will be used after the matrix transformation. 

 

Statistical analysis can be used to distinguish valuable patterns in order to highlight deeper co-

occurrences between words. These patterns, which represent the relationships between words, can be iden-

tified using several techniques; among them we distinguish: 

 Latent semantic analysis (LSA). 

 Hyperspace Analogue to Language (HLA). 

 Syntax or dependency-based model. 

 Random indexing… 

Latent Semantic Analysis/Indexing (LSA) use singular value decomposition (SVD) (Landauer et al. 

1998) to capture the relationships between two words occurring with a third one (but not necessarily oc-

curring together). To this end, the co-occurrence matrix is reduced by the SVD algorithm. SVD is a linear 

algebra operation which can be used to emphasize correlations among rows and columns – it reduces the 

number of dimensions with the interesting property to highlight second-order co-occurrences. The com-

parison of words is finally made comparing their corresponding rows in the matrix through vector simi-

larity measures. LSA is often presented as an answer to the drawbacks of the standard vector space model 

such as sparseness and high dimensionality. 

 

Hyperspace Analogue to Language (Lund & Burgess 1996) uses a word-to-word co-occurrence matrix 

according to a specific word window. The weight of a co-occurrence is defined according to the position 

of the two words (before/after) in the context window. An asymmetric co-occurrence matrix is therefore 

obtained (directional word-to-word matrix). Low entropy columns can therefore be dropped from the ma-

trix prior to the comparison. Words are generally compared based on the concatenation of their respective 

row and column. 

 

3.3.5 Advantages and Limits of Distributional Measures 

 

We list some of the advantages and limits of distributional SMs.  

 

3.2.2.1. Advantages of Distributional Measures 

 

 Unsupervised, they can be used to compare the relatedness of words expressed in corpora with-

out prior knowledge regarding their meaning or usage.  
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3.2.2.2. Limits of Distributional Measures 

 

 The words to compare must occur at least few times. 

 Highly depend on the corpus used. This specific point can also be considered as an advantage as 

the measure is context-dependent. 

 Sense-tagged corpora are most of the time not available (Resnik 1999; Sánchez & Batet 2011). 

The construction of a representative corpus of text can be challenging in some usage context, 

e.g., biomedical studies.  

 Difficulties to estimate the relatedness between concepts or instances due to the disambiguation 

process required prior to the comparison. Distributional measures are mainly designed for the 

comparison of words. However, some pre-processing and disambiguation techniques can be 

used to enable concepts or instances comparison from text analysis. Nevertheless, their compu-

tational complexity is most of the time a drawback making such approaches impracticable to be 

used with large corpora analysis. 

 Difficulty to estimate the semantic similarity. Nevertheless, different observations are provided 

in the literature. It is commonly said that distributional measure can only be used to compare 

words regarding relatedness as co-occurrence can only be seen as an evidence of relatedness, 

e.g., (Batet 2011a). However, (S. Mohammad & Hirst 2012) specifies that similarity can be cap-

tured performing specific pre-processing. Nevertheless, capturing the similarity between words 

from text analysis requires elaborated techniques which are not tractable for large corpora anal-

ysis.  

 Difficulty to explain and to trace the semantics of the relatedness. The interpretation of the 

score is almost driven by the distributional hypothesis; it is however difficult to deeply under-

stand the semantics associated to the co-occurrences. 

 

 

 

3.4 Knowledge-based Measures 
 

 Semantic Proxy: knowledge representations, e.g., thesaurus, taxonomies, ontologies. 

 Type of elements compared: words/terms, concepts, groups of concepts, instances semantically 

characterized. 

 

Knowledge-based measures rely on any form of knowledge representation (KR), e.g., structured vocab-

ularies, semantic graphs or ontologies, from which the semantics associated to the compared elements will 

be extracted. These measures are therefore based on the analysis of semantic graphs or expressive KRs 

defined using logic-based semantics.  

 

A large diversity of measures have been defined to compare both concepts and instances defined in a 

KR. Two main types of measures can be distinguished considering the type of the KR which is taken into 

account:  

 Measures based on graph analysis or framed in the relational setting. They consider KR as 

semantic graphs. They rely on the analysis of the structural properties of the semantic graph. El-

ements are compared studying their interconnections, in some case, by explicitly taking ad-

vantage of the semantics carried by the relationships.  
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 Measures relying on logic-based semantics, such as description logics. These measures use a 

higher degree of semantic expressivity; they can take into account logical constructors, and can 

be used to compare richer descriptions of knowledge.  

Most of SMs have been defined to compare elements defined in a single KR some SMs have also been 

proposed to compare elements defined in different KRs. In this section, we mainly consider the measures 

defined for a single KR. Measures taking advantage of multiple KRs are briefly presented in section 3.4.3. 

 

 

3.4.1 Semantic Measures Based on Graph Analysis 

 

 SMs based on graph analysis do not take into account logical constructors which can sometimes be 

used to define the semantics of a KR. These measures only consider the semantics carried by the semantic 

relationships (relational setting), e.g., specific treatments can be performed regarding the type of relation-

ship processed. Some properties associated to the relationships defined in the graph can be considered by 

the measures. The transitivity of the taxonomic relationship will for instance be implicitly or explicitly 

used in the design of the measures. In other cases, the taxonomy of predicates (the types of semantic rela-

tionships) can also be taken into account.  

 

A large number of approaches have been proposed to express SMs using this approach. Section 5 is 

dedicated to them. We invite the reader willing to have more technical information to refer to it; here, we 

only present a non-technical overview of these measures focusing on those used to compare a pair of clas-

ses.  

SMs based on graph analysis are commonly classified in four approaches: (i) Structure-based, (ii) Fea-

ture-based, (iii) Information-Theory and (iv) Hybrid. 

 

 

3.4.1.1 The Structural Approach 

 

SMs based on the structural approach compare the elements defined in the graph through the study of 

the structure of the graph induced by its relationships. The measures are generally expressed as a function 

of the strength of the interconnections of the compared elements in the semantic graph. The structural ap-

proach corresponds, in some sense, to the design of SMs according to the structural model defined in cog-

nitive sciences (refer to section 2.2). The graph corresponds to a structured space in which the compared 

elements are described.  

 

The first measures based on the structural approach proposed to compare two classes regarding the 

shortest path linking them in the graph: the shorter the path, stronger the strength of their semantic relat-

edness. The types of relationships considered define the semantics of the measures, e.g., only the taxo-

nomical relationships will be considered to estimate the semantic similarity. The similarity/relatedness of 

the compared elements is therefore estimated according to their distance in the graph.  

 

As an example, considering Figure 6, the length of the shortest path between the classes Computer and 

Tablet is 2. Only considering taxonomical relationship, the length of the shortest path between the clas-

ses Computer and Mouse is 5. As expected, the classes Computer will therefore be considered to be 

more similar to the class Tablet than to the class Mouse. 
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Figure 6: Example of simple semantic graph 

 

A large diversity of structural measures have been proposed to compare elements structured in a graph 

as a function of the strength of the interconnection linking them (e.g., random-walk approaches). More 

refined measures take advantage of intrinsic factors analyses to better estimate the similarity, e.g., by con-

sidering non-uniform weights of relationships. 

 

 

 

3.4.1.2 The Feature-based Approach 

 

This approach can be associated to the feature model defined by Tversky. Measures estimate the seman-

tic similarity or relatedness considering specific properties of the elements during the comparison.  

 

A central element of the measures based on this approach is the function which characterizes the fea-

tures of the elements on which will be based their comparison. Various strategies have been proposed. As 

an example, the features used to characterize a concept can be the senses it encompasses, its ancestors in 

the graph, i.e., all concepts which subsumes the concept according to the partial ordering defined by the 

taxonomy. Adopting this strategy we will consider the following feature-based representation of concepts 

Computer, Tablet and Mouse: 

 Computer = { Computer , Object, Thing} 

 Tablet = { Tablet, Object, Thing} 

 Mouse = { Mouse, Mammal, Animal, Thing} 

 

The comparison of two elements can therefore be made evaluating the number of features they share ac-

cording to a feature-matching function. In this case, the pair Computer / Tablet will be estimated as 

more similar than the pair Computer / Mouse as the former pair share more senses than the latter (re-

spectively 2 and 1).  
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3.4.1.1 The Information Theoretical Approach 

 

This approach is based on Shannon’s Information Theory (Shannon 1948). The elements, generally 

classes, are compared according to the amount of information they share and to the amount of information 

which is distinct between the two classes. These measures extensively rely on estimators of the infor-

mation content of classes. 

 

 

3.4.1.2 The Hybrid Approach 

 

Hybrid measures are defined taking into account some of the specificities of the approaches briefly in-

troduced above. 

 

 

 

3.4.2 Measures Relying on Logic-based Semantics 

 

SMs based on the relational setting cannot be used to compare complex descriptions of classes or in-

stances, relying on logic-based semantics, e.g. description logics (DLs). To this end, SMs capable of tak-

ing into account logic-based semantics have been proposed. These measures are for example used to com-

pare knowledge models expressed in OWL
i
.  

 

Among the diversity of proposals, measures based on simple description logics, e.g., only allowing con-

cept conjunction (logic 𝐴), have initially been proposed (Borgida et al. 2005). More refined SMs have also 

been designed to exploit high expressiveness of DLs, e.g. ALC, ALN, SHI description logics (D’Amato et 

al. 2005a; Fanizzi & D’Amato 2006; Janowicz 2006; Hall 2006; Araújo & Pinto 2007; D’Amato et al. 

2008a; D’Amato et al. 2009; Janowicz & Wilkes 2009; Stuckenschmidt 2009b). These measures rely, 

most of the time, on extensions of the feature model proposed by Tversky. 

  

The thesis of (D’Amato 2007) proposes an in-depth presentation of the measures based on description 

logics. 

 

3.4.3 Semantic Measures based on Multiple Knowledge Representations 

 

Several approaches have been designed to estimate the relatedness of classes or instances using multiple 

KRs. These approaches are generally named cross ontology semantic similarity/relatedness measures in 

the literature. Their aim is double: (i) to enable the comparison of elements which have not been defined 

in the same KR given that the KRs in which they have been defined model a subset of equivalent ele-

ments, (ii) to refine the comparison of elements incorporating a larger amount of information during the 

process.  

 

These measures are in some senses related to those commonly used for the task of ontology align-

ment/mapping and instance matching. Therefore, prior to their introduction we will first highlight the rela-

tion between these measures and those designed for the aforementioned processes. 

 

                                                      
i The book of (Hitzler et al. 2011) proposes a comprehensive introduction to OWL and Description Logics. (D’Amato 2007) also propose 

a digested introduction to description logic. 
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3.4.3.1 Comparison with Ontology Alignment/Mapping and Instance Matching  

 

 

The task of ontology mapping aims at finding correspondences between the classes and predicates de-

fined in a collection of KRs (e.g., ontologies). These mappings are further used to build an alignment be-

tween KRs. Instance Matching focuses in finding similar instances defined in a collection of KRs. These 

approaches generally rely on multiple matchers which will be aggregated to evaluate the similarity of the 

compared elements (Shvaiko & Euzenat 2013). The matchers commonly distinguished are:  

 Terminological – based on string comparison of the labels or definitions of the elements. 

 Structural – mainly based on the structuration of classes and predicates. 

 Extensional – based on instance analysis. 

 Logic-based – rely on logical constructs used to define the elements of the KRs.  

 

 The score produced by these matchers are generally aggregated. A threshold is next used to estimate if 

two (groups of) elements are similar enough to define a mapping between them. In some cases, the map-

ping will be defined between an element and a set of elements, e.g., depending on the difference of granu-

larity of the compared KRs, a class can be mapped to a set of classes.  

The problematic of ontology alignment and instance mapping is a field of study in itself. The techniques 

used for this purpose involve semantic similarity measures for the design of specific matchers – structural, 

extensional and logic-based (terminological matchers are not semantic). However, their aim being to find 

exact matches, they are generally not suited for the comparison of non-equivalent elements defined in 

different KRs. Indeed, techniques used for ontology alignment are for instance not suited to answer ques-

tions such as “To which degree the two concepts Coffee and Cup are related?”. 

 

Technically speaking, nothing prevents the use of matching techniques to estimate the similarity or re-

latedness of elements defined in different KRs since they have been designed to this specific purpose. 

Nevertheless, in applications, compared to approaches used for ontology alignment and instance matching, 

semantic measures based on multiple KRs:  

 Can be used to estimate the semantic relatedness and not only the similarity. 

 Sometimes rely on strong assumptions and approximations which cannot be considered to de-

rive alignments, e.g., measures based on shortest-path techniques.  

 Focus on the design of techniques for the comparison of elements defined in different KRs 

which generally consider a set of existing mappings between KRs. 

In short, ontology alignment and instance matching are complex processes which use specific types of 

(semantic) similarity measures and which can be used to support the design of semantic measures involv-

ing multiple KRs. 

 

 

3.4.3.2 Main approaches for the definition of semantic measures using multiple KRs  

 

The design of semantic measures for the comparison of elements defined in different KRs have gained 

less attention than classical semantic measures designed for single KRs. They have been successfully used 

to support data integration (Rodríguez & Egenhofer 2003; M.C. Lange, D.G. Lemay 2007), clustering 

(Batet, Valls, et al. 2010), or information retrieval tasks (Xiao & Cruz 2005) to cite a few. In this context, 

several contributions have focused in the design of cross-KRs semantic measures without focusing on a 

specific application context (Rodríguez & Egenhofer 2003; Xiao & Cruz 2005; Petrakis et al. 2006; M.C. 
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Lange, D.G. Lemay 2007; Al-mubaid & Nguyen 2009; Coates et al. 2010; Batet, Valls, et al. 2010; 

Saruladha & Aghila 2011; Sánchez, Solé-Ribalta, et al. 2012; Batet et al. 2013).  

The measures proposed in the literature can be distinguished according to the approach they adopt: 

 Structural approach (Al-mubaid & Nguyen 2009). 

 Feature-based approach (Petrakis et al. 2006; Batet, Valls, et al. 2010; Sánchez, Solé-Ribalta, et 

al. 2012; Batet et al. 2013; Solé-Ribalta et al. 2013) 

 Information Theoretical approach (Saruladha, Aghila & Bhuvaneswary 2010; Saruladha 2011; 

Sánchez & Batet 2013). 

 Hybrid approach (Rodríguez & Egenhofer 2003). 

 

 

3.4.4 Advantages and Limits of Knowledge-based Measures 

 

3.3.2.1.  Advantages of Knowledge-based Measures 

 

 They can be used to compare all types of elements defined in a KR, i.e., terms/classes, instanc-

es. Thus, these measures can be used to compare elements which cannot be compared using text 

analysis, e.g., comparison of gene products according to conceptual annotations corresponding 

to their molecular functions.  

 Fine control on the semantic relationships taken into account to compare the elements. This as-

pect is important to understand the semantics associated to a score of SMs, e.g., semantic simi-

larity/relatedness. 

 Generally easier and less complex to compute than distributional measures. 

 

3.3.2.2. Limits of Knowledge-based Measures 

 

 Require a knowledge representation describing the element to compare. 

 The use of logic-based measures can be challenging to compare elements defined in large 

knowledge bases (high computational complexity). 

 Measures based on graph analysis most of the time require the knowledge to be modelled in a 

specific manner in the graph and are not designed to take into account of non-binary relation-

ships. Such relationships are used in specific KRs and play an important role to define specific 

properties to relationships, e.g., a simple triplet cannot be used to model that a user has sent an 

email to another user at a specific date. Reification techniques are used to express such 

knowledge by defining a ternary relationship. The (binary) relationship is expressed by a node 

of the graph; specific triplets will be used to represent the sender (subject), the receiver (object), 

the type of relationship (predicate) and additional information associated to the binary relation-

ship, such as the date in the given example. Despite the fact that some supervised approaches 

can be used to take advantage of such a type of knowledge expression, e.g. (Harispe, Ranwez, 

et al. 2013a), most measures based on graph analysis are not adapted to this case. This aspect is 

relative to the mapping of a KR to a semantic graph; a more detailed discussion of this specific 

aspect is proposed in appendix 4. 
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3.5 Mixing Knowledge-based and Distributional Approaches 
 

Hybrid measures have been proposed to take advantage of both texts and KRs to estimate the similarity 

or relatedness of elements: units of language, concepts/classes and instances. They most of the time com-

bine several single SMs (Panchenko & Morozova 2012).  

 

Among the various mixing strategies, we can distinguish two broad types: 

 Measures which take advantage of both corpus and KR analysis. This strategy has been used to 

estimate the specificity of concepts or terms structured in a (taxonomic) graph. As an example, 

(Resnik 1995) proposed to estimate the amount of information carried by a concept as the in-

verse of the probability the concept occurs in texts. Others propose to mix text analysis and 

structure-based measures. The extended gloss overlap measure introduced by (Banerjee & 

Pedersen 2002), and the two measures based on context vectors proposed by (Patwardhan 2003) 

are good examples. Interested readers may also consider (Patwardhan et al. 2003; Banerjee & 

Pedersen 2003; Patwardhan & Pedersen 2006). 

 

 Simple aggregation of multiple measures. Considering several measures, the scores are aggre-

gated according to the average, min, max, median or any aggregation function which can be de-

signed to aggregate matrix of scores
i
.  

 

 Several studies have demonstrated the gain of performance mixing knowledge-based and distribu-

tional approaches (Panchenko & Morozova 2012). See also the work of (Petrakis et al. 2006). 

 

  
                                                      

i Several aggregations have been proposed to compare groups of concepts. Please refer to section 5.6.2.2 for more information relative to 

aggregation functions. 
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4 Computation and Evaluation of Semantic Measures 
 

This section introduces information relative to the comparison and the evaluation of SMs. Software so-

lutions which can be used for the computation and analysis of SMs are first presented. In a second step, 

protocols, methodologies and benchmarks commonly used to assess and compare performances and accu-

racies of measures are presented. 

 

 

4.1 Software Solutions for the Computation of Semantic Measures 
 

This subsection presents the main software solutions dedicated to SM computation which are available 

to date (2013); new software solutions or more recent versions of those presented herein may be available. 

Please notice also the potential conflict of interest as the authors are involved in the Semantic Measures 

Library project (Harispe, Ranwez, et al. 2013b) which is related to the development of a software solution 

dedicated to SMs. Tools are presented in their alphabetical order. 

 

4.1.1 Software Solutions Dedicated to Distributional Measures 

 

List of existing software solutions for the computation of distributional measures: 

 

 Disco: Java library dedicated to the computation of the semantic similarity between arbitrary 

words. A command-line tool is also available. Reference: (Kolb 2008), License: Apache 2.0, Last 

version: 2013, Website: http://www.linguatools.de/disco/  

 

 Semilar: a toolkit and software environment dedicated to distributional SMs. It can be used to es-

timate the similarity between texts. It implements simple lexical overlap method for the comparison 

of texts, as well as word-to-word based measures. More sophisticated methods based on LSA/LDA 

are also provided. Semilar is available as an API and as a Java application with a graphical user in-

terface. It also provides a framework for the systematic comparison of various SMs. Reference: 

(Rus et al. 2013), License: Unknown, Last Version: 2013. 

Website: http://www.cs.memphis.edu/~vrus/SEMILAR/  

 

 SemSim: Java library dedicated to the computation of semantic similarity between words. Last 

Version: 2013, Website: http://www.marekrei.com/projects/semsim/ 

 

 Other tools:  

- Semantic similarity of sentences: http://sourceforge.net/projects/semantics/  

 

 

 

 

 

 

 

http://www.linguatools.de/disco/
http://www.cs.memphis.edu/~vrus/SEMILAR/
http://www.marekrei.com/projects/semsim/
http://sourceforge.net/projects/semantics/
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4.1.2 Software Solutions Dedicated to Knowledge-based Measures 

 

This subsection presents a list of existing software solutions for the computation of knowledge-based 

measures. 

 

 

4.1.2.1  Generic software solutions 

 

 Generic software solutions can be used to compare concepts/classes, groups of concepts or instances 

according to their descriptions in KRs. These software solutions can be used with a large variety of KRs 

(i.e. thesaurus, ontologies, and semantic graphs). The proposed solutions are listed alphabetically. 

 

 OWL Sim: Java library dedicated to the comparison of classes defined in OWL. Reference: 

(Washington et al. 2009), License: Not specified, Last version: 2013. 

Website: http://code.google.com/p/owltools/wiki/OwlSim  

 

 The Semantic Measures Library (SML): Java library and command line software dedicated to the 

computation of knowledge-based semantic similarity/relatedness. It can be used to compare a pair 

of concepts/classes, groups of concepts and instances defined in a semantic graph. The SML can 

be used as both, a Java API and command line toolkit. Various types of formats and languages 

used to express KRs are supported, e.g., RDF, OBO, OWL. Several Domain specific formats and 

semantic graphs are also supported, e.g., to load the Gene Ontology, WordNet or biomedical se-

mantic graphs expressed using specific formats, such as MeSH or SNOMED-CT.  

Reference: (Harispe, Ranwez, et al. 2013b), Licence: Cecill (GPL compatible), Last version 2013. 

Website: http://www.semantic-measures-library.org 

 

  

 SemMF: a Java library dedicated to the comparison of objects represented through RDF graphs. 

Reference: (Oldakowski & Bizer 2005). Licence: LGPL, Last version: 2008. 

Website: http://semmf.ag-nbi.de/ 

 

 Similarity Library: Java library which can be used to compute the semantic similarity of pairs of 

concepts defined in an ontology. Strictly speaking, the library is not generic but it can be used to 

exploit KRs such as WordNet, MeSH or the Gene Ontology. Reference: (Pirró & Euzenat 2010a), 

License: None – Download under request, Last version: unknown. 

Website: http://simlibrary.wordpress.com/  

 

 SimPack: Java library which can be used to compute similarity between concepts defined a KR. 

SimPack has been used to include inexact search to SPARQL. Reference: (Bernstein et al. 2005). 

Licence: LGPL, Last version: 2008. 

Website: https://files.ifi.uzh.ch/ddis/oldweb/ddis/research/simpack/ 

 

 SSonde: Java framework and command-line toolkit used to estimate the similarity of instances de-

fined in RDF graphs. Reference: (Albertoni & Martino 2012), Licence: GPL v3, Last version: 

2012.Website: https://code.google.com/p/ssonde/ 

 

 

 

http://code.google.com/p/owltools/wiki/OwlSim
http://www.semantic-measures-library.org/
http://semmf.ag-nbi.de/
http://simlibrary.wordpress.com/
https://files.ifi.uzh.ch/ddis/oldweb/ddis/research/simpack/
https://code.google.com/p/ssonde/
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4.1.2.2  WordNet 

 

Software solutions dedicated to the comparison of words or synsets using WordNet.  

 Generic software solutions: Software solutions such as the Semantic Measures Library or the 

Similarity Library support WordNet. See above for more information. 

 

 

 JWNL and JAWS: Java libraries for the computation of word similarity. License: JWNL - BSD, 

JAWS - none, Last version: JWNL 2009 – JAWS 2009. 

JWNL: http://sourceforge.net/apps/mediawiki/jwordnet/  

JAWS: http://sourceforge.net/projects/jwordnet  

 

 WordNet::Similarity: Perl module which implements a variety of SMs (e.g., Resnik, Lin, Jiang 

and Conrath). Reference: (Pedersen et al. 2004), License: GPL v2, Last version: 2008, Website: 
http://wn-similarity.sourceforge.net/  

 

 

 WS4J: Java library for the computation of similarity between synsets. An alternative Java imple-

mentation of the WordNet::Similarity can also be found at http://www.sussex.ac.uk/Users/drh21/ Li-

cense: GNU GPL v2, Last version: 2013. Website: https://code.google.com/p/ws4j/  

 

 

4.1.2.3 Gene Ontology 

 

List of the software solutions which can be used to compute semantic similarity/relatedness between 

Gene Ontology (GO) terms and gene products annotated by GO terms. 

 

 Generic software solutions: The Semantic Measures Library and the Similarity Library support 

SM computation using the GO. They can be used to compare GO terms and gene product annota-

tions. In addition, the SML-Toolkit, a command-line toolkit associated to the Semantic Measures 

Library, can also be used by non-developers to compute SMs using the GO. See above for more 

information. 

 

 FastSemSim: Python library and command line toolkit which can be used to compare GO terms 

and gene products. License: GPL, Last version 2012. 

Website: http://sourceforge.net/p/fastsemsim 

 

 GOSemSim: R library dedicated to semantic similarity computation using the GO. Reference: (Yu 

et al. 2010), License: GPL-2, Last version: 2012. 

Website: http://www.bioconductor.org/packages/2.11/bioc/html/GOSemSim.html  

 

 GOSim: R library dedicated to semantic similarity computation using the GO. Reference: 

(Fröhlich et al. 2007), License: GPL, Last version: 2012. 

Website: http://www.dkfz.de/mga2/gosim/  

 

 Notice that several other software solutions have been developed for the Gene Ontology alone. Only the 

most important have been presented. Refer to (GO Tools 2013) for a more complete list. 

 

http://sourceforge.net/apps/mediawiki/jwordnet/
http://sourceforge.net/projects/jwordnet
http://wn-similarity.sourceforge.net/
http://www.sussex.ac.uk/Users/drh21/
https://code.google.com/p/ws4j/
http://sourceforge.net/p/fastsemsim
http://www.bioconductor.org/packages/2.11/bioc/html/GOSemSim.html
http://www.dkfz.de/mga2/gosim/
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4.1.2.4  MeSH 

 

List of software solutions which can be used to compute semantic similarity/relatedness between MeSH 

descriptors. 

 

 Generic software solutions: The Semantic Measures Library and the Similarity Library support 

SM computation using the MeSH. The Semantic Measures Library also supports the comparison 

of groups of MesH descriptors and can be used by non-developers through a command-line inter-

face. See above for more information. 

 

 

4.1.2.5 Disease Ontology 

 

 Generic software solutions: The Semantic Measures Library can be used to compare pairs of 

(group of) terms defined in the Disease Ontology. See above for more information. 

 

 DOSim package: R library dedicated to semantic similarity computation using the Disease On-

tolgy. Reference: (J. Li et al. 2011), License: GPL-2, Last version: 2010. 

Website: http://210.46.85.150/platform/dosim/  

 

 

 

4.1.2.6 Unified Medical Language System (UMLS) 

 

 Generic software solutions: The Semantic Measures Library and the Similarity Library support 

SM computation using UMLS. See above for more information. 

 

 UMLS::Similarity: Perl module dedicated to semantic similarity and relatedness computation us-

ing UMLS. Reference: (McInnes et al. 2009), License: unknown, Last version: 2013. 

Website: http://umls-similarity.sourceforge.net/  

 

 

4.1.2.7 Wikipedia  

 

 Wp-semantic-similarity: Java library for semantic similarity measures derived from Wikipedia. 

Last version: 2013, Website: https://github.com/shilad/wp-semantic-similarity  

 

 

4.1.2.8 Other Semantic Graphs 

 

 Generic solutions can be used to handle semantic graphs for which no dedicated software solutions have 

been developed.  

http://210.46.85.150/platform/dosim/
http://umls-similarity.sourceforge.net/
https://github.com/shilad/wp-semantic-similarity
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4.2 Evaluation of Semantic Measures  
 

Evaluation protocols and benchmarks are essential to discuss the benefits and drawbacks of existing or 

newly proposed SMs. They are of major importance to objectively evaluate new contributions and to 

guide SMs’ users in the selection of the best suited measures according to their needs. Nevertheless, de-

spite the large literature related to the field, only few contributions focus on this specific topic.  

 

Generally, any evaluation aims to distinguish the benefits and drawbacks of the compared alternatives 

according to specific criteria. Such comparisons are most of the time used to rank the goodness of 

measures regarding the selected criteria. Therefore, to be compared, three important questions deserve to 

be answered:  

(1) What are the criteria which can be used to compare SMs?  

(2) How to evaluate the goodness of a measure regarding a specific set of criteria? 

(3) Which criteria must be considered to evaluate measures for a specific application context?  

 

4.2.1 Criteria for the Evaluation of Measures 

 

Several criteria can be used to evaluate measures. Among them, we distinguish:  

 The accuracy and precision of a measure.  

 The computational complexity, i.e., algorithmic complexity.  

 The mathematical properties of the measure. 

 The semantics carried by the measure. 

As we will discuss, these criteria can be used to discuss several aspects of measures. 

 

 

4.2.1.1 Accuracy and Precision 

 

The accuracy of a measure can only be discussed according to predefined expectations regarding the re-

sults produced by the measure. Indeed, as defined in metrology, the science of measurement, the accuracy 

of a measurement must be understood as the closeness of the measurement of a quantity regarding the true 

value of that quantity (BIPM et al. 2008).  

 

The precision of a measure (system of measurement) corresponds to the degree of reproducibility or re-

peatability of the score produced by the measure under unchanged conditions. Since most SMs are based 

on deterministic algorithms, i.e., they produce the same result given a specific input, here we focus on the 

notion of accuracy. We will further discuss the precision of a measure as a mathematical property.  

 

The notion of accuracy of a measure is compulsory tight to a context, e.g., semantic proxy (specific cor-

pus, KR, etc.), tuning of the parameters of the measure (if any). Indeed, there is no guaranty that a meas-

ure, which has been proved accurate in a specific context, will be accurate in all contexts. As we will see, 

SMs’ accuracy is therefore evaluated according to expected results.  
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4.2.1.2 Computational Complexity 

 

The computational complexity or algorithmic complexity of SMs is of major importance in most appli-

cations. Considering the growing volumes of datasets processed in semantic analysis (large corpus of texts 

and KRs), the algorithmic complexity of measures plays an important role for the adoption of SMs. 

 

Considering equivalent accuracy in a specific context, most SMs’ users will prefer to make concessions 

on accuracy for a significant reduction of computational time. However, the literature relative to SMs is 

very limited on this subject. It is therefore difficult to discuss algorithmic implications of current pro-

posals, which hampers the non-empirical evaluation of measures and burden the selection of measures. 

It is however difficult to blame SMs’ designer for not providing detailed algorithmic analyses of their 

proposal. Indeed, computational complexity analyses of measures are both technical and difficult to make. 

In addition, most of the time, they depend on a specific type of data structure used to represent the seman-

tic proxy taken into account by the measures, which sometimes create a gap between theoretical possibili-

ties and practical implementations. 

 

Despite its major importance, evaluation of SMs regarding their computational complexity is today dif-

ficult.  

 

 

 

4.2.1.3 Mathematical Properties 

 

Several properties of interest of measures have been distinguished in section 2.3, e.g., symmetry, identi-

ty of the indiscernibles, precision (for non-deterministic measures), and normalization. These mathemati-

cal properties are of particular importance for the selection of SMs. They are for instance essential to ap-

ply specific optimization techniques. They also play an important role to better understand the semantics 

carried by the measures, i.e., the meaning carried by the results produced by the measures.  

 

Mathematical properties are central for the comparison of measures since they are, most of the time, re-

quired to ensure the coherency of treatments relying on SMs, this is for instance the case when inferences 

have to be made based on the scores produced by the measures. As an example, the implication of the lack 

of respect of the identity of the indiscernibles can be strong, It can be conceptually disturbing that compar-

ing a class to itself can produces non-maximal or even low similarity scores, it is however the case using 

some measures in specific contexts
i
.  

 

As we will see, mathematical properties analyses are required to deeply understand measures and there-

fore evaluate their relevance for domain-specific application.  

 

 

 

 

 

 

 

 

                                                      
i As an example using Resnik’s measure based on the notion of information content of concepts (introduced in section 5.5.3), the similari-

ty of a general concept (near to the root) to itself will be low. 
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4.2.1.4 Semantics 

 

 The meaning (semantics) of SMs’ results deserve to be understood by end-users of measures. This 

semantics is defined by the assumptions on which relies the algorithmic design of the measures. Some of 

these assumptions can be understood through the mathematical properties of the measures.  

 

The semantics of a measure is also defined by the cognitive model on which relies the measure, the se-

mantic proxy in use and the semantic evidences analysed. As we have seen in section 2.1.3, the semantic 

evidences taken into account by the measure define its type and its general semantics (e.g., the measure 

evaluates semantic similarity, relatedness…).  

 

It is difficult to compare measures regarding the semantics they carry. It is however essential for SMs 

users to understand that measure selection may in some case strongly impact the conclusions which can be 

supported by the measurement (e.g. semantic similarity, relatedness, etc.). 

 

4.2.2 Existing Protocols and Benchmarks for Accuracy Evaluation 

 

Accuracy of SMs is considered as the de-facto metric to evaluate the performance of measures. SM’s 

accuracy can be evaluated using a direct or an indirect approach. In most cases, measures are evaluated
i
 

using a direct approach, i.e., based on expected scores of measurement (e.g., similarity, relatedness) of 

pairs of elements. In all cases, evaluation of SMs’ accuracy is performed regarding specific expecta-

tions/assumptions: 

 

 Direct evaluation: based on the correlation of SMs with expected scores or other metrics. 

Measures are for instance evaluated regarding their capacity to mimic human rating of semantic 

similarity/relatedness. In this case, the accuracy of measures is discussed based on their correla-

tions with gold standard benchmarks composed of pairs of terms/concepts associated to ex-

pected ratings. For domain-specific studies, a set of experts is used to assess the expected scores 

which will compose the benchmark (e.g., physicians in biomedical studies). The measure can 

also be evaluated regarding their capacity to produce scores highly correlated to metrics which 

summarize our knowledge of compared elements. As an example, in bioinformatics, evaluations 

of measures designed to compare gene products according to their conceptual annotations, is 

sometimes supported by studying their correlation with other measures aiming to compare 

genes (e.g., sequence similarity) (Lord 2003). 

 

 Indirect Evaluation: The evaluation of the measures is based on the analysis of the performance 

of applications or algorithms which rely on SMs. The treatment considered is domain-specific 

dependant, e.g., accuracy of term disambiguation techniques, performance of a classifier or 

clustering relying on a SM to mention a few.  

 

 

 Thereafter, we present the benchmarks which can be used to compare SMs according to human ratings 

of similarity/relatedness. We next introduce other approaches which have been used to evaluate measures 

in specific domains. 

 

                                                      
i Please, in this subsection, understand evaluation as evaluation of accuracy. 
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4.2.2.1 Evaluation of measures based on human ratings 

 

 

 Benchmarks based on human-ratings are composed of pairs of elements for which humans have been 

asked to assign scores of similarity or relatedness. Existing benchmarks are mainly composed of pairs of 

terms. They have been built using a set of humans (experts). The distinction between the notions of simi-

larity and relatedness has been introduced and the subjects have been trained prior to the experiment.  

 

The measures are most of the time evaluated regarding their correlation (Pearson or Spearman) with av-

eraged scores. In some cases, cleaning techniques are used to exclude abnormal ratings. In some cases, 

word-based benchmarks are conceptualized, i.e., words are mapped to concepts, in order to evaluate 

knowledge-based approaches
i
, i.e., terms are manually mapped to concepts/synsets. 

 

We distinguish the general benchmarks, dealing with common words, and domain-specific benchmarks 

involving a specific and technical terminology. 

 

 

4.2.2.1.1 General Benchmarks 

 

 (Rubenstein & Goodenough 1965) – semantic similarity - n=65 

 

 This benchmark is composed of 65 pairs of nouns (ordinary English words), e.g. glass/magician. Sub-

jects were paid college undergraduates (n=51). They were asked to evaluate the (semantic) similarity us-

ing a 0-4 scale. The notion of semantic similarity was defined as the ‘amount of similarity of meaning’ in 

the experiment.  

 

 The study focused on synonymy evaluation. The intra-subject reliability (n=15) on 36 pairs was r=0.85 

using Pearson’s correlation. Inter-subject correlation is not communicated but mean judgment of two dif-

ferent groups was impressively high (r=0.99). 

 

 

 

 (Miller & Charles 1991) – semantic similarity 

 

 Subset of Rubenstein and Goodenough’s benchmark composed of 30 pairs of nouns (n=38).  

 

 

 WordSim353 - (Finkelstein et al. 2001) – semantic relatedness 

 

Two sets of English word pairs along with human rating of semantic relatedness. The first set contains 

153 word pairs (n=13), which includes the 30 nouns pairs contained in (Miller & Charles 1991) bench-

                                                      
i In most cases, the concepts associated to the terms are not communicated in contributions. In some cases, words are mapped to multiple 

concepts and the best score is considered for the evaluation. Nevertheless, these particular cases are poorly documented in the literature. 
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mark. The second set contains 200 pairs (n=16). Row results of the two sets are provided. A concatenation 

of the two sets with averaged scores is also given (which explains the name). 

 

 

 Mturk-771 - (Halawi et al. 2012) – semantic relatedness 

 

 Benchmark composed of 771 pairs of English words along with their semantic relatedness (n>=20 for 

each pair). Inter-correlation of the results was assessed to r~0.89. 

 

 

 (Ziegler et al. 2012) – semantic relatedness 

 

 Two sets of concept/instance pairs denoted by English words. The first contains 25 pairs, the second 30. 

The scores of relatedness were assessed based on an online survey. Inter-subject correlation based on 

Pearson’s correlation is ~0.70 for the two sets. 

 

 

4.2.2.1.2 Domain specific Benchmarks 

 

 Biomedical domain 

 

- (Pedersen et al. 2007) – semantic relatedness 

 

A set of 101 medical concepts rated for semantic relatedness. A subset of this set, composed of 

29 pairs with higher inter-agreement, is generally considered. 

 

- (Pakhomov et al. 2010) – semantic similarity and relatedness 

 

Two sets of UMLS concepts pairs. The first set contains 566 pairs of concepts and is dedicated 

to semantic similarity. The second set is composed of 587 pairs of concepts rated for semantic 

relatedness. 

 

 Other benchmarks 

The Semantic textual similarity campaign also proposes benchmark campaign for the comparison of 

texts (See http://ixa2.si.ehu.es/sts). Other datasets can be adapted to evaluate semantic similarity or relat-

edness, e.g. benchmarks used to evaluate distributional semantic models (Baroni & Lenci 2011). 

 

 

 

 

 

 

 

 

 

http://ixa2.si.ehu.es/sts
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4.2.2.2  Other domain-specific evaluations 

 

4.2.2.2.1 Bioinformatics 

 

Please refer to (Pesquita, Faria, et al. 2009; Pesquita, Pessoa, et al. 2009; Guzzi et al. 2012). 
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5 Semantic Measures Based on Graph Analysis 

 
This section is dedicated to a detailed and technical introduction to knowledge-based SMs which rely on 

graph analysis. These measures have been briefly presented in section 3.4.1, they are also denoted graph-

based SMs or measures framed in the relational setting in the literature (D’Amato 2007). They differ from 

knowledge-based measures taking advantage of logic-based semantics analysis as they are designed to 

take advantage of KRs which do not rely on semantics based on logical constructors and formal grammar.  

 

For convenience, SMs based on graph analysis will be denoted SMs in this section. They can be used to 

compare classes and instances and by extension groups of classes and instances. This section is structured 

as follows.  

 

The first part discusses the importance of graph-based SMs and explains why they have gained a lot of 

attention in the last decades.  

 

The second part extends the introduction to KR presented in section 2.4 and introduces a formal intro-

duction of a semantic graph. The notations which will be considered to discuss technical aspects of the 

measures are also given (e.g., graph notations). In this part, we also discuss the construction of a semantic 

graph from other KRs. Specific treatments of semantic graphs which are required to ensure coherencies of 

(some) measures are also introduced.  

 

The third part discusses the important notion of semantic evidence and present several metrics which 

can be used to extract semantics from a semantic graph. The pivotal notion of class specificity and 

strength of connotation, as well as strategies which have been proposed for their estimation are presented. 

 

Part 4 presents the narrow link between the semantics associated to a measure (e.g., relatedness, similar-

ity) and the information of the graph which is taken into account by the measures. Several approaches for 

the design of SMs are next introduced.  

 

Part 5 to 8 are dedicated to the presentation of graph-based SMs which have been designed for the com-

parison of pair of classes: 

 Part 5, estimation of the semantic similarity of pair of concepts.  

 Part 6, estimation of the semantic similarity of comparison of groups of concepts. 

 Part 7, discusses the unification of the measures defined for the estimation of the semantic simi-

larity of (sets of) classes. 

 Part 8, estimation of the semantic relatedness of two classes. 

 

 Finally, part 9, is dedicated to SMs which have been proposed for the estimation of the semantic relat-

edness of two instances. 
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5.1 Importance of Graph-based Semantic Measures 
 

 

As we have seen, two main families of SMs can be distinguished: distributional measures, which take 

advantage of unstructured or semi-structured texts, and knowledge-based measures which rely on KRs.  

 

Distributional measures are essential to compare units of languages such as words, or even concepts, 

when there is no formal expression of knowledge available to drive the comparison. As we stressed, these 

measures rely on algorithms governed by assumptions to capture the implicit semantics of the elements 

they compare (i.e., mainly the distributional hypothesis). On the contrary, knowledge-based SMs rely on 

formal expressions of knowledge explicitly defining how must be understood the compared elements. 

Thus, they are not constrained to the comparison of units of language and can be used to drive the compar-

ison of any piece of knowledge formally describing a large diversity of elements, e.g., concepts, genes, 

person, music bands, etc. 

 

We have underlined the limitation of knowledge-based measures, which mainly rely on their strong de-

pendence on the availability of a KR - an expression of knowledge which can be difficult to obtain and 

may therefore not be available for all domain of studies. However, in the last decades, we have observed, 

both in numerous scientific communities and industrial fields, the growing adoption of knowledge-

enhanced approaches based on KRs. As an example the Open Biological and Biomedical Ontology (OBO) 

foundry gives access to hundreds of KRs related to biology and biomedicine. Therefore, thanks to the 

large efforts made to standardize the technology stack which can be used to define and take advantage of 

KRs (e.g., RDF(S), OWL, SPARQL - triple stores implementations) and thanks to the increasing adoption 

of the Linked Data and Semantic Web paradigms, a large number of experts and initiatives give access to 

KRs in numerous domains (e.g., biology, geography, cooking, sports).  

 

Even large corporations adopt KRs to support their large-scale worldwide systems. The most significant 

example of the recent years is the adoption of the Knowledge Graph by Google, a graph built from a large 

collection of billions of non-ambiguous subject-predicate-object statements used to formally describe gen-

eral or domain-specific pieces of knowledge. This KR is used to enhance their search engine capabilities 

and millions of users benefit from it daily. Several examples of such large KRs are today available, some 

of them for free: DBpedia, Freebase
i
, Wikidata, Yago.  

Another significant fact of the increasing adoption of KRs is the joint effort made by the major search 

engines companies, e.g., Bing (Microsoft), Google, Yahoo! and Yandex
ii
, to design Schema.org, a set of 

structured schemas defining a vocabulary which can be used to characterize in an unambiguous manner 

the content of web pages.  

An interesting aspect of the last years is also the growing adoption of graph databases (e.g., Neo4J, Ori-

entDB, Titan). These databases rely on a graph structure to describe information in a NoSQL fashion. 

They actively contribute to the growing adoption of the graph property model to describe information 

(Robinson et al. 2013). 

 In this context, a lot of attention has been given to KRs, which in numerous cases merely correspond to 

semantic graphs – characterized elements, concepts, classes, instances and relationships are defined in an 

unambiguous manner and the KR relies only on simple semantics expressions which do not take into ac-

count complex logical constructs. Such semantic graphs have the interesting properties to be easily ex-

pressed and maintained while ensuring a good ratio between semantic expressivity and effectiveness, for 

instance in term of computational complexity of the treatments which rely on them. This justifies the large 

                                                      
i Patent by the company MetaWeb which was next acquired by Google (prior to the release of the Knowledge Graph) 
ii Popular in Russia 
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number of contributions related to the design of SMs dedicated to semantic graphs – a diversity of 

measures this section is dedicated to.  

 

5.2 From Knowledge Representations to Semantic Graphs 
 

For the sake of clarity, let’s remind that we consider any machine understandable expression of 

knowledge through the generic term knowledge representation (KR), the language used to express this 

representation is called a KR language (e.g., RDF, OWL, OBO). Graph-based SMs can be used to take 

advantage of any KR which corresponds or can be embedded to a semantic graph.  

 

In the literature, most knowledge-based SMs have been defined for a specific KR (language), e.g., 

WordNet, Gene Ontology, Linked Data represented as RDF graphs, ontologies taking advantage of specif-

ic description logic (languages). Since the aim of this section is to introduce the diversity of graph-based 

SMs, we must consider a generic formalism which can be used to refer to the expression of several KRs 

(e.g., RDFS graphs, OWL, simple taxonomy). Some of these KRs are not fully representable through a 

semantic graph
i
; we will therefore detail the general process explaining how complex models are generally 

reduced to semantic graph. 

  

5.2.1 Formal Definitions 

 

We first extend the formal model of a KR introduced in section 2.4 and we introduce several notations 

relative to semantic graphs. 

 

 

5.2.1.1 A Formal Model of a Knowledge Representation 

 

 

A KR can be formally defined by 𝑂: {𝐶, 𝑅, 𝐼, 𝑉, 𝐷, 𝐸, 𝐴𝑂}, with: 

 𝐶 the set of classes. 

 𝑅 the set of predicates.  

 𝐼 the set of instances. 

 𝑉 the set of data value 

 𝐷 the set of data types.  

 

 𝐸 the set of oriented relationships of a specific predicate 𝑟 ∈ 𝑅:  

𝐸 ⊆ 𝐸𝐶𝐶 ∪ 𝐸𝑅𝑅 ∪ 𝐸𝐼𝐶 ∪ 𝐸𝐶𝑉 ∪ 𝐸𝑅𝑉 ∪ 𝐸𝐼𝑉 with: 

o 𝐸𝐶𝐶 ⊆ 𝐶 × 𝑅 × 𝐶 

o 𝐸𝑅𝑅 ⊆ 𝑅 × 𝑅 × 𝑅 

o 𝐸𝐼𝐶 ⊆ 𝐼 × 𝑅 × 𝐼 

o 𝐸𝐶𝑉 ⊆ 𝐶 × 𝑅 × 𝑉 

o 𝐸𝑅𝐶 ⊆ 𝑅 × 𝑅 × 𝑉 

o 𝐸𝐼𝑉 ⊆ 𝐼 × 𝑅 × 𝑉 
 

 𝐴𝑂  the set of axioms defining the interpretations of classes and predicates. 

                                                      
i Even if they rely on a graph-based language such as RDF, e.g., complex OWL ontologies can be expressed in RDF but are not semantic 

graphs. 
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 The set of classes (𝐶), predicates (𝑅), instances (𝐼), values (𝑉) and data types (𝐷) are expected to be 

mutually disjoint, e.g. 𝐶 ∩ 𝐼 = ∅. Models enabling the use of data type to characterize specific attribute(s) 

(values) of classes and instances can also defined. These attributes can also be represented as semantic 

relationships (e.g., Figure 4 page 29). 

 

 We consider that each instance is member of at least a class and that all classes are expected to be con-

nected, e.g., subsumed by a general class denoted the root. The graph containing both the instances and 

the classes is therefore connected.  

 

The membership of an instance i to a class X is asserted by a triplet (i, isA, X). Depending on the 

language used to express the KR the isA relationships may change, e.g., RDF(S) uses rdf:type.  

 

We denote I(X) the set of instances which are members of the class X considering the transitivity of ≼𝐶 , 

with: 

𝑋 ≺ 𝑌 =>  𝐼(𝑋) ⊆ 𝐼(𝑌) 
 

 

We also define 𝐼−(𝑋) as the set of instances which are directly associated to a class, i.e., 𝐼− evaluates 

class membership without considering ≼𝐶 . 𝐼−(𝑋) corresponds to the set of instances which are directly 

linked to a class by an isA relationship (considering that redundant relationships have been removed): 

 

𝐼−(𝑋) = {𝑖 | ∃ (𝑖, 𝑖𝑠𝐴, 𝑋)} 
 

 

As an example, consider the following set of statements: 

 
Book subClassOf Document. 

Magasine subClassOf Document. 

 

  

book_1 isA Book . 

book_2 isA Book . 

magasine_1 isA Magasine . 

letter_1 isA Document . 

book_2 isA Document . 

 

 We obtain:  
 

 𝐼(𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡) ={ book_1, book_2, magasine_1 ,letter_1 } 

 𝐼−(𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡) ={ letter_1 } 

 𝐼(𝐵𝑜𝑜𝑘) ={ book_1, book_2 } 
 

 

 Notice that, in some cases, annotated instances are (indirectly) characterized by classes without being 

members of them. For example, books can be annotated to specific topics corresponding to classes: 

 

book_1 hasTitle “On the Origin of Species” . 
book_1 hasAuthor charles_Darwin . 

book_1 hasTopic EvolutionaryBiologyTopic . 

EvolutionaryBiologyTopic subClassOf BiologyTopic 
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In this example, it cannot be considered that the instance book_1 is an instance of the class Evolu-

tionaryBiologyTopic. However, in numerous cases, artificial instances of classes will be considered 

by SMs, e.g., the set of instances characterizing EvolutionaryBiologyTopic will contain book_1. 

The relevance of the function 𝐼 is to be in accordance with the partial ordering of the classes, i.e., 𝑋 ≺
𝑌 ⇒  𝐼(𝑋) ⊆ 𝐼(𝑌). 

 

 

Notice also that in other specific cases, a function ℐ can be used to characterized instances. Indeed, un-

der specific conditions, SM dedicated to the comparison of classes will be used to compare instances 

structured in a partial ordered set. As an example, let’s consider that the topics used to annotate the books 

have been defined as instance of a class Topic and have next be structured in a poset through relation-

ships of predicate subTopicOf.  

 

Formally we can define the mapping ℐ by:  

 

 ℐ ∶ 𝐶 ∪ 𝐼 →  𝑃(𝐼) 
 

A KR 𝑂 with no axiomatic definition, 𝐴𝑂 = ∅, is a graph with specific types of nodes. Therefore KRs 

which rely on simple axiomatic definitions of the properties of the predicates can be mapped to semantic 

graphs without loss of semantics. Some of these KRs are sometimes denoted lightweight ontologies in the 

literature. On the contrary, KRs based on complex axioms and constraints (generally called heavyweight 

ontologies) can only be partially represented by semantic graphs; the mapping to a semantic graph implies 

a reduction and a loss of knowledge initially expressed in the KR (Corcho 2003).  

 

 

5.2.1.2 Semantic Graphs, Relationships and Paths 

 

We further introduce the notations used to refer to particular constitutive elements of a semantic graph. 

 

 

5.2.1.2.1 Relationships/ Statements /Triplets 

 

The relationships of a semantic graph are distinguished according to their predicate and to the pair of el-

ements they link. The triplet (𝑢, 𝑡, 𝑣) corresponds to the unique relationship of type 𝑡 ∈ 𝑅 which links the 

elements 𝑢,𝑣. In the triplet (𝑢, 𝑡, 𝑣), u is named the subject, t the predicate and v the object. Relationships 

are central elements of semantic graphs and will be used to define algorithms and to characterize paths 

graph.  

 

Since the relationships are oriented, we denote 𝑡− the type of relationship carrying the inverse semantic 

of 𝑡. We therefore consider that any relationship (𝑢, 𝑡, 𝑣) implicitly implies (𝑣, 𝑡−, 𝑢), even if the type of 

relationship 𝑡− and the relationship (𝑣, 𝑡−, 𝑢) are not explicitly defined in the graph. As an example, the 

relationship (Human, subClassOf, Mammal) implies the inverse relationship (Mammal, super-

ClassOf, Human), considering that 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓− ≡  𝑠𝑢𝑝𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝑂𝑓. The notion of inverse type will 

be considered to discuss detailed paths. In some KR languages, inverse types are explicitly defined by 

specific construct, e.g., owl:inverseOf. 
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5.2.1.2.2 Graph traversals 

 

Graph traversals are often represented through path in a graph, i.e., sequence of relationships linking 

two nodes. To express such graph paths, we adopt the following notations
i
.  

 

Path: Sequence of relationships [(𝑐𝑖−1, 𝑡𝑖 , 𝑐𝑖), (𝑐𝑖 , 𝑡𝑖+1, 𝑐𝑖+1), … ]. To lighten the formalism, if a 

single predicate is used, the path is denoted [𝑐𝑖−1, 𝑐𝑖 , 𝑐𝑖+1, … ]𝑡. 

 

Path Pattern: We denote 𝜋 = < 𝑡1, … , 𝑡𝑖 > with 𝑡𝑖 ∈ 𝑅, a path pattern which correspond to a 

list of predicates
ii
. Therefore, any path which is a sequence of relationships is an instance of a 

specific path pattern 𝜋.  

 

We extend the use of the path pattern notation to express concise expressions of paths: 

 < 𝑡∗ > corresponds to the set of paths of any length composed only of relationships having for 

predicate 𝑡.  

 < 𝑡∗
∗ > corresponds to the set of paths of any length composed of relationships associated to 

the predicate 𝑡 or 𝑡−1. As an example, {𝐻𝑢𝑚𝑎𝑛, < 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓∗ >, 𝐴𝑛𝑖𝑚𝑎𝑙} refers to all 

paths linking the concepts 𝐻𝑢𝑚𝑎𝑛 and 𝐴𝑛𝑖𝑚𝑎𝑙 which are only composed of relationships sub-

class-of (and do not contain relationships of type 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓−).  

 

We also use mixing of the notations to characterize set of paths between specific elements. As an exam-

ple, {𝑢, < 𝑡, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓∗ >, 𝑣} represents the set of paths linking the elements u and v which starts by a 

relationship of predicate t and which finishes by a path (possibly empty) of subclass-of relationships. As 

an example the class membership function 𝐼 which has been introduced above to characterize the instanc-

es of a specific class can formally be redefined by: 

 

𝐼(𝑋) = {𝑖 | {𝑖, < 𝑖𝑠 − 𝑎, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓∗ >, 𝑋}  ≠ ∅} 
 

 

Since the set of paths {𝑢, < 𝑝1 >, 𝑣} corresponds to a singleton {(𝑢, 𝑝, 𝑣)}, or an empty set if the rela-

tionship (𝑢, 𝑝, 𝑣) doesn’t exists in the graph, we consider that {𝑢, < 𝑝∗ >, 𝑣} can be shorten by {𝑢, 𝑝, 𝑣}. 

 

 

 

5.2.1.3 Notations for Ordered Sets and Taxonomies 

 

 

A strict partial order is a binary relation ≺ over a set 𝐶 which is: 

 Irreflexive ∀𝑐 ∈ 𝐶 ∶  ¬ (𝑐 ≺ 𝑐) 

 Transitive ∀ 𝑢, 𝑣, 𝑤 ∈ 𝐶 ∶ (𝑢 ≺ 𝑣 ∧  𝑣 ≺ 𝑤) ⇒ 𝑢 ≺ 𝑤  
 

A non-strict total order is a binary relation ≼ over a set 𝐶 which is: 

                                                      
i This notation is based on an adaptation of the notation used by (Lao 2012) 
ii In SPARQL 1.1, such paths are denoted using path properties 𝑡1/𝑡2 / . 
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 Antisymmetric ∀𝑢, 𝑣 ∈ 𝐶 ∶  (𝑢 ≼ 𝑣 ∧  𝑣 ≼ 𝑢) ⇒ 𝑢 = 𝑣  

 Transitive ∀ 𝑢, 𝑣, 𝑤 ∈ 𝐶 ∶ (𝑢 ≼  𝑣 ∧  𝑣 ≼  𝑤) ⇒ 𝑢 ≼  𝑤  
 Total ∀𝑢, 𝑣 ∈ 𝐶 ∶  𝑢 ≼ 𝑣 ∨  𝑣 ≼ 𝑢 

 

A non-strict partial order is a binary relation ≼ over a set 𝐶 which is: 

 Reflexive ∀𝑐 ∈ 𝐶 ∶  𝑐 ≼ 𝑐 

 Antisymmetric  

 Transitive  

The set 𝐶 with a partial order is named a partially ordered set (poset). 

 

 

The taxonomy  𝐺𝑇 is the non-strict partial order defined by the taxonomical relationship over the set of 

classes 𝐶. Below, we introduce the notations used to characterize a taxonomy 𝐺𝑇, as well as its classes. 

Some of the notations have already been introduced and are repeated for clarity.  

 𝐶(𝐺𝑇), shorten by 𝐶 refers to the set of classes defined in 𝐺𝑇. 

 

 𝐸(𝐺𝑇), shorten by 𝐸𝑇 refers to the set of relationships defined in 𝐺𝑇 which link two classes, i.e. 

the set of relationships named 𝐸𝐶𝐶 in the general introduction of a semantic graph. 

 

 A class 𝑣 subsumes another class 𝑢 if 𝑢 ≼ 𝑣, i.e., {𝑢, < 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓∗ >, 𝑣} ≠ ∅ . We also say 

that the class 𝑢 is subsumed by 𝑣. 

 

 𝐴(𝑢) the set of classes which subsumes 𝑢, also named the ancestors of 𝑢 or its superclasses, i.e., 

𝐴(𝑢) = {𝑐 | {𝑢, < 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓∗ >, 𝑐} ≠ ∅} ∪ {𝑢}. We also denote 𝐴−(𝑢) = 𝐴(𝑢)\𝑢, the exclu-

sive set of ancestors of 𝑢. 

 

 𝑝𝑎𝑟𝑒𝑛𝑡(𝑢) the minimal subset of 𝐴−(𝑢) from which 𝐴−(𝑢) can be inferred according to the 

taxonomy 𝐺𝑇, i.e., if 𝐺𝑇 doesn’t contain taxonomical redundancies, we obtain: 

𝑝𝑎𝑟𝑒𝑛𝑡(𝑢) = {𝑐 | ∃(𝑢, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, 𝑐)}.  

 

 𝐷(𝑢) the set of classes which are subsumed by 𝑢, also named the descendants of 𝑢, or its sub-

classes, i.e., 𝐷(𝑢) = {𝑐 | {𝑐, < 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓∗ >, 𝑢}  ≠ ∅} ∪ {𝑢}.  

We also denote 𝐷−(𝑢) = 𝐷(𝑢)\𝑢, the exclusive set of descendants of 𝑢. 

 

 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑢) the minimal subset of 𝐷−(𝑢) from which 𝐷−(𝑢) can be inferred according to the 

taxonomy 𝐺𝑇, i.e., if 𝐺𝑇 doesn’t contain taxonomical redundancies, we obtain: 

𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑢) = {𝑐 | ∃(𝑐, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, 𝑢)}.  

 

 𝑟𝑜𝑜𝑡𝑠(𝐺), shorten by 𝑟𝑜𝑜𝑡𝑠, the set of classes {𝑐 | 𝐴(𝑐) = {𝑐}}. We call the 𝑟𝑜𝑜𝑡 the unique 

class, if any, which subsumes all classes, i.e., ∀𝑐 ∈ 𝐶, 𝑐 ≼ 𝑟𝑜𝑜𝑡. 

 

 𝑙𝑒𝑎𝑣𝑒𝑠(𝐺), shorten by 𝑙𝑒𝑎𝑣𝑒𝑠, the set of classes without descendants, i.e. 

𝑙𝑒𝑎𝑣𝑒𝑠 = {𝑐 | 𝐷(𝑐) = {𝑐}}. 

 

 𝐺𝑇
+(𝑢) the graph composed of 𝐴(𝑢) and the set of relationship linking two classes in 𝐴(𝑢). 
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 𝐺𝑇
−(𝑢) the graph composed of 𝐷(𝑢) and the set of relationship linking two classes in 𝐷(𝑢). 

 

 𝐺𝑇(𝑢) = 𝐺𝑇
+(𝑢) ∪ 𝐺𝑇

−(𝑢) the graph induced by both the set of ancestors and descendants of 𝑢. 

 

 Ω(𝑢, 𝑣), the set of Non Comparable Common Ancestors (NOCA) of the classes 𝑢, 𝑣 and formally 

defined by ∀(𝑥, 𝑦) ∈ Ω(𝑢, 𝑣), 𝑥, 𝑦 ∈ 𝐴(𝑢) ∩ 𝐴(𝑣) ∧ 𝑥 ∉ 𝐴(𝑦) ∧ 𝑦 ∉ 𝐴(𝑥). The NCCA are also 

called the Disjoint Common Ancestors (DCAs) in some contributions. 

Note that, despite the fact that we here use the taxonomy of classes and a specific semantics to the nota-

tions, they can be used to characterize any partially ordered set. 

 

 

A taxonomical tree is a special case of 𝐺𝑇 in which: 

 

∀ 𝑐 ∈  𝐶(𝐺𝑇) ∶ |𝑝𝑎𝑟𝑒𝑛𝑡(𝑐)| < 2  
 

5.2.2 Building a Semantic Graph from a Knowledge Representation 

 

 

This section discusses the reduction of a KR to a semantic graph.  

 

 

5.2.2.1 The main steps 

 

A generic process can be used to model the main steps which can be applied to obtain a semantic graph 

from any KR.  

 

Figure 7: Scheme of the main steps used to build a semantic graph from a knowledge representation. 
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Figure 7 presents these main steps: 

 Knowledge modelling: Steps 1 and 2 represent the modelling of a piece of knowledge to a ma-

chine understandable and computational representation. Step 2 defines the expression of a KR 

in a specific language, e.g., OWL, RDF(S). The language which is used conditions the expres-

sivity of the language constructs. 

 

 Knowledge inference: Step 3 represents the optional use of a reasoner to infer knowledge im-

plicitly defined in the KR. As an example, in a KR expressed in RDF(S), this step corresponds 

to the entailment of the RDF graph according to the semantics defined by RDFS, i.e., the use of 

a reasoner to infer triplets according to RDFS entailment rules.  

 

 Mapping to a graph representation: Step 4 is of major importance. It corresponds to the map-

ping of the knowledge base to the corresponding graph representation which can be processed by 

certain measures. In some cases, this step is implicit since the knowledge is already expressed 

through a graph, e.g., taxonomies, WordNet lexical database. Depending on the language used to 

express the KR, this phase may imply a loss of knowledge and must therefore be carefully con-

sidered.  

 

 Graph reduction / cleaning: Step 5 corresponds to the removal of some relationships or classes 

defined in the graph. It may be required to ensure the coherency of SMs. 

 

The phase of knowledge modelling (steps 1 and 2) will not be further discussed in this section. Step 3 

briefly mentions knowledge inferences. We mainly focus on the mapping phase used to create a semantic 

graph from a KR.  

 

5.2.2.2 Knowledge Inferences 

 

As we have seen, implicit knowledge can be associated to a KR. Such knowledge may, in some cases, 

be included into the semantic graph built from the reduction of the KR. As an example, the definition of 

the domain and range of a specific predicates is important information which can be used to class instanc-

es. To ensure that implicit knowledge is inferred according to the semantics associated to the model, infer-

ence engines (reasoners) are expected to be used prior to the construction of the resulting semantic graph, 

e.g., to apply RDFS entailment rules on a RDF graph. 

 

 
5.2.2.3 Mapping To a Graph Representation 

 

In some cases, the mapping of a KR into a semantic graph is straightforward, considering that all the 

statements are materialized in the representation. As we have seen, in some cases, inferences must been 

used to generate implicit statements. Nevertheless, in other cases, KRs are defined using specific and ex-

pressive languages which imply certain considerations to be taken into account. The aim of this section is 

obviously not to define all rules which must be used to build a semantic graph from all languages enabling 

the definition of KRs, e.g. RDF, OWL. We invite the reader to the appendix 4 which discusses some map-

ping techniques which can be used to extract a semantic graph from some language-specific expressions 

of KRs, e.g. RDF, OWL.  
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It is therefore important to consider a distinction between the expression of a semantic graph in a partic-

ular language, which can be built on a graph-based formalism such as RDF, and the semantic graph which 

will be processed by SMs. As an example, OWL KR can be expressed (serialized) using RDF graph as an 

exchange format. However, since graph syntax based on triplets are limiting, many constructs used in 

OWL are encoded into a set of triplets (Horrocks & Patel-Schneider 2003). It’s also important to under-

stand that some KR defined using expressive language, such as description logic, may therefore only par-

tially be modelled in a graph structure as expected by most SMs. 

 

 

5.2.2.4 Semantic Graph Reductions  

 

We denote 𝐺(𝑂), shorten 𝐺 if there is no ambiguity, the reduction of the KR 𝑂 to a semantic graph. In 

addition, we denote 𝐺𝑅′(𝑂), also shorten 𝐺𝑅′ if there is no ambiguity, the reduction of 𝑂 as a semantic 

graph only considering the relationships having as predicate 𝑟 ∈  𝑅′ ⊆  𝑅.  

A common reduction of a KR as a graph is 𝐺{𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠−𝑜𝑓}, shortened by 𝐺𝑇 and named the taxonomical 

reduction. 𝐺𝑇 corresponds to the taxonomy ≼𝐶 , and therefore only contains classes. As we will see this 

reduction is widely used to compute the similarity between classes.  

 

Graph reductions can naturally be more complex. The graph 𝐺𝑅𝑥(𝑂), with 𝑅𝑥 =  {𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, 𝑖𝑠𝐴}, 

refers to the reduction which is composed of the relationships having as predicate subClassOf or isA. 

We denote such a graph 𝐺𝑇𝐼 (T stands for Taxonomical and I for isA relationship). 

 

Studies relying on semantic graphs can be conducted taking the full semantic graph into account or fo-

cusing on a particular subgraph. Depending on the amount of information considered, some properties of 

the graph may change (e.g., acyclicity), along with the strategies and algorithmic treatments used for their 

processing. Since most SMs require the graph to fulfil specific properties, we briefly discuss the link be-

tween graph topologies and SMs. 

 

Considering all types of semantic relationships, a semantic graph generally forms a connected directed 

graph which can contain cycles, i.e. path from a node to itself. The taxonomical reduction (𝐺𝑇), also leads 

to a graph given that a class can inherit from multiple classes. Nevertheless, due to the transitivity of taxo-

nomical relationships, 𝐺𝑇 is expected to be acyclic.  

Taxonomic reductions composed of a unique class which subsumes the others form a Rooted Directed 

and Acyclic Graph (𝑅𝐷𝐴𝐺). 𝐷𝐴𝐺 properties enable efficient graph treatments to be performed, numerous 

SMs take advantage of them. The graph 𝐺𝑇𝐼 is also a RDAG. 

 

Figure 8 presents some of the reductions of a semantic graph which are usually performed prior to con-

sider SMs treatments. This example is based on the reduction of the Gene Ontology (GO) in order to ex-

tract the taxonomical knowledge which is related to a specific aspect of the GO. Such a reduction is gen-

erally performed before comparing pairs of classes. The figure shows the GO, which is composed of three 

subparts (sub-graphs): Molecular Function (MF), Biological Processes (BP), and Cellular Component 

(CC). The GO originally forms a cyclic graph composed of classes linked by various semantic relation-

ships. The first reduction shows the isolation of the MF subgraph. Only classes composing the MF subpart 

and the relationships involving a pair of MF classes are considered. The resulting graph can be cyclic. The 

final reduction only contains MF classes linked by taxonomical relationships, which corresponds to 

a 𝑅𝐷𝐴𝐺. 
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Figure 8: Example of a reduction of a KR and its effects on graph properties. 

 

 

 

5.2.2.5  Semantic Graph Cleaning 

 

The accuracy of treatments relying on SMs and the semantics of their results highly depends on the se-

mantic graph which is processed. The better the semantic graph is, the more accurate the SMs results will 

be. In this context, the quality of semantic graph relies on both, the choices made to model the domain and 

the way this knowledge is defined. During the definition of semantic graph, relationship redundancies can 

be introduced. Such redundancies can impact SMs’ results and thus have to be removed, e.g., documented 

in (Park et al. 2011). 

 

Relationship redundancies appear when a direct semantic relationship between two elements can be in-

ferred (explained) by an indirect one
i
. Redundancies involve transitive relationships. As an example, since 

the taxonomic relationship is transitive, if the semantic graph defines that (Human, subClassOf, Mam-

mal) and (Mammal, subClassOf, Animal) a semantic reasoner can infer that (Human, subClas-

sOf, Animal). In this case, a redundancy occurs when an explicit relationship (non-inferred) defines 

(Human, subClassOf, Animal). Figure 9 shows examples of such redundancies found in the GO. 

 

 Formally, a simple case of redundancy can be formalized by:  

 

 Any relationship (𝑢, 𝑡, 𝑣) is redundant if {𝑢, 𝑡, 𝑣}\{(𝑢, 𝑡, 𝑣)}  ≠ ∅.  

 

 

Relationship redundancies can negatively impact results produced by SMs. As an example, in Figure 9, because 

of these redundancies, a naive SM relying on the edge counting strategy will underestimate the distance between two 

classes. In this case, the semantic distance between two classes is defined as a function of the length of the shortest 

path linking them, e.g. the distance between GO:2000731 and GO:0031327 will be set to 1 instead of 4. 

 

                                                      
i For those familiar to RDF(S), notice that the domain and the range (co-domain) of a predicate, if represented as a relationship, cannot 

induce redundancies, e.g. the triplet (is a parent of, rdfs:domain, Human) doesn’t mean that the triplet (Jean, is-a, Human) is redundant 

considering that  (Jean , is a parent of, Louise) is specified in the knowledge representation. 
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Figure 9: Example of redundant relationships which can be found in the Gene Ontology (GO), version 

06/03/2012. The graph represents a taxonomy of GO terms. Examples of redundant taxonomical relationships are 

represented by red-dotted edges. Since the taxonomic relationships are transitive, redundant relationships can be 

removed without loss of information.  

 

A transitive reduction of 𝐺𝑇 has to be done to remove redundant relationships. An adaptation of the al-

gorithm proposed by (Aho et al. 1972) can be used. Moreover, if the whole KR is considered, the transi-

tive reduction has to (i) consider all transitive relationships and (ii) take into account redundant relation-

ships explained by the transitivity of some predicates over others predicates, e.g., isA, hasPart and 

partOf are transitive over subClassOf. 

 

A specific type of such redundancies are redundancies of class membership. As an example, knowing 

that (Mammal, subClassOf, Animal), defining that (jean, isA, Mammal) also implies that 

(jean, isA, Animal). The latter statement will therefore be considered as redundant if both are de-

fined in a KR.  
 
In some annotation repositories, instances can be annotated by multiple classes/concepts defined in a 

KR
i
. However, the process of annotation may vary depending on the application context considered, i.e., 

conceptual annotations of gene products can be defined manually by curators from multiple evidences 

(e.g. literature, lab experiences) or inferred by algorithms (Hill et al. 2008).  

 

                                                      
i Some communities will better understand “Some instances are defined as members of multiple classes”. 
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Nevertheless, usually, SMs expect instances to be characterized by a minimal set of statements. As an 

example, the transitivity of the taxonomical relationship must be taken into account. It must therefore be 

considered that an instance is indirectly annotated by (i.e. belongs to) the classes subsuming its assigned 

classes. This inference rule is defined as the true path rule in some communities, e.g. Bioinformatics 

(Camon et al. 2004). Therefore, if an instance is characterized by the class OxygenBinding, it is also 

characterized by the class Binding as the latter subsumes the former.  

 

Due to concurrent and automatic annotations processes, redundant annotations are sometimes largely 

found in annotation files and large KRs. However, since some SMs can be affected by such redundancies, 

all inferable annotations are generally expected to be removed. This is for example the case when an in-

stance is regarded as a set of concepts/classes. Figure 10 shows an example of redundant annotations 

which have been found in UniprotKB human gene products annotations
i
. Coloured classes

ii
 represent the 

GO annotations of a particular gene product. However, according to the true path rule, the red classes are 

redundant as they can be inferred from those coloured in blue (bold frame). 

 
The question of statement redundancies generalizes the detection of taxonomical redundancies and can 

also be solved efficiently using an adaptation of a transitive reduction algorithm. 

 

 
 

Figure 10: An example of redundant annotations in the Gene Ontology (GO). GO version 03/06/2012, annotations 

GOA human 03/06/2012. These annotations do not take the transitivity of the taxonomical relationship into account. 

Coloured classes represent P01773 gene GO annotations (GO:0003823 and GO:0005576 omitted in this graph). 

Red classes (normal frame) are redundant as they can be inferred from blue ones (bold frame). 

 

 

 

                                                      
i We found that 45% of the 45014 UniprotKB annotated human genes contain undesired GO annotations (representing 13% of all human 

GO annotations) (date 06/2012). 
ii Here class refers to GO term. 
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5.3 Evidences of Semantics and their Interpretations 
 

A semantic graph carries explicit semantics, e.g. through the taxonomy defining the partial ordering of 

the classes. It also contains implicit semantics evidences. We here consider semantic evidences as any 

information on which can be based interpretations regarding the meaning carried by the KR or the ele-

ments it defines (classes, instances, relationships).  

 

Semantic evidences derive from the study of specific factors which can be used to discuss particular 

properties of the semantic graph or particular properties of its elemens. Therefore, a semantic evidence, 

either based on high assumptions or theoretically justified by the core semantics defined in the representa-

tion, relies on a particular interpretation of a specific property of the KR, e.g. the number of classes de-

scribed in a taxonomy gives a clue on the degree of coverage of the ontology.  

 

 

 

Figure 11: Simple process showing how semantic evidences can be obtained from the analysis of the KR.  

  

Figure 11 schematizes the acquisition of semantic evidences which can be obtained when mining a semantic 

graph. Based on the analysis of specific factors, using particular metrics, some properties of both the semantic graph 

and the elements it defines can be obtained, e.g., the depth of classes and the depth of the taxonomy. Based on these 

properties, and sometimes considering particular assumptions, semantic evidences can be obtained. As an example 

one can consider that the deeper a class is regarding the depth of the taxonomy, the more expressive the class is ex-

pected to be. 

As we will see, several properties are used to consider extra semantics from semantic graphs; they are 

especially important for designing SMs. Knowing (i) the properties which can be used, (ii) how they are 

computed and (iii) the assumptions on which their interpretation rely on, is essential for both SMs design-

ers and users. Indeed, semantic evidences are the core elements of measures; they have been used for in-

stance to: (i) normalize measures, (ii) estimate the specificity of classes and to (iii) weight the relation-

ships defined in the graph, that is to say, to estimate the strength of connotation between classes/instances. 

 

Most of the properties which are used to obtain semantic evidences correspond to well-known graph 

properties defined by graph theory. In this section, we only introduce the main properties which are based 

on the study of the taxonomy 𝐺𝑇. We next introduced two applications of these properties: the estimation 

of the specificity of classes and the estimation of the strength of connotation between classes. 
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5.3.1 Semantics Evidences 

 

In this section we mainly focus on taxonomical evidences. Two kinds of semantic evidences can be dis-

tinguished:  

- Intentional evidences also called intrinsic evidences. They are based on the analysis of proper-

ties associated to the topology of the graph, and mainly rely on the analysis of the topology of 

the taxonomy.  

 

- Extensional evidences. They are based on the analysis of both the topology of the graph and dis-

tribution of the usage of classes (instance memberships)
i
, i.e., the number of instances associat-

ed to classes. In short, interpretations regarding the semantics of the classes can be driven by the 

study of their usage.  

Among these evidences, we can distinguish those which are related to the properties of the full KR, i.e., 

based on global properties, from those which are related to specific elements (classes, instances, relation-

ships) and rely on local properties analysis. 

 

 

5.3.1.1 Intentional Evidences 

 

5.3.1.1.1 Global Properties 

 

 Depth of the taxonomy / maximal number of super classes. 

 

 The depth of the taxonomy corresponds to the maximal depth in 𝐺𝑇. It informs on the degree of expres-

siveness/granularity of the taxonomy. As an example, the deeper 𝐺𝑇, the more detailed the taxonomy is 

expected to be. 

 

 The maximal number of super classes of a class has is also used as an estimator of the upper bound of 

the maximal degree of expressivity of a class. Inversely, the number of classes defined in the taxonomy 

(i.e., the number of subclasses of the root) can also be used as an upper bound of the maximal degree of 

generality of a class defined in the taxonomy. 

 

 Width of the taxonomy. 

The width of taxonomy corresponds to the length of the longest shortest path which links two classes 

in 𝐺𝑇. It informs on the degree of coverage of the taxonomy. Generally the taxonomy is assumed to better 

cover a domain the more important its width is. 

 

 

 

 

 

 

                                                      
i Notice that we don’t consider semantic evidences only based on the usage of classes, i.e., without taking into account the taxonomy. 

Indeed, in most cases, to be meaningful, the distribution of the usage of classes must be evaluated considering the transitivity of the 

taxonomic relationship. If this is not the case, incoherent results could be obtained, e.g., that a class contains more instances than one of 

its superclass. 



S. Harispe, S. Ranwez, S Janaqi & J. Montmain 

70 

 

5.3.1.1.2 Local Properties 

 

 Local density. 

 

 It can be considered that relationships in dense part of a taxonomy represent smaller taxonomical dis-

tances. Metrics such as compactness can be used to characterize local density (Botafogo et al. 1992)
i
. Oth-

er metrics such as the (in/out)-branching factor of a class, i.e., the number of neighbours of a given class
ii
, 

can also be used (Sussna 1993). It is generally assumed that more important the number of subclasses of a 

class is, the more general the class is. 

 

 Number of super classes of class / depth / number of subsumed classes / number of subsumed 

leaves / distance to leaves. 

 

 The number of super classes of a class is often considered to be directly proportional to its degree of 

expressiveness. The more a class is subsumed, the more detailed/restrictive the class is expected to be. The 

number of superclasses can also be interpreted with regard to the maximal number of superclasses a class 

of the taxonomy can have.  

 

 

 The depth of a class is also expected to be directly proportional to its degree of expressiveness. The 

more the depth of a class (according to the maximal depth), the more detailed/restrictive the class is re-

garded
iii
. The depth of a class can also be evaluated according to the depth of the branch in which it is de-

fined.  

 

 In a similar fashion, in some cases, the distance of a class to the leaves it subsumes or the number of 

leaves it subsumes will be considered as an estimator of expressiveness, the more the distance/number the 

less expressive the class is considered. 

 

 

5.3.1.2 Extensional Evidences 

 

5.3.1.2.1 Global Properties 

 

 Distribution of the instances among the classes. 

 

The distribution of the instances among the classes can be used to evaluate the balance of the distribu-

tion and to design local correction factors, e.g. to correct the expressiveness of a class. 

 

 

5.3.1.2.2 Local Properties 

 

 Number of instances associated to a class. 

 

                                                      
i (Botafogo et al. 1992) also introduces interesting factors for graph-based analysis; the depth of a node is also introduced. 
ii Called (in/out) degree of a node in graph theory. 
iii Note that the depth of a class as an estimator of its degree of expressiveness can be seen as an inverse function of the notion of status 

already introduced by (Harary & Norman 1965) to analyze status phenomena in organization. 
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The number of instances of a class is expected to be inversely proportional to its expressiveness, the less 

a class has instances, the more specific the class is expected to be. 

 

 

These semantic evidences and their interpretations have been used to characterize notions extensively 

used by SMs. They are indeed used to estimate the specificity of classes as well as the strength of connota-

tions between classes. 

 

5.3.2 Estimation of Class Specificity 

 

Not all classes have the same degree of informativeness, specificity. Indeed, most people will common-

ly agree that the class Dog is a more specific description for a Living Being than the class Animal.  

The notion of specificity can be associated to the concept of salience defined by Tversky to characterize 

a stimulus according to its ‘intensity, frequency, familiarity, good form, and informational content”. In 

(Bell et al. 1988) it is also specified that “salience is a joint function of intensity and what Tversky calls 

diagnosticity, which is related to the variability of a feature in a particular set [universe, collection of 

instances]”. The idea is to capture the amount of information carried by a class which is expected to be 

directly proportional to its degree of specificity and proportional to its degree of generality. 

 

The notion of specificity of classes is not completely artificial and can be explained by the root of the 

taxonomic organization of knowledge. Indeed, the transitivity of the taxonomical relationship specifies 

that not all classes have the same degree of specificity or detail. The ordering of two classes defines that 

the class which subsumes the other has to be considered as the more abstract one (less specific). In fact, 

the taxonomy explicitly defines that if a class 𝑣 subsumes another class 𝑢, all the instances of 𝑢 are also 

instances of 𝑣: 

 

𝑢 ≼ 𝑣 ⇒ 𝐼(𝑢) ⊆ 𝐼(𝑣) 
 

This expression is represented by Figure 12 in which we can see that the more a class is subsumed by 

numerous classes: (A) the number of properties which characterize the class increases, and (B) the number 

of instances associated to the class decreases. 

 

 

Figure 12: Set-based representations of ordered classes according to (A) their intentional expressions in term of 

properties characterizing the classes, and (B), in term of their extensional expressions, i.e., the set of instances which 

compose the classes. Figure based on (Blanchard 2008). 
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Therefore, another way to compare the specificity of two ordered classes is to study their usage, analys-

ing a collection of instances. Indeed, in a total order of classes
i
, the comparison of the degree of specificity 

of two classes can be made regarding their number of instances. The class which contains the highest 

number of instances will be the less specific (its universe of interpretation is larger). In this case, it is 

therefore possible to assess the specificity of ordered classes either studying the topology of their ordering 

or the set of instances associated to these classes.  

 

 

Nevertheless, in taxonomies, classes are generally only partially ordered. This means that the evidences 

used to compare the specificity of two classes without assumption cannot be used anymore, i.e., classes 

which are not ordered are in some sense not comparable. This aspect is underlined by Figure 13. It’s im-

possible to compare, in an exact manner, the specificity of two non-ordered classes. This is due to the fact 

that the amount of shared and distinct properties can only be estimated regarding the properties character-

izing the common class they derive from. However this estimation can only be a lower bound since extra 

properties shared by the two instances may not be carried by such a common class. 

 

 

 
 
Figure 13: Potential set-based representations of ordered classes according to (A) their intentional expressions in 

term of properties characterizing the classes, and (B), in term of their extensional expressions, i.e., the set of instanc-

es which compose the classes. Figure based on (Blanchard 2008). 

  

However, the appreciation of the degree of specificity of classes is of major importance in the design of 

SMs. Therefore, given that discrete levels of class specificity are not explicitly expressed in a taxonomy, 

various approaches have been explored to define a function 𝜃: 𝐶 → ℝ+ in the aim to evaluate the degree of 

specificity of classes. The function 𝜃 relies on the intrinsic and extrinsic properties presented above. 

 

 

                                                      
i for any pair of classes 𝑢, 𝑣 either 𝑢 ≼ 𝑣 or 𝑣 ≼ 𝑢. 
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The function evaluating the specificity of classes must be in agreement with the taxonomical representa-

tion which defines that classes are always semantically broader than their specializations
i
. Thus, the func-

tion which estimates the specificity of classes must monotonically decrease from the leaves (classes with-

out subclasses) to the root of the ontology, i.e.: 

 

𝑥 ≼  𝑦 ⇒  𝜃(𝑥)  ≥  𝜃(𝑦) 

 

We present the main approaches defined in the literature to express such a function 𝜃. 

 

 

 

5.3.2.1 Basic intrinsic estimators of class specificity 

 

The specificity of classes can be estimated considering the location of its corresponding node in the 

graph. A naive approach will define the specificity of the class 𝑐, 𝜃(𝑐), as a function of some simple prop-

erties related to 𝑐, e.g., 𝜃(𝑐)  =  𝑓(𝑑𝑒𝑝𝑡ℎ(𝑐)), 𝜃(𝑐)  =  𝑓(𝐴(𝑐)) or 𝜃(𝑐)  =  𝑓(𝐷(𝑐)) with 𝐴(𝑐) and 𝐷(𝑐) 

the ancestors and descendants of 𝑐. 

 

The main drawback of simple specificity estimators is that classes with similar depth or equal number 

of superclasses/subclasses will have similar specificities, which is not always true. In fact, two classes can 

be described with various degrees of detail independently of their depth, e.g., (Yu, Jansen & Gerstein 

2007). More refined 𝜃 functions have been proposed to address this limitation. 

 

 

5.3.2.2 Extrinsic Information Content 

 

 

Another strategy explored by SMs designers has been to characterize the specificity of classes accord-

ing to the well-known theoretical framework established in computer-sciences, namely Shannon’s Infor-

mation Theory. The specificity of a class will further be regarded as the amount of information the class 

conveys, its Information Content (IC). The IC of a class can for example be estimated as a function of the 

size of the universe of interpretations associated to it. The IC is a common expression of the 𝜃 function 

and was originally defined by (Resnik 1995) to assess the informativeness of concepts. 

 

The IC of the class 𝑐 is defined as inversely proportional to 𝑝(𝑐), the probability to encounter an in-

stance of 𝑐 in a collection of instances (negative entropy). The original definition of the IC was proposed 

to estimate the informativeness of a concept as a function of its number of occurrences in a corpus of 

texts.  

 

We denote 𝑒𝐼𝐶 any IC which relies on extensional information, i.e., a corpus or collection of instances. 

We consider the formulation of 𝑒𝐼𝐶 originally defined by (Resnik 1995): 

 

𝑝(𝑐) =
|𝐼(𝑐)|

|𝐼|
 

                                                      
i This explains that the specificity of classes cannot be estimated only considering extrinsic information such as the number of instances 

directly characterized by a class (without inference). Indeed, the partial ordering of classes also needs to be taken into account when the 

specificity of classes is estimated. If the transitivity of the taxonomic relationship is not considered to propagate class usage/instance 

membership, the instance distribution can be incoherent with regard to the partial order defined in the underlying taxonomy, i.e., a class 

can have less instances than one of its superclass. 
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𝑒𝐼𝐶𝑅𝑒𝑠𝑛𝑖𝑘(𝑐) =  − log(𝑝(𝑐)) 

 

𝑒𝐼𝐶𝑅𝑒𝑠𝑛𝑖𝑘(𝑐) =  log(|𝐼|) − log(|𝐼(𝑐)|) 

 
 

with 𝐼(𝑐) the set of instances of the class 𝑐, e.g., occurrences of a concept in a corpus. The suitability of 

the log function can be supported by the work of (Shepard 1987)
i
. Notice also the link with Inverse Doc-

ument Frequency (IDF) commonly used in information retrieval (Jones 1972): 

 

𝐼𝐷𝐹(𝑐) = log (|𝐼|/|𝐼(𝑐)|) 

 

𝐼𝐷𝐹(𝑐) = log(|𝐼|) − log(|𝐼(𝑐)|) 

 

 

The main drawback of 𝜃 functions based on extrinsic information is that they highly depend on the us-

age of the classes and will therefore automatically reflect its biases
ii
. In some cases, such a strong depend-

ence between class usage and the estimation of its specificity is desired as all classes which are highly 

represented will be considered as less informative, even the classes which will be considered to be specific 

regarding intrinsic factors (e.g., depth of classes). However, in some cases, biases in class usage can badly 

affect the estimation of the IC and may not be adapted. In addition, the IC computation based on text anal-

ysis can be time consuming and challenging given that, in order to be accurate, complex disambiguation 

techniques have to be used to detect to which concept/class refers an occurrence of a word. 

 

 

5.3.2.3 Intrinsic Information Content  

 

In order to avoid the dependency of 𝑒𝐼𝐶 calculus to statistics related to class usages, various intrinsic IC 

formulations (𝑖𝐼𝐶) have been proposed. They can be used to define 𝜃 functions by only considering struc-

tural information extracted from the KR, e.g., the intrinsic factors we presented in the previous section 

5.3.1.1. This IC formulation extends the basic specificity estimators presented above. 

  

Multiple topological characteristics can be used to express iIC, e.g., number of descendants, ancestors, 

depth, etc. (Seco et al. 2004; Schickel-Zuber & Faltings 2007; Zhou et al. 2008; Sánchez et al. 2011). The 

formulation proposed by (Zhou et al. 2008) is presented. It enables to refine the contribution of both depth 

and number of subclasses (𝐷(𝑐)) to compute class specificity. 

 

 

𝑖𝐼𝐶𝑍ℎ𝑜𝑢(𝑐) =  𝑘 (1 −
log(|𝐷(𝑐)|)

log (|𝐶|)
) + (1 − 𝑘) (

log(𝑑𝑒𝑝𝑡ℎ(𝑐))

log (max _𝑑𝑒𝑝𝑡ℎ)
) 

 

With |𝐶| the number of classes defined in the taxonomy, 𝑑𝑒𝑝𝑡ℎ(𝑐) the depth of the class 𝑐, 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ 

the maximal depth of the ontology and 𝑘 ∈ [0,1]. 
 

                                                      
i Shepard derived his universal law of stimulus generalization based on the consideration that logarithm functions are suited to approxi-

mate semantic distance (Al-Mubaid & Nguyen 2006), please refer to section 2.2.1 for more details. 
ii As an example, this can be problematic for GO-based studies as some genes are more studied and annotated (e.g. drug related genes) 

and annotation distribution patterns among species reflect abnormal distortions, e.g. human/mouse (Thomas et al. 2012). 
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𝑖𝐼𝐶𝑠 are of particular interest as only the topology of the ontology is considered. They prevent errors re-

lated to biases on class usage. However, the relevance of 𝑖𝐼𝐶 relies on the assumption that the ontology 

expresses enough knowledge to rigorously evaluate the specificities of classes. Therefore, as a counter-

part, 𝑖𝐼𝐶𝑠 are sensitive to structural biases in the taxonomy and are therefore sensible to unbalanced tax-

onomy, degree of completeness, homogeneity and coverage of the taxonomy (Batet, Sánchez & Valls 

2010).  

 

 

5.3.2.4 Non-taxonomical Information Content 

 

Both introduced 𝑖𝐼𝐶 and 𝑒𝐼𝐶 only take taxonomical relationships into account. (Pirró & Euzenat 2010a) 

proposed the extended IC (𝑒𝑥𝑡𝐼𝐶) in order to take advantage of all predicated and semantic relationships. 

 

𝑒𝑥𝑡𝐼𝐶(𝑐) = 𝛼𝐸𝐼𝐶(𝑐) + 𝛽𝐼𝐶(𝑐) 

 

𝐸𝐼𝐶(𝑐) =  ∑
∑ 𝑖𝐼𝐶(𝑢)𝑢∈𝐶(𝑐,𝑟,𝑏𝑜𝑡ℎ)

|𝐶𝑖𝑛/𝑜𝑢𝑡(𝑢, 𝑟)|
𝑟∈𝑅

 

 

With 𝐶𝑖𝑛/𝑜𝑢𝑡(𝑢, 𝑟) the set of classes linked to the class 𝑐 by any relationship of type 𝑟 ∈ 𝑅.  

In this formula, the contribution of the various relationships of the same predicate is averaged. Howev-

er, the more a class establishes relationships of different predicates, the more its 𝑒𝑥𝑡𝐼𝐶 will be high. We 

thus propose to average the 𝑒𝑥𝑡𝐼𝐶 (by |𝑅|) or to weight the contribution of the various types of relation-

ships. 

 

 

 

Table 3 lists the various expressions of the function 𝜃 which have been expressed in the literature. 
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Names and References 
Use class 

Extension 

Co-

domain 
Comment 

Depth No [0, 1] 

Normalized depth or max depth can be used. In a graph, considering the minimal 

depth of a class doesn’t ensure that the specificity increases according to the partial 

ordering (due to multi-inheritance). 

Depth non-linear (Seco 2005) No [0, 1] Use log to introduce non-linear estimation. 

IDF 

(Chabalier et al. 2007) 
Yes [0,inf[ 

Inverse Document Frequency (IDF) obtained by dividing the number of instances by 

the number of instances of the class, i.e. 𝐼𝐷𝐹(𝑐) = log (|𝐼|/|𝐼(𝑐)|). 

IC Resnik 

(Resnik 1995) 
Yes 

[0,inf[ , 

[0, 1] 
IC depends on class usage. 𝐼𝐶(𝑐) = −log (|𝐼(𝑐)|/|𝐼|). Normalized version have also 

been proposed, e.g., (Sheehan et al. 2008). 

IC Resnik intrinsic 

(Resnik 1995) 
No [0, 1] Resnik’s IC with ∀𝑐 ∈ 𝐶, |𝐼−(𝑐)| = 1. 

IC Seco 

(Seco 2005) 
No [0, 1] IC estimated from the number of descendants/subclasses. 

IC Zhou 

(Zhou et al. 2008) 
No [0,1] 

Parametric hybrid iIC mixing Seco’s IC and nonlinear depth using a contribution fac-

tor k (originally set at 0.6). 

IC Sanchez et al (A) 

(Sánchez et al. 2011) 
No [0,inf[ 

Consider the number of leaves contained in D(c), the more the number of leaves is 

high, the less specific c is considered. 

IC Sanchez et al. (B) 

(Sánchez et al. 2011) 
No [0,inf[ 

Refined version of version A (see above) exploiting the number of subsumed classes 

(descendants) of a class. 

Yu et al. (TAM) 

(Yu, Jansen & Gerstein 2007) 
Yes [0,inf[ 

The probability p(c) associated to a class is computed as the number of pairs of in-

stances which are members of c divided by total the number of pairs. 

extIC 

(Pirró & Euzenat 2010a) 
No [0, 1] iIC based on all predicates. 

APS (Schickel-Zuber & 

Faltings 2007) 
No [0,1/2] iIC based on the number of descendants of a class. 

 

Table 3: Selection of 𝜃 functions which can be used to estimate the specificity of a class defined in a taxonomy. The estimation can be based on an intrinsic 

strategy, i.e. only evaluating the topology of the taxonomy, or taking advantage of the extensional information associated to the classes. 
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We have presented various strategies which can be used to estimate the specificities of classes 

defined in a partially ordered set. It’s important to understand that these estimators are based on 

assumptions regarding the representation of the knowledge.  

 

 

5.3.3 Estimation of Strength of Connotation between Classes 

 

A notion strongly linked to the specificity of classes is the estimation of the strength of conno-

tation between instances or classes, i.e., the strength of the relationship linking two instances or 

two classes.  

 

Considering taxonomical relationships, it is generally considered that the strength of connota-

tion between classes is stronger the deeper two classes are in the taxonomy. As an example, the 

strength of the taxonomical relationship linking SiberianTiger to Tiger will generally con-

sidered to be more important than the one linking Animal to LivingBeing. Such a notion is 

quite intuitive and has for instance been studied by Quillian and Collins in the early studies of 

semantic networks (Collins & Quillian 1969) - Hierarchical-Network model were built according 

to mental activations evaluated based on the time people took to correctly response to sentences 

linking two classes, e.g., a Canary is an Animal - a Canary is a Bird – a Canary is a Canary. 

Showing the variation of the response time to correctly response to sentences involving two or-

dered classes (Canary / Animal), the authors highlighted the variation of the strength of conno-

tation and the link with the notion of specificity of classes. 

 

It’s worth to note that the estimation of the strength of connotation of two linked classes is in 

some sort a measure of the semantic similarity or taxonomical distance between the two ordered 

classes. The aim of the model proposed to define the strengths of connotation between classes is 

generally based on the assumption that the taxonomical distance conveyed by a taxonomical rela-

tionship shrinks with the depth of the two linked classes (Richardson et al. 1994). Given that the 

strength of connotation between classes is not explicitly expressed in a taxonomy, it has been 

proposed to consider several intrinsic factors to refine its estimation, e.g., (Young Whan & Kim 

1990; Sussna 1993; Richardson et al. 1994). 

  

A taxonomy only explicitly defines the partial ordering of its classes, which means that if a 

class 𝑣 subsumes another class 𝑢, all the instances of 𝑢 are also instances of 𝑣, i.e., 𝑢 ≼ 𝑣 ⇒
𝐼(𝑢) ⊆ 𝐼(𝑣). Nevertheless, non-uniform strength of connotation aim to consider that all taxonom-

ic relationships do not convey the same semantics.  

 

Strictly speaking, taxonomic relationships only define class ordering and class inclusion. There-

fore, according to the extensional interpretation of a class ordering, the universe of interpretation 

of a class, i.e., the set of possible instances of the class regarding the whole set of instances, must 

reduce the more a class is specialized
i
. This reduction of the universe of eligible interpretations 

corresponds to a specific understanding of the semantics of non-uniform strengths of connotation. 

Alternative explanations which convey the same semantics can also be expressed according to the 

insights of the various cognitive models which have been introduced in section 2.2: 

 Spatial/Geometric model, it states that the distance between classes is a non-linear 

function which must take into account class saliency.  

                                                      
i We here consider a finite universe 
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 Feature model (which states that a class is represented by a set of properties). It can be 

seen as the difficulty to further distinguish a class which is meaningful to characterize 

the set of instances of a domain.  

 Alignment and Transformational models: the effort of specialization which must be 

done to extend a class increases the more a class has been specialized. 

 

 All this interpretations state the same central notion - the strength of connotation linking two 

classes is a function of two factors: (i) the specificities of the linked classes and (ii) the variation 

of specificity between the two compared classes. The several semantic evidences introduced in 

the previous section, as well as the notion of information content of classes, can be used to assess 

the strength of connotation between two classes.  

 As an example, a simple model for the definition of the strength of connotation 𝑤 associated to 

a taxonomical relationship linking two classes 𝑢, 𝑣 with 𝑢 ≼ 𝑣 can be defined as a function of the 

information content of 𝑢 and 𝑣 (Jiang & Conrath 1997). 

𝑤(𝑢, 𝑣) = 𝐼𝐶(𝑢) − 𝐼𝐶(𝑣) 
 

It’s important to stress that supporting the estimation of the strength of connotations according 

to the density of classes, the branching factor, the maximal depth or the width of the taxonomy is 

based on assumptions regarding the definition of the KR (once again, refer to the section 5.3.1.1 

which presents the semantic evidences and the assumptions on which they are based on).  

 

 

5.4 Types of Semantic Measures and Graph Properties 
 

Depending on the properties of the semantic graph the SMs evaluate, two main groups of 

measures can be distinguished: 

 Measure adapted to semantic graphs composed of (multiple) predicate(s) potentially 

inducing cycles. 

 Measure adapted to acyclic semantic graphs composed of a unique predicate inducing 

transitivity. 

 

5.4.1 Semantic Measures on Cyclic Semantic Graphs 

 

 As we have seen, considering all predicates defined in 𝐺 potentially leads to a cyclic graph. 

Only few SMs framed in the relational setting are designed to deal with cycles. Since these 

measures take advantage of all predicates, they are generally used to evaluate the semantic relat-

edness and not the semantic similarity. Notice that they can be used to compare concepts and in-

stances. Two types of measures can be further distinguished: 

 

 Graph-Traversal measures, pure graph-based measures. These measures have initially been 

proposed to study node interactions in a graph and essentially derive from graph theory con-

tributions. They can be used to estimate the relatedness of nodes considering that the more 

two nodes interact, directly or indirectly, the more related they are. These measures are not 

SMs per se but graph measures used to compare nodes. However, they can be used on seman-

tic graphs and can also be adapted in order to take into account evidences of semantics de-

fined in the graph. 
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 Graph property model measures designed to compare elements described using the graph 

property model. These measures consider classes or instances as a set of properties expressed 

in the graph. 

 

5.4.1.1 Graph-Traversal Measures  

 

Measures based on graph traversals can be used to compare any pair of classes or instances, 

represented as a node. These measures rely on algorithms designed for graph analysis which are 

generally used in a straightforward manner. Nevertheless, some adaptations have also been pro-

posed in order to take into account the semantics defined in the graph. Among the large diversity 

of measures and metrics which can be used to estimate the relatedness of two nodes in a graph, 

we distinguish:  

 Shortest path approaches. 

 Random-walk techniques. 

 Other interconnection measures. 

 

The main advantage of these measures is their unsupervised nature. Their main drawback is the 

absence of extensive control over the semantics taken into account, which generates difficulties in 

justifying and explaining the resulting scores. However, in some cases, these measures enables 

fine-grain control over the predicates considered. Indeed, approaches have naturally proposed to 

tune the contribution of each relationship or predicate in the estimation of the relatedness. 

 

 

5.4.1.1.1 Shortest path Approaches 

 

The shortest path problem is one of the most ancient problems of graph theory. The intuitive 

edge-counting strategy can be used on any graph. It can be applied to compare both pairs of in-

stances and classes, considering their relatedness as a function of the distance between the nodes 

corresponding to the two compared elements. More generally, the relatedness is estimated as a 

function of the weight of the shortest path linking them. Classical algorithms proposed by graph 

theory can be used; the algorithm to use depends on specific properties of the graph (e.g., does it 

contains cycles? Are their nonnegative weights associated to relationships? Is the graph consid-

ered to be oriented?). 

 

(Rada et al. 1989)
 
were among the first to use the shortest path technique to compare two clas-

ses defined in a semantic graph. This approach is sometimes denoted as the edge-counting strate-

gy in the literature – edge here refers to relationship. Because the shortest path can contain rela-

tionships of any predicate we call it unconstrained shortest path (usp).  

 

One of the drawbacks of usp-based techniques is that the meaning of the relationships from 

which derive the relatedness is not taken into account. In fact, complex semantic paths involving 

multiple predicates and those only composed of taxonomic relationships are for instance consid-

ered equally. Therefore, propositions to penalize 𝑢𝑠𝑝 reflecting complex semantic relationships 

have been proposed (Hirst & St-Onge 1998; Bulskov et al. 2002) . Approaches have also been 

proposed to consider particular predicates in a specific manner. To this end, a weighting scheme 

can also be applied to 𝐺 in order to tune the contribution of each relationship or predicate in the 

computation of the final score.  
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5.4.1.1.2 Random Walk Techniques  

 

These techniques are based on a Markov chain model of random walk. The random walk is de-

fined through a transition probability associated to each relationship. The walker can therefore 

walk from node to node, i.e., each node represents a state of the Markov chain. Based on random 

walk techniques, several measures can be designed to compare two nodes 𝑢 and 𝑣. A selection of 

measures introduced in (Fouss et al. 2007) is listed: 

 The average first-passage time, i.e. the average number of steps needed by the walker 

starting to 𝑢 to reach 𝑣. 

 The average commute time, Euclidean Commute Time Distance. 

 The average first passage cost. 

 The pseudo inverse of the Laplacian matrix. 

These approaches are closely related to spectral-clustering and spectral-embedding techniques 

(Saerens et al. 2004). Examples of measures based on random Walk techniques defined in the 

literature are (Hughes & Ramage 2007; Fouss et al. 2007; Ramage et al. 2009; Alvarez & Yan 

2011; Garla & Brandt 2012). Approaches based on graph-kernel can also be used to estimate the 

similarity of two nodes of a graph (Kondor & Lafferty 2002) and have been used to design SMs 

(Guo et al. 2006).  

 

As an example, the Hitting time 𝐻(𝑢, 𝑣) of two nodes 𝑢, 𝑣 is defined as the expected number of 

steps a random walker starting from 𝑢 will do before 𝑣 is reached. The hitting time can be defined 

recursively by:  

 

𝐻(𝑢, 𝑣) = 1 + ∑ 𝑝(𝑢, 𝑘) 𝐻(𝑘, 𝑣)
𝑘∈𝑁𝑜𝑢𝑡(𝑢)

 

 

With 𝑁𝑜𝑢𝑡(𝑢) the set of nodes which are linked to 𝑢 by an outgoing relationship starting from 

𝑢 and 𝑝(𝑢, 𝑘) the transition probability of the Markov Chain, i.e., 𝑝(𝑢, 𝑘) =
𝑤(𝑢,𝑘)

∑ 𝑤(𝑢,𝑖)𝑖∈𝑁𝑜𝑢𝑡(𝑢) 
 with 

𝑤(𝑢, 𝑘) the weight of the relationship linking 𝑢 to 𝑘. 

 

The commute distance corresponds to 𝐶(𝑢, 𝑣) = 𝐻(𝑢, 𝑣) + 𝐻(𝑣, 𝑢), the expected time a ran-

dom walker travel from 𝑢 to 𝑣 and back to 𝑢. Therefore, the more paths connect 𝑢 and 𝑣, the 

smaller their commute distance becomes. Critics of classical approach to evaluate hitting and 

commute approaches, as well as extensions, have been formulated in the literature, please refer to 

(Sarkar et al. 2008; von Luxburg et al. 2010). 

 

These measures take advantage of second-order information which are generally hard to inter-

pret in semantic terms. 
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5.4.1.1.3 Other Measures based on Interaction Analysis 

 

Several approaches exploiting graph structure analysis can be used to estimate the similarity of 

two nodes of a graph through their interconnections. Such approaches estimate the proximity be-

tween two elements without explicitly taking into account the semantics carried by the graph. 

Consequently, the more the elements are interconnected, either directly or indirectly, the more 

related they will be assumed.  

 

(Chebotarev & Shamis 2006a; Chebotarev & Shamis 2006b) proposed to take into account in-

direct path linking two nodes using the matrix-forest theorem. SimRank, proposed by (Jeh & 

Widom 2002), is an example of such a measure. Considering 𝑁 as the set of nodes of the graph, 

𝑁𝑖𝑛(𝑛) the nodes linked to the node 𝑛 by a single relationship ending to 𝑛 (i.e., in-neighbors), and 

𝑁𝑜𝑢𝑡(𝑛) the nodes linked to 𝑛 by a single relationship starting from 𝑛 (i.e., out-neighbors), Sim-

Rank similarity is defined by: 

 

𝑠𝑖𝑚𝑆𝑖𝑚𝑅𝑎𝑛𝑘(𝑢, 𝑣)  =
|𝑁|

|𝑁𝑖𝑛(𝑢)||𝑁𝑖𝑛(𝑣)|
∑ ∑ 𝑠(𝐶𝑖𝑛

𝑖 (𝑢), 𝐶𝑖𝑛
𝑗

(𝑣))

𝑁𝑖𝑛(𝑣)

𝑗=1

𝑁𝑖𝑛(𝑢)

𝑖=1

 

 

SimRank is a normalized function. An adaptation of this measure have been proposed for se-

mantic graph built from linked data (Olsson et al. 2011).  

 

 

 

5.4.1.2 Semantic Measures for the Graph Property Model 

 

 

The second approach which can be used to compare pair of instances and concepts defined in a 

(potentially) cyclic semantic graph are measures associated to the graph property model.  

 

These measures take advantage of semantic graphs encompassing expressive definitions of 

classes and instances through properties. The properties may sometimes refer to specific data 

types, e.g. strings. Therefore, the nodes composing the semantic graph can be data value, classes 

or instances. The semantic graphs generally correspond to RDF graphs or labelled graphs. Note 

that in RDF, a property corresponds to a specific type of relationship, i.e. predicate. Therefore, a 

direct property 𝑝 of an element 𝑢 corresponds to the set of values associated to 𝑢 through the rela-

tionships of predicate 𝑝. 

 

SMs based on property analysis can be used to consider specific properties of compared ele-

ments. These measures are particularly useful to compare objects defined in (relational) data-

bases, to design ontology mapping algorithms and to perform instance matching treatments in 

heterogeneous knowledge bases. We present three approaches which can be used to compare el-

ements through this notion of property. 
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5.4.1.2.1 Elements Represented as a List of Direct Property 

 

An element can be evaluated by studying its direct properties, i.e., the set of values
i
 associated 

to the element according to the study of a particular predicate. As an example, two types of predi-

cate can be associated to an instance:  

 Taxonomic relationships, i.e., the relationship links the instance to a class.  

 Non-taxonomical relationships: 

o The property links the instance to another instance
ii
. 

o The property links the instance to a specific data value
iii
.  

 

 Two elements will be compared with regard to the values associated to each property consid-

ered. Each property is therefore associated to a specific measure which is used to compare the 

values taken by this property.  

 Properties which link an instance to other instances are in most occasions compared using set-

based measures, which for example will evaluate the quantity of instances of shared sets (e.g., the 

number of music genres two groups have in common). Taxonomical properties are evaluated us-

ing SMs adapted to the class comparison. Properties associated to data values can be compared 

using measures adapted to the type of data considered, e.g., in using a measure to compare dates 

if the corresponding property is a date. 

 

 The scores produced by the various measures associated to the various properties are aggregat-

ed in order to obtain a global score of relatedness for two instances (Euzenat & Shvaiko 2007). 

Such a representation has been formalized in the framework proposed by (Ehrig et al. 2004). This 

is a strategy commonly adopted in ontology alignment, instance matching or link discovery be-

tween instances; SemMF (Oldakowski & Bizer 2005), SERIMI (Araujo et al. 2011) and SILK 

(Volz et al. 2009) are all based on this approach.  

 

 

5.4.1.2.2 Elements Represented as An Extended List of Property 

 

Several contributions underscore the relevance of indirect properties in comparing entities rep-

resented through graphs, especially in object models (Bisson 1995). Referring to the KR proposed 

in Figure 14, such a representation might be used to consider the characteristics (properties) of 

the music genres for the purpose of comparing two music bands.  

 

                                                      
i Note that we here do not refer to the specific data value as the value can be a class or another instance. 
ii Object properties in OWL. 
iii Datatype properties in OWL. 
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Figure 14: Example of a semantic graph involving classes, instances and data values (Harispe, Ranwez, 

et al. 2013a). 

 

This approach relies on a representation of the compared elements which is an extension of the 

canonical form to represent an element as a list of properties. This approach can be implemented 

to take into account indirect properties of compared elements, e.g., properties induced by the ele-

ments associated to the element we want to characterize.  

 

A formal framework, enhancing the one proposed in (Ehrig et al. 2004), has thus been pro-

posed to capture some of the indirect properties (Albertoni & De Martino 2006). This framework 

is dedicated to the comparison of instances. It formally defines an indirect property of an instance 

along a path in the graph. The indirect properties to be taken into account are defined for a class 

and depend on a specific context, e.g. application context.  

 

From a different perspective, Andrejko and Bieliková (Andrejko & Bieliková 2013) suggested 

an unsupervised approach for comparing a pair of instances by considering their indirect proper-

ties. Each direct property shared between the compared instances plays a role in computing the 

global relatedness. When the property links one instance to another, the approach combines a 

taxonomical measure with a recursive process to take into account the properties of instances 

associated with the instance being processed.  

Lastly, in estimating the similarity between two instances, the measure aggregates the scores 

obtained during the recursive process. The authors have also proposed to weight the contributions 

of the various properties so as to define a personalized information retrieval approach. 
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5.4.1.2.3 Elements Represented Through Projections 

 

The framework proposed by (Harispe, Ranwez, et al. 2013a) enables to compare elements 

through different projections characterizing the properties of interest.  

The approach has initially been defined to compare two instances, but can also be used to com-

pare classes. We here present the perspectives it opens for the comparison of instances. In addi-

tion to the formal characterization of an instance through an extended list of properties, this 

framework also considers complex properties of instances, i.e., properties that rely in combining 

various properties.  

Indeed, using the other approaches, considering that the weight and the size of several persons 

have been specified in the graph, it is impossible to compare two persons by taking into account 

their body mass index, a metric which can be computed from the weight and the height. Therefore 

according to the following statements: 
 

luc asWeightInKG 70 . 

luc asHeightInM 1,75 . 

 

marc asWeightInKG 85 . 

marc asHeightInM 1,80 . 

 

steve asWeightInKG 120 . 

steve asHeightInM 1,70 

 

Luc and Marc will be regarded as more similar than Luc/Steve and Marc/Steve according to 

their body mass index. Therefore the main idea is to enable the definition of complex property 

reflecting properties of the compared elements which are not materialized into the graph. The 

framework proposed by (Harispe, Ranwez, et al. 2013a) can be used to consider such properties.  

 

Finally, the comparison of two instances is made through the aggregation of the value of simi-

larity which is associated to the compared projections. As an example, the authors used a simple 

weighted sum in their experiments. 

 

5.4.2 Semantic Measures on Acyclic Graphs 

 

Note that all the measures which can be used on the whole semantic graph G can also be used 

for any acyclic reduction GR ⊆ G. Nevertheless, numerous SMs have been defined to work on a 

reduction of 𝐺. Depending on the topological properties of the reduction, two cases can be distin-

guished: 

1. The reduction 𝐺𝑅 leads to a cyclic graph. Adapted SMs are therefore those previously 

presented for cyclic graphs in section 5.4.1. 

 

2. 𝐺𝑅 is acyclic, then particular techniques and algorithms can be used. Most SMs defined 

for acyclic graphs focus on taxonomical relationships defined in 𝐺𝑅 and consider the 

reduction to be the taxonomy of classes 𝐺𝑇. However, some measures consider a spe-

cific subset of 𝑅, e.g., 𝑅 =  {𝑖𝑠𝐴, 𝑝𝑎𝑟𝑡𝑂𝑓 }, which also produces in some cases an acy-

clic graph (Wang et al. 2007). The measures which can be used in this case are usually 

designed from a generalization of semantic similarity measures, i.e. measures only 

considering 𝐺𝑇. 
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SMs applied to graph-based KRs were originally designed for taxonomies, i.e. , 𝐺𝑇. Since most 

KRs are usually mainly composed of taxonomic relationships or poset structures, substantial liter-

ature is dedicated to semantic similarity measures. Thus, most SMs designed for semantic graphs 

focus on 𝐺𝑇 and have been defined for the comparison of pairs of classes. 

  

 

 

 

5.5 Semantic Similarity between Pairs of Classes 
 

The majority of SMs framed in the relational setting have been proposed to assess the semantic 

similarity or taxonomical distance of a pair of classes defined in a taxonomy. Given that they are 

designed to compare two classes, these measures are denoted pairwise measures in some com-

munities, e.g., in bioinformatics (Pesquita, Faria, et al. 2009). As we will see, an extensive litera-

ture is dedicated to these measures as they can be used to compare any pairs of nodes expressed 

in a graph which defines a (partial) ordering, that is to say, any graph structured by relationships 

which are transitive, reflexive and antisymmetric (e.g., isA, partOf).  

 

In section 3.4.1, we already distinguished the main approaches used for the definition of 

knowledge-based SMs framed in the relational setting. Considering the measures which can be 

applied to acyclic graphs, we distinguished:  

 Measures based on graph structure analysis. They estimate the similarity as a func-

tion of the degree of interconnection between classes. They are generally regarded as 

measures framed in the spatial model – the similarity of two classes is estimated as a 

function of their distance in the graph, e.g., based on the analysis of the lengths of the 

paths linking the classes. These measures can also be considered to be framed in the 

transformational model, considering them as functions which estimate the similarity of 

two classes regarding the difficulty to transform a class to another. 

 

 Measures based on class features analysis. This approach uses the graph to extract 

features of classes. These features will next be analysed to estimate the similarity as a 

function of shared and distinct features of the compared classes. This approach is con-

ceptually framed in the feature model. The diversity of feature-based measures relies 

on the fact that various strategies proposed to characterize class features and to take 

advantage of them to assess the similarity. 

 

 Measures based on Information Theory. Based on a function used to estimate the 

amount of information carried by a class, i.e. its information content (IC), these 

measures assess the similarity according to the evaluation of the amount of information 

which is shared and distinct between the compared classes. This approach is framed in 

information theory; it can however be seen as a derivative of the feature-based ap-

proach in which features are not appreciated using a binary feature-matching evalua-

tion (shared/not shared), but incorporate also their saliency, i.e. the degree of informa-

tiveness. 

 

 Hybrid measures. Measures which are based on multiple paradigms. 
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The broad classification of measures we propose is interesting to introduce the basic approach-

es defined to assess the similarity of two classes, and to put them in perspectives with the models 

of similarity proposed by cognitive sciences. It’s however challenging to constraint the diversity 

of measures to this broad classification. It’s important to understand that these three main ap-

proaches are highly interlinked and cannot be seen as disjoint categories. As an example, all 

measures rely on the analysis of the structure of the ontology as they all take advantage of the 

partial ordering defined by the (structure of the) taxonomy. These categories must be seen as de-

vices used by SMs designers to introduce approaches and highlight relationships between several 

proposals. Indeed, as we will see, numerous approaches can be regarded as hybrid measures 

which take advantage of techniques and paradigms used to characterize measures of a specific 

approach. Therefore, the affiliation of a specific measure to a particular category is often subject 

to debate, e.g., (Batet 2011a). This can be partially explained by the fact that several measures can 

be redefined or approximated using reformulations, in a way that further challenge the classifica-

tion. Indeed, the more you analyse SMs, harder it is to constraint them to specific boxes; the anal-

ogy can be made with the relationship between the cognitive models of similarity
i
.  

 

Several classifications of measures have been proposed. The most common one is to distin-

guish measures according to the elements of the graph they take into account (Pesquita, Faria, et 

al. 2009). This classification distinguishes three approaches: (i) edge-based, measures focusing on 

relationship analysis, (ii) node-based, measures based on node analysis and (iii) hybrid measures, 

measures which mix both approaches. In the literature, edge-based measures often refer to struc-

tural measures, node-based measures refer to measures framed in the feature-model and those 

based on information theory. Hybrid measures are those which implicitly or explicitly mix several 

paradigms.  

Another interesting way to classify measures is to study if they are (i) intentional, i.e. based on 

the explicit definition of the classes expressed by the taxonomy, (ii) extensional, i.e., based on the 

analysis of the realizations of the classes (i.e., instances), or (iii) hybrid, measures which mix both 

intentional and extensional information about classes
ii
.  

 

In some cases, authors will mix several types of classifications to present measures. In this sec-

tion we will introduce the measures according to the four approaches presented above: (i) struc-

tural, (ii) feature-based, (iii) framed in information theory and (iv) hybrid. We will also specify 

the extensional, intentional, or hybrid nature of the vision adopted in the design of the measures. 

 

Numerous class-to-class measures have been defined for trees, i.e. special graphs without mul-

tiple inheritances. In the literature, these measures are generally considered to be applied out-of-

the-box on graphs. However, in the context of graphs, some adaptations deserve to be made and 

several components of the measures generally need to be redefined in order to avoid ambiguity, 

e.g., to be implemented in a computer software. For the sake of clarity, we first highlight the di-

versity of proposals by introducing the most representative measures defined according to the 

different approaches. Measures will most of the time be presented according to their original def-

initions. When the measures have been defined for trees, we will not stress the modifications 

which must be taken into account for them to be used on graphs. These modifications will be dis-

cussed after the introduction of the diversity of measures. 

 

                                                      
i We invite the reader to refer to the dedicated section 2.2.5 and more particularly to the efforts made for the unification of the 

various models. 
ii French reader can refer to (Gandon et al. 2005; Aimé 2011) for examples of such classifications. 
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5.5.1 Structural Approach 

 

Structural measures rely on the graph-traversal approaches presented in subsection 5.4.1.1(e.g., 

shortest path techniques, random walk approaches). They focus on the analysis of the intercon-

nection between classes to capture their similarity. However, they most of the time consider spe-

cific tuning in order to take into account specific properties and interpretations induced by the 

transitivity of the taxonomical relationships. In this context, some authors, e.g., (Hliaoutakis 

2005), have linked this approach to spreading activation theory (Collins & Loftus 1975). The 

similarity is in this case seen as a function of propagation between classes through the graph.  

 

Back in the eighties, (Rada et al. 1989) expressed the taxonomical distance of two classes de-

fined in a taxonomic tree as a function of the shortest path linking them
i
. We denote 

𝑠𝑝(𝑢, 𝑖𝑠𝑎∗, 𝑣) the shortest path between two classes 𝑢 and 𝑣, i.e., the path of minimal length 

in {𝑢, 𝑖𝑠𝑎∗, 𝑣}. Remind that the length of a path has been defined as the sum of the weights asso-

ciated to the edges which compose the path. When the edges are not weighted we refer to the 

edge-counting strategy and the length of the shortest path is the number of edges it contains. The 

taxonomical distance is therefore defined by
ii
:  

 

𝑑𝑖𝑠𝑡𝑅𝑎𝑑𝑎(𝑢, 𝑣) = 𝑠𝑝(𝑢, 𝑠𝑢𝑏𝑜𝑓∗, 𝑣) 
 

with 𝑠𝑢𝑏𝑜𝑓 the name given to the predicate subClassOf. 

 

In a tree, the shortest path 𝑠𝑝(𝑢, 𝑖𝑠𝑎∗, 𝑣) contains a unique common ancestor of 𝑢 and 𝑣. This 

common ancestor is the Least Common Ancestor (LCA)
iii
 of the two classes according to any 

function 𝜃 (since the 𝜃 function is monotonically decreasing)
iv
.  

 

Note that distance-to-similarity conversions can also be applied to express a similarity from a 

distance (see Appendix 5). A semantic similarity can therefore be defined in a straightforward 

manner: 

𝑠𝑖𝑚𝑅𝑎𝑑𝑎(𝑢, 𝑣) =
1

𝑑𝑖𝑠𝑡𝑅𝑎𝑑𝑎(𝑢, 𝑣) + 1
 

  

Notice the importance to consider the transitive reduction of the tree/graph to obtain coherent 

results using shortest path based measures – in the following presentation, we consider that the 

taxonomy do not contains redundant relationships.  

 

Several critics of the shortest path techniques have been formulated. The edge-counting strate-

gy or more generally any shortest path approach with uniform edge weight, have been criticized 

for the fact that the distance represented by an edge linking two classes do not take into account 

of class specificities/salience
v
. Several modifications have therefore been proposed to break this 

constraining uniform appreciation of edges induced by the edge-counting strategy. Implicit or 

                                                      
i It’s worth to note that they didn’t invented the notion of shortest path in a graph. In addition, in (Foo et al. 1992), the authors 

refers to a measure proposed by Gardner and Tsui (1987) to compare concepts defined in a conceptual graph using the 

shortest path technique. 
ii In this section, equations named dist refer to taxonomical distances. 
iii The Least Common Ancestor is also denoted the Last Common Ancestor (LCA),  the Least Common Sub-

sumer/Superconcept (LCS) or Lowest SUPER-ordinate (LSuper). 
iv Here rely the importance of applying the transitive reduction of the taxonomical graph/tree, redundant taxonomic relation-

ships can challenge this statement and therefore heavily impact the semantics of the results. 
v As an example, (Foo et al. 1992) quotes remarks made in Sowa personal communication. 
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explicit models defining non-uniform strength of association between classes, have therefore been 

introduced e.g., (Young Whan & Kim 1990; Sussna 1993; Richardson et al. 1994) – they have 

been introduced in section 5.3.3.  

 

One of the main challenge of SM designers over the years have therefore been to implicitly or 

explicitly take advantage of semantic evidences regarding the expressiveness of classes and the 

strength of connotation between classes in the design of measures. The different strategies and 

factors used to appreciate class specificity as well as strength of connotations have already been 

introduced in section 5.3. Another use of the various semantic evidences which can be extracted 

from 𝐺𝑇 has been to normalize the measures. As an example, (Resnik 1995) proposed to consider 

the maximal depth of the taxonomy to bound the edge-counting strategy: 

 

𝑠𝑖𝑚𝑅𝑒𝑠𝑛𝑖𝑘−𝑒𝑏(𝑢, 𝑣) = 2 ∗ 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ −  𝑠𝑝(𝑢, 𝑠𝑢𝑏𝑜𝑓, 𝐿𝐶𝐴(𝑢, 𝑣)) − 𝑠𝑝(𝑣, 𝑠𝑢𝑏𝑜𝑓, 𝐿𝐶𝐴(𝑢, 𝑣)) 
 

To simulate non uniform edge weighting (Leacock & Chodorow 1998)
i
 introduced a log trans-

form consideration of the edge counting strategy: 

 

𝑠𝑖𝑚𝐿𝐶(𝑢, 𝑣) =  −log (
𝑁

2 ∗ max _𝑑𝑒𝑝𝑡ℎ
) =  log (2 ∗ max _𝑑𝑒𝑝𝑡ℎ) − log (N) 

  

with 𝑁 the cardinality of the union of the sets of nodes involved in the 

paths 𝑠𝑝(𝑢, 𝑠𝑢𝑏𝑜𝑓, 𝐿𝐶𝐴(𝑢, 𝑣)) and 𝑠𝑝(𝑣, 𝑠𝑢𝑏𝑜𝑓, 𝐿𝐶𝐴(𝑢, 𝑣)). 

 

Authors have also proposed to take into account the specificity of compared classes, e.g., (Mao 

& Chu 2002), sometimes as a function of the depth of their LCA, e.g., (Wu & Palmer 1994; Pekar 

& Staab 2002; J. Wang et al. 2012).  

As an example, the strategy proposed by (Wu & Palmer 1994) was to express the similarity of 

two classes as a ratio taking into account the shortest path linking the classes as well as the depth 

of their LCA.  

 

𝑠𝑖𝑚𝑊𝑃(𝑢, 𝑣) =
2 𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑢, 𝑣))

2 𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑢, 𝑣)) + 𝑠𝑝(𝑢, 𝑠𝑢𝑏𝑜𝑓, 𝐿𝐶𝐴(𝑢, 𝑣)) + 𝑠𝑝(𝑣, 𝑠𝑢𝑏𝑜𝑓, 𝐿𝐶𝐴(𝑢, 𝑣))
 

 

This function is of the form: 

𝑓(𝑥, 𝑦, 𝑧) =
𝑥

𝑥 + (𝑦 + 𝑧)/2
  

 

with 𝑥 the depth of the LCA of the two classes 𝑢, 𝑣 and 𝑦 + 𝑧 the length of the shortest path link-

ing 𝑢, 𝑣, it is easy to see that for any given non-null length of the shortest path, this function is 

increasing with 𝑥; otherwise stated, to a given shortest path length, the similarity of 𝑢, 𝑣 increases 

with the depth of their LCA. In addition, as expected, for a given depth of the LCA, the more the 

length of the shortest path linking 𝑢, 𝑣 increases, less similar they will be considered.  

Based on a specific expression of the notion of depth, a parameterized expression of 𝑠𝑖𝑚𝑊𝑃 has 

been proposed in (Wang & Hirst 2011). A variation has also been proposed by (Pekar & Staab 

2002): 

 

                                                      
i Note that according to (Resnik 1995), this approach was already proposed in an 1994 unpublished paper of the same authors 

(Leacock & Chodorow 1994). 



SEMANTIC MEASURES FOR THE COMPARISON OF UNITS OF LANGAGE, CONCEPTS AND 

INSTANCES FROM TEXTS AND KNOWLEDGE REPRESENTATIONS ANALYISIS 

89 

 

𝑠𝑖𝑚𝑃𝑆(𝑢, 𝑣) =
𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑢, 𝑣))

𝑠𝑝(𝑢, 𝑠𝑢𝑏𝑜𝑓, 𝐿𝐶𝐴(𝑢, 𝑣)) + 𝑠𝑝(𝑣, 𝑠𝑢𝑏𝑜𝑓, 𝐿𝐶𝐴(𝑢, 𝑣)) +  𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑢, 𝑣))
 

 

 

 

(Zhong et al. 2002) also proposed to compare classes taking into account the notion of depth: 

 

𝑑𝑖𝑠𝑡𝑍ℎ𝑜𝑛𝑔(𝑢, 𝑣) = 2 
1

2𝑘𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑢,𝑣))
−

1

2𝑘𝑑𝑒𝑝𝑡ℎ(𝑢)
−

1

2𝑘𝑑𝑒𝑝𝑡ℎ(𝑣)
 

 

with 𝑘 > 1 a factor defining the contribution of the depth.  

 

In a similar fashion, (Li et al. 2003; Li et al. 2006) defined a parametric function in which both the 

maximal depth and the length of the shortest path are taken into account: 

  

𝑠𝑖𝑚𝐿𝐵(𝑢, 𝑣) =  𝑒−𝛼 𝑑𝑖𝑠𝑡𝑅𝑎𝑑𝑎(𝑢,𝑣) × 𝑑𝑓(𝑢, 𝑣)  
with, 

𝑑𝑓(𝑢, 𝑣) =  
𝑒𝛽ℎ − 𝑒−𝛽ℎ

𝑒𝛽ℎ + 𝑒−𝛽ℎ
  

 

The parameter ℎ corresponds to the depth of the LCA of the compared classes, i.e. ℎ =
𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑢, 𝑣)). The parameter 𝛽 > 0 is used to tune the depth factor (df) and to set the im-

portance to give to the degree of specificity. The function used to express df corresponds to the 

hyperbolic tangent which is normalized between 0 and 1. It defines the degree of nonlinearity to 

associate to the depth of the LCA. In addition 𝛼 ≥ 0 controls the importance of the taxonomic 

distance expressed as a function of the length of the shortest path linking the two classes. 

 

Approaches have also been proposed to modify specific measures in order to obtain particular 

properties. As an example, (Slimani et al. 2006)
 
proposed an adaptation of Wu & Palmer measure 

to avoid the fact that in some cases neighbour classes can be estimated as more similar than clas-

ses defined in the same hierarchy. To this end, the authors introduced 𝑠𝑖𝑚𝑡𝑏𝑘 which is based on a 

factor used to penalized classes defined in the neighbourhood: 

 

𝑠𝑖𝑚𝑡𝑏𝑘(𝑢, 𝑣) = 𝑠𝑖𝑚𝑊𝑃(𝑢, 𝑣) × 𝑝𝑓(𝑢, 𝑣) 
 

with, 

 

𝑝𝑓(𝑢, 𝑣) = (1 − 𝜆)  (min(𝑑𝑒𝑝𝑡ℎ(𝑢), 𝑑𝑒𝑝𝑡ℎ(𝑣)) − max _𝑑𝑒𝑝𝑡ℎ)

+ 𝜆(𝑑𝑒𝑝𝑡ℎ(𝑢) + 𝑑𝑒𝑝𝑡ℎ(𝑣) + 1)−1 

 

In the same vain (Ganesan et al. 2012; Shenoy et al. 2012) recently proposed alternative 

measures answering the same problem. The approach proposed by (Shenoy et al. 2012) is pre-

sented
i
: 

 

𝑠𝑖𝑚𝑆ℎ𝑒𝑛𝑜𝑦(𝑢, 𝑣) =
2 max _𝑑𝑒𝑝𝑡ℎ 𝑒−𝜆𝐿/max _𝑑𝑒𝑝𝑡ℎ

𝑑𝑒𝑝𝑡ℎ(𝑢) + 𝑑𝑒𝑝𝑡ℎ(𝑣)
 

                                                      
i Note that we assume that the paper contains an error in the equation defining the measure. The formula is considered to be X 

/ (Y+Z), not X/Y +Z as written in the paper. 
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with 𝐿 the weight of the shortest path computed by penalizing paths with multiple changes of type 

of relationships, e.g. a path following the pattern <𝑖𝑠𝑎,  𝑖𝑠𝑎−, 𝑖𝑠𝑎, … >. Note that the penalization 

of paths inducing complex semantics, e.g. which involves multiple type of relationships, was al-

ready introduced in (Hirst & St-Onge 1998; Bulskov et al. 2002). 

 

Several approaches have also been proposed to consider density of classes, e.g., through analy-

sis of cluster of classes (Al-Mubaid & Nguyen 2006). Other adaptations also proposed to take 

into account classes distance to leaves (Wu et al. 2006) and variable strengths of connotation con-

sidering particular strategies (Lee et al. 1993; Zhong et al. 2002), e.g. using IC variability among 

two linked classes or multiple topological criteria (Jiang & Conrath 1997; Couto et al. 2003; M. 

Alvarez et al. 2011). 

 

In the vein of the spreading activation theory, measures have also been defined as a function of 

transfer between the compared classes (Schickel-Zuber & Faltings 2007). (Wang et al. 2007) use 

a similar approach based on a specific definition of the strength of connotation. Finally, pure 

graph-based approaches defined for the comparison of nodes can also be used to compare classes 

defined in a taxonomy (refer to section 3.4.1.1). As an example, (Garla & Brandt 2012; Yang et 

al. 2012) used random walk techniques such as the personalized page rank approach to define 

semantic similarity measures. 

 

As we have seen, most of structural semantic similarity measures are extensions or refinements 

of the intuitive shortest path distance considering intrinsic factors to consider both the specificity 

of classes and variable strengths of connotations. Nevertheless, the algorithmic complexity of the 

shortest path algorithms hampers the suitability of these measures for large semantic graphs. To 

remedy this problem, we have seen that shortest path computation is replaced by approximation 

based on the depth of the LCA of the compared classes
i
 and that several measures proposed by 

graph theory can be used instead.  

 

 

5.5.1.1 Towards Other Estimators of Semantic Similarity 

 

 

Most of critics relative to the initial edge-counting approach were related to the uniform con-

sideration of edge weights. As we have seen, several authors proposed to consider various seman-

tic evidences to differentiate strengths of connotation between classes.  

 One of the central findings conveyed by the early developments in structure-based measures is 

that the similarity function can be decomposed in several components, in particular those distin-

guished by the feature model: commonality and difference. Indeed, the shortest path between two 

classes can be seen as the difference between the two classes, considering that all specialization 

add properties to a class. More particularly, in trees, or under specific constraints in graphs, we 

have seen that the shortest path linking two classes contains their LCA. The shortest path can 

therefore be break down in two parts corresponding to the shortest path linking the compared 

classes to their LCA. In this case, the LCA can thus be seen as a proxy who partially
ii
 summarizes 

                                                      
i The algorithmic complexity of the LCA computation is significantly lower than the computation of the shortest path. 
ii The LCA can indeed only be an upper-bound of the commonality since highly similar classes (Man, Women) may have for 

LCA a general class which only encompasses a limited amount of their commonalities (e.g., LivingBeing). Please refer to 

section 5.3 
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the commonality of the compared classes. The distance between the compared classes and their 

LCA can therefore be used to estimate the differences between the classes. 

 

 The fact that measures can be break down in specific components evaluating commonalities 

and differences is central in the design of the approaches we will further introduce: 

 

 The Feature-based strategy. 

 The Information Theoretical strategy. 

 

 These approaches will focus on characterizing the compared classes in order to express 

measures as a function of their commonalities and differences. 

 

5.5.2 Feature-based Approach 

 

 The Feature-based approach generally refers to measures relying on a taxonomical interpreta-

tion of the feature model proposed by Tversky (Tversky 1977). However, as we will see, contrary 

to the original definition of the feature model, this approach is not necessarily framed in set theo-

ry
i
. The main idea is to represent classes as collections of features, i.e., characteristics describing 

the classes, to further express measures based on the analysis of the common and distinct features 

of the compared classes. The score of the measures will only be influenced by the strategy adopt-

ed to choose the features of the classes
ii
 and the strategy adopted to compare them. 

  

 As we will see, the reduction of classes to collections of features makes it possible to set the 

semantic similarity back in the context of classical binary similarity or distance measures (e.g., 

set-based measures).  

 

 An approach commonly used to represent the features of a class is to consider its ancestors as 

features
iii
. We denote 𝐴(𝑢) the set of ancestors of the class 𝑢. Since Jaccard index, that was pro-

posed 100 years ago, numerous binary measures have been defined in various fields. A survey of 

these measures distinguishes 76 of them (Choi et al. 2010). Considering that the features of a 

class 𝑢 are defined by 𝐴(𝑢), an example of semantic similarity measure expressed from the Jac-

card index was proposed in (Maedche & Staab 2001)
iv
: 

𝑠𝑖𝑚𝐶𝑀𝑎𝑡𝑐ℎ(𝑢, 𝑣) =  
|𝐴(𝑢) ∩  𝐴(𝑣)|

|𝐴(𝑢) ∪  𝐴(𝑣)|
 

 

 

                                                      
i Recall that the feature matching function on which is based the feature model relies on binary evaluations of the features “In 

the present theory, the assessment of similarity is described as a feature-matching process. It is formulated, therefore, in 

terms of the set-theoretical notion of a matching function rather than in terms of the geometric concept of distance” 

(Tversky & Itamar 1978). 

ii As stressed in (Schickel-Zuber & Faltings 2007), there is a narrow link with the multi-attribute utility theory (Keeney 

1993)  in which the utility of an item is a function of the preference on the attributes of the item. 

iii Implicit senses if we consider that compared elements are not classes but concepts. 
iv This is actually a component of a more refined measure. 
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Another example of a set-based expression of a feature-based approach is the measure defined 

by (Bulskov et al. 2002): 

𝑆𝑖𝑚𝐵𝑢𝑙𝑠𝑘𝑜𝑣(𝑢, 𝑣) = 𝛼
|𝐴(𝑢)∪ 𝐴(𝑣)|

|𝐴(𝑢)|
+ (1 − 𝛼)

|𝐴(𝑢)∪ 𝐴(𝑣)|

|𝐴(𝑣)|
  

with 𝛼 ∈ [0,1] a parameter used to tune the symmetry of the measure. 

 

(Rodríguez & Egenhofer 2003) proposed a formulation derived from de ratio model defined by 

Tversky (introduced in section 2.2.2): 

 

𝑠𝑖𝑚𝑅𝐸(𝑢, 𝑣) =
|𝐴(𝑢) ∩ 𝐴(𝑣)|

𝛾 ∙  |𝐴(𝑢)\𝐴(𝑣)| + (1 − 𝛾) ∙  |𝐴(𝑣)\𝐴(𝑢)| + |𝐴(𝑢) ∩ 𝐴(𝑣)|
 

with 𝛾 ∈ [0,1], a parameter that enables to tune the symmetry of the measure. 

  

(Sánchez, Batet, et al. 2012) define the taxonomic distance of two classes as a function of the 

ratio between their distinct and shared features: 

 

𝑑𝑖𝑠𝑡𝑆𝑎𝑛𝑐ℎ𝑒𝑧(𝑢, 𝑣) = log2 (1 +
|𝐴(𝑢)\𝐴(𝑣)| + |𝐴(𝑣)\𝐴(𝑢)|

|𝐴(𝑢)\𝐴(𝑣)| + |𝐴(𝑣)\𝐴(𝑢)| + |𝐴(𝑢) ∩ 𝐴(𝑣)|
) 

 

Various refinements of these measures have been proposed to enrich class features taking into 

account their descendants, e.g., (Ranwez et al. 2006).  

 

 

The feature-based measures have not to be intentional, i.e., they are not expected to solely rely 

on the knowledge defined in the taxonomy. When the instances of the classes are known, the fea-

ture of a class can also be seen by extension and be defined on the basis of the instances associat-

ed to the classes. As an example, the Jaccard index could also be used to compare two classes 

which are ordered according to their shared and distinct features, here characterized by extension: 

  

𝑠𝑖𝑚𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑢, 𝑣) =  
|𝐼(𝑢) ∩  𝐼(𝑣)|

|𝐼(𝑢) ∪  𝐼(𝑣)|
 

 

with 𝐼(𝑢) ⊆ 𝐼, the set of instances of the class 𝑢. Note that this approach makes no sense if the 

will is to compare classes not ordered since the set {𝐼(𝑢) ∩  𝐼(𝑣)} will tend to be empty. 

 

 (D’Amato et al. 2008b) also define an extensional measures considering: 

 

𝑠𝑖𝑚𝑑′𝐴𝑚𝑎𝑡𝑜(𝑢, 𝑣) =  
min(|𝐼(𝑢)|, |𝐼(𝑣)|)

|𝐼(𝐿𝐶𝐴(𝑢, 𝑣))|
 (1 −

|𝐼(𝐿𝐶𝐴(𝑢, 𝑣))|

|𝐼|
) (1 −

min (|𝐼(𝑢)|, |𝐼(𝑣)|)

|𝐼(𝐿𝐶𝐴(𝑢, 𝑣))|
) 

 

 

The measures presented above summarize the features of a class through a set representation 

corresponding to the set of classes or instances. However, alternative approaches can also be ex-

plored. Therefore, even if to our knowledge such approaches have not been explored, the features 

of a class could be represented as a set of relationships, as a subgraph, etc.  
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In addition, regardless of the strategy adopted to characterize the features of a class (other clas-

ses, relationships, instances), the comparison of the features is not necessarily driven by a set-

based measure. Indeed, the collections of features can also be seen as vectors. As an example, a 

class 𝑢 can be represented by a vector 𝑈 in a chosen real space of dimension |𝐶|, e.g., considering 

that each dimension associated to an ancestor of 𝑢 is set to 1. Vector-based measures will evalu-

ate the distance of two classes by studying the coordinates of their respective projections.  

 

(Bodenreider et al. 2005) proposed to compare two classes according to their representation 

through the Vector Space Model (VSM). Considering a class to instance matrix, a weight corre-

sponding to the inverse document frequency is associated to the cell (𝑢, 𝑖) of the matrix if the 

instance 𝑖 is associated to the class 𝑢, i.e., 𝑖 ∈  𝐼(𝑢). The vectors representing two classes are next 

compared using the dot product. 

 

 

5.5.3 Information Theoretical Approach  

 

 The Information Theoretical approach relies on Shannon’s Information theory. Like for the 

feature-based strategy, Information Theoretical measure relies on the comparison of two classes 

according to their commonalities and differences, here defined in terms of information. This ap-

proach formally introduces the notion of salience of classes through the definition of their in-

formativeness – Information Content (IC)
i
. 

(Resnik 1995) defines the similarity of a couple of classes as the IC of their common ancestor 

maximizing an IC function (originally eIC), i.e., their most informative common ancestor 

(MICA). 

𝑠𝑖𝑚𝑅𝑒𝑠𝑛𝑖𝑘(𝑢, 𝑣) = 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣)) 

 

Resnik’s measure doesn’t explicitly capture the specificities of compared classes. Indeed, cou-

ples of classes with an equivalent MICA will have the same semantic similarity, whatever their 

respective ICs are. To correct this limitation, several authors refined the measure proposed by 

Resnik to incorporate the specificities of compared classes; we here present the measures pro-

posed by (Lin 1998)
ii
 - 𝑠𝑖𝑚𝐿𝑖𝑛 , (Jiang & Conrath 1997) - 𝑑𝑖𝑠𝑡𝐽𝐶, (Mazandu & Mulder 2013) - 

𝑠𝑖𝑚𝑁𝑢𝑛𝑖𝑣𝑒𝑟𝑠, (Pirró & Seco 2008; Pirró 2009) - 𝑠𝑖𝑚𝑃𝑆𝑒𝑐 and (Pirró & Euzenat 2010a) - 𝑠𝑖𝑚𝐹𝑎𝑖𝑡ℎ: 

 

 

𝑠𝑖𝑚𝐿𝑖𝑛(𝑢, 𝑣) =
2 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣))

𝐼𝐶(𝑢) + 𝐼𝐶(𝑣)
 

 

 

𝑠𝑖𝑚𝑁𝑢𝑛𝑖𝑣𝑒𝑟𝑠(𝑢, 𝑣) =
 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣))

max (𝐼𝐶(𝑢), 𝐼𝐶(𝑣))
 

 

 

𝑑𝑖𝑠𝑡𝐽𝐶(𝑢, 𝑣) = 𝐼𝐶(𝑢) + 𝐼𝐶(𝑣) − 2 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣)) 

 

                                                      
i Section 5.3.1.2 introduces the notion of information content. 
ii The measure proposed is a redefinition commonly admitted of the original measure: 𝑠𝑖𝑚𝐿𝑖𝑛(𝑢, 𝑣) =

2×log (𝑝(𝑀𝐼𝐶𝐴(𝑢,𝑣)))

log(𝑝(𝑢)) log (𝑝(𝑣))
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𝑠𝑖𝑚𝑃𝑆𝑒𝑐(𝑢, 𝑣) = 3𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣)) −  𝐼𝐶(𝑢) − 𝐼𝐶(𝑣) 

 

 

𝑠𝑖𝑚𝐹𝑎𝑖𝑡ℎ(𝑢, 𝑣) =
𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣))

𝐼𝐶(𝑢) + 𝐼𝐶(𝑣) − 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣))
 

 

 

Taking into account specificities of compared classes can lead to high similarities (low distanc-

es) when comparing general classes. As an example, when comparing general classes 

ing 𝑠𝑖𝑚𝐿𝑖𝑛, the maximal similarity will be obtained comparing a (general) class to itself. In fact, 

the identity of the indiscernible is generally ensured (except for the root which generally has an 

IC equal to 0). However, some treatments require this property not to be respected. Authors have 

therefore proposed to lower the similarity of two classes according to the specificity of their 

MICA, e.g. (Schlicker et al. 2006; Li et al. 2010). The measure proposed by (Schlicker et al. 

2006) is presented: 

 

𝑠𝑖𝑚𝑅𝑒𝑙(𝑢, 𝑣) = 𝑆𝑖𝑚𝐿𝑖𝑛(𝑢, 𝑣) × (1 − 𝑝(𝑀𝐼𝐶𝐴(𝑢, 𝑣))) 

 

with 𝑝(𝑀𝐼𝐶𝐴(𝑢, 𝑣)) the probability of occurrence of the MICA. An alternative approach pro-

posed by (Li et al. 2010) relies on the IC of the MICA and can therefore be used without exten-

sional information of the classes using an intrinsic expression of the IC. 

 

Authors have also proposed to characterize the information carried by a class summing the IC 

of their super classes (Gaston K. & Nicola J. 2011; Cross & Yu 2011):  

 

𝑠𝑖𝑚𝑀𝑎𝑧𝑎𝑛𝑑𝑢(𝑢, 𝑣) =
2 ∑ 𝐼𝐶(𝑐)𝑐∈𝐴(𝑢)∩𝐴(𝑣)

∑ 𝐼𝐶(𝑐)𝑐∈𝐴(𝑢) + ∑ 𝐼𝐶(𝑐)𝑐∈𝐴(𝑣)
 

 

 

𝑠𝑖𝑚𝐽𝑎𝑐𝐴𝑛𝑐(𝑢, 𝑣) =
∑ 𝐼𝐶(𝑐)𝑐∈𝐴(𝑢)∩𝐴(𝑣)

∑ 𝐼𝐶(𝑐)𝑐∈𝐴(𝑢)∪𝐴(𝑣)
 

 

 

These measures can also be considered as hybrid strategies between the feature-based and the 

information theory approaches. One can consider that these measures rely on a redefinition of the 

way to characterize the information conveyed by a class (by summing the IC of the ancestors). 

Other interpretations can simply consider that features are weighted. Thus, following the set-

based representations of features, authors have also studied these measures as fuzzy measures 

(Cross 2004; Cross 2006; Cross & Sun 2007; Cross & Yu 2010; Cross & Yu 2011), e.g. defining 

the membership function of a feature corresponding to a class as a function of its IC.  

 

 

Finally, other measures based on information theory have also been proposed, e.g., (Maguitman 

& Menczer 2005; Maguitman et al. 2006; Cazzanti & Gupta 2006). As an example in 

(Maguitman & Menczer 2005) the similarity is estimated as a function of prior and posterior 

probability regarding instances and class membership. 
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5.5.4 Hybrid Approach 

 

Other techniques take advantage of the various paradigms introduced in the previous section. 

Among the numerous proposals, (Jiang & Conrath 1997; Bin et al. 2009) defined measures in 

which density, depth, strength of connotation and information content of classes are taken into 

account. We present the measure proposed by (Jiang & Conrath 1997)
 i
, which considers the 

strength of association defined as follow:  

 

𝑤(𝑢, 𝑣) = (𝛽 + (1 − 𝛽) 
𝑑𝑒𝑛𝑠̅̅ ̅̅ ̅̅ ̅

|𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑣)|
)  (

𝑑𝑒𝑝𝑡ℎ(𝑣) + 1

𝑑𝑒𝑝𝑡ℎ(𝑣)
)

𝛼

(𝐼𝐶(𝑢) − 𝐼𝐶(𝑣)) 𝑇(𝑢, 𝑣) 

 

 

The factor 𝑑𝑒𝑛𝑠̅̅ ̅̅ ̅̅ ̅ refers to the average density of the whole taxonomy (see publication for details). 

The factors 𝛼 ≥ 0 and 𝛽 ∈ [0; 1] control the importance of the density factor and the depth re-

spectively. 𝑇(𝑢, 𝑣) defines the weight associated to the predicates. Finally, the similarity is esti-

mated as the weight of the path which links the compared classes which are constrained by their 

LCA: 

 

𝑑𝑖𝑠𝑡𝐽𝐶−𝐻𝑦𝑏𝑟𝑖𝑑(𝑢, 𝑣) =  ∑ 𝑤(𝑠, 𝑜)

(𝑠,𝑝,𝑜)∈𝑠𝑝(𝑢,𝑠𝑢𝑏𝑂𝑓,𝐿𝐶𝐴(𝑢,𝑣))∪ 𝑠𝑝(𝑣,𝑠𝑢𝑏𝑂𝑓,𝐿𝐶𝐴(𝑢,𝑣))

 

 

Note that defining 𝛼 = 0, 𝛽 = 1 and 𝑇(𝑢, 𝑣) = 1, we obtain the information theoretical meas-

ure defined by the same authors: 

 

𝑑𝑖𝑠𝑡𝐽𝐶(𝑢, 𝑣) = 𝐼𝐶(𝑢) + 𝐼𝐶(𝑣) − 2 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣)) 

 

 

(Singh et al. 2013) proposed a mixing strategy based on (Jiang & Conrath 1997) IC-based 

measure and the consideration of transition probability between classes relying on a depth-based 

estimation of the strength of connotation. 

 

(Rodríguez & Egenhofer 2003) also proposed to mix a feature-based approach also considering 

structural properties such as the depth of the classes. (Paul et al. 2012) also proposed multiple 

measures based on a mixing strategy by taking advantage of several exiting measures. 

 

 

 

 

 

 

                                                      
i This measure is a parametric distance.  (Couto et al. 2003) discuss the implementation, (Othman et al. 2008) propose a genet-

ic algorithm which can be used to tune the parameters and (Wang & Hirst 2011) propose a redefinition of the notion of 

depth and density initially proposed. 
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5.5.5 Considerations for the Comparison of Classes defined in Semantic Graphs  

 

Several measures introduced in the previous sections were initially defined to compare classes 

expressed in a tree. However, several considerations must be taken into account in order to esti-

mate the similarity of classes defined in a semantic graph. The content of this section is quite 

technical and may therefore not be suited for all publics – please refer to the notations introduced 

in section 5.2. 

 

5.5.5.1 Shortest path 

 

A tree is a specific type of graph in which multi-inheritances cannot be encountered, which 

therefore implies that two classes which are not ordered will have no common subclasses, 

i.e., 𝐺𝑢
− ∩  𝐺𝑣

− = ∅. Therefore, if there is no redundant taxonomical relationship, then, the shortest 

path linking two classes defined in a tree always contains a single common ancestor of the two 

classes. However, in a graph, since two non-ordered classes can have common subclasses, 

i.e., 𝐺𝑢
− ∩  𝐺𝑣

− ≠ ∅, the shortest path linking two classes can in some cases not contain one of 

their common ancestor. Figure 15 illustrates the modifications induced by multi-inheritances.  

 

 

Figure 15 The graph composed of the plain (blue) 

edges is a taxonomic tree, i.e., it doesn’t contain 

classes with multi-inheritances. If the (red) dotted 

relationships are also considered, the graph is a 

directed acyclic graph (e.g., a taxonomical graph). 

 

In Figure 15, the shortest path linking the two 

non-ordered classes C5 and C7 in the tree (i.e. 

without considering the red edges) is [C5-C3-

C1-root-C2-C4-C7]. However, if we consider 

multiple inheritances (red edges), it’s possible to 

link the two classes through paths which do not 

contain one of their common superclass, e.g., 

[C5-C3-C6-C4-C7] or even [C5-C8-C7]. There-

fore, the shortest path containing a common an-

cestor of the compared classes is defined in the 

search space 𝐺𝑢
+  ∪  𝐺𝑣

+. In practice, despite the 

fact that in most graphs 𝐺𝑢
− ∩ 𝐺𝑣

− ≠ ∅ for two 

non-ordered classes, it is commonly admitted 

that the shortest path must contain a single su-

perclass of the two compared classes. Given this 

constraint, the edge-counting taxonomical dis-

tance of 𝑢 and 𝑣 in 𝐺𝑢
+  ∪  𝐺𝑣

+ is generally (im-

plicitly
i
) defined by: 𝑑𝑖𝑠𝑡𝑇𝑎𝑥𝑆𝑃(𝑢, 𝑣) =

𝑠𝑝(𝑢, 𝑠𝑢𝑏𝑜𝑓, 𝐿𝐶𝐴(𝑢, 𝑣)) +
 𝑠𝑝(𝑣, 𝑠𝑢𝑏𝑜𝑓, 𝐿𝐶𝐴(𝑢, 𝑣)). 

 

 

 Note that when disjoint common ancestors are shared between compared classes, the ancestor 

which maximizes the similarity is expected to be considered. Depending on the 𝜃 function which 

is used, the shortest path doesn’t necessarily involve the class of the NCCAs which maximize 𝜃, 

e.g. the deeper. As an example, to distinguish the DCA to consider, (Schickel-Zuber & Faltings 

                                                      
i Generalization of measures defined from trees to graph is poorly documented in the literature. 
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2007) took into account a mix between depth and reinforcement (number of different paths lead-

ing from a concept to another). 

  

The shortest path techniques can also be relaxed to consider paths which do not involve com-

mon ancestors or which involve multiple common ancestors: 

 

𝑠𝑖𝑚𝑆𝑃−𝑅(𝑢, 𝑣) =
1

𝑠𝑝(𝑢, 𝑠𝑢𝑏𝑜𝑓∗, 𝑣) + 1
 

 

 

5.5.5.2 Notion of Depth 

 

The definition of the notion of depth must also be reconsidered when the taxonomy forms a 

graph. Recall that, in a tree without redundancies, the depth of a class has been defined as the 

length of the shortest path linking the class to the root. The depth of a class is a simple example of 

estimator of its specificity. In a tree, this estimator makes perfect sense since the depth of a class 

is directly correlated to the number of ancestors it has, as 𝑑𝑒𝑝𝑡ℎ(𝑐) = |𝐴(𝑐)| − 1.  

 

In a graph or in a tree with redundant taxonomical relationships, we must ensure that the depth 

is monotonically decreasing according to the ordering of the classes defined by the taxonomy. As 

an example, to apply depth-based measures to graphs, we must generally ensure that 

𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑢, 𝑣)) is lower or equal to both 𝑑𝑒𝑝𝑡ℎ(𝑢) and 𝑑𝑒𝑝𝑡ℎ(𝑣). To this end, the maximal 

depth of a class must be used, i.e., the length of the longest path in {𝑢, 𝑠𝑢𝑏𝑜𝑓, 𝐿𝐶𝐴(𝑢, 𝑣)}, denot-

ed 𝑙𝑝(𝑢, 𝑠𝑢𝑏𝑜𝑓, 𝐿𝐶𝐴(𝑢, 𝑣)).  

As an example, the measure proposed by (Pekar & Staab 2002) is therefore implicitly general-

ized to:  

 

𝑠𝑖𝑚𝑊𝑃(𝑢, 𝑣) =
𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑢, 𝑣))

𝑙𝑝(𝑢, 𝑠𝑢𝑏𝑜𝑓, 𝐿𝐶𝐴(𝑢, 𝑣)) + 𝑙𝑝(𝑣, 𝑠𝑢𝑏𝑜𝑓, 𝐿𝐶𝐴(𝑢, 𝑣)) + 𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑢, 𝑣))
 

 

 

 

5.5.5.1 Notion of Least Common Ancestors 

 

 

Most measures which have been presented take advantage of the notions of LCA or MICA of 

the compared classes. However, these measures do not consider disjoint semantic contributions, 

i.e., the set of common ancestors of the compared classes - Ω(𝑢, 𝑣) for the classes 𝑢 and 𝑣. To 

remedy this, several authors have proposed to consider the whole set of DCAs in the design of 

measures. (Couto et al. 2005; Couto & Silva 2011) proposed GraSM and DiShIn strategies to 

consider the set of DCAs.  

(Couto et al. 2005) proposed to modify information theoretical measures based on the notion of 

MICA. The authors recommended replacing the IC of the MICA by the average of the infor-

mation contents of all the classes which compose the set of DCAs of the compared classes. A 

redefinition of the measure proposed by Lin is presented: 

 

𝑠𝑖𝑚𝐿𝑖𝑛−𝐺𝑟𝑎𝑠𝑀(𝑢, 𝑣) =

∑ 𝐼𝐶(𝑐)𝑐∈Ω(𝑢,𝑣)

|Ω(𝑢, 𝑣)|

𝐼𝐶(𝑢) + 𝐼𝐶(𝑣)
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𝑠𝑖𝑚𝐿𝑖𝑛−𝐺𝑟𝑎𝑠𝑀(𝑢, 𝑣) =
∑ 𝐼𝐶(𝑐)𝑐∈Ω(𝑢,𝑣)

|Ω(𝑢, 𝑣)| × (𝐼𝐶(𝑢) + 𝐼𝐶(𝑣))
 

 

(J. Wang et al. 2012) also proposed to average the similarity between the classes according to 

their multiple DCAs: 
 

𝑠𝑖𝑚𝑊𝑎𝑛𝑔(𝑢, 𝑣) =
∑

2 𝑑𝑒𝑝𝑡ℎ(𝑎)2

𝑑𝑎(𝑟𝑜𝑜𝑡, 𝑢) × 𝑑𝑎(𝑟𝑜𝑜𝑡, 𝑣)𝑎∈Ω(𝑢,𝑣)

|Ω(𝑢, 𝑣)|
 

 

With 𝑑𝑎(𝑟𝑜𝑜𝑡, 𝑢) the average length of the set of paths which contain the class 𝑎 and which 

link the class 𝑢 to the root of the taxonomy and 𝛺(𝑢, 𝑣) the set of NCCAs of the classes 𝑢 and 𝑣. 

 

As we have underlined, numerous approaches have been defined to compare pairs of classes 

defined in a taxonomy, these measures can be used to compare any pair of nodes defined in a 

partially ordered set. Table 4 to Table 7 present some properties of a selection of measures de-

fined to compare classes. 
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5.5.6 List of Pairwise Semantic Similarity Measures 

 

Several SMs which can be used to compare classes defined in a taxonomy of classes or any pair of elements defined in a poset. Measures are 

ordered according to their date of publication. Other contributions studying some properties of pairwise measures can be found in (X. Yu 2010; 

Slimani 2013). IOI: Identify of the Indiscernibles. 

 
 

Structural Measures 
 

Name Type KR const. Range IOI Comment 

Shortest Path Sim / Rel None ℝ+ Yes 

Weight of the shortest path (sp) linking the compared classes. Several modi-

fications can be considered in graphs depending on the strategy adopted, 

e.g., weighting of the relationships, predicates, constraints on the inclusion 

of a common super class of the compared classes, etc. 

(Rada et al. 1989) Dist (ISA) DAG ℝ+ Yes 
Specific shortest path strategy with uniform weight and the shortest path is 

constrained to contain the LCA of the compared classes. 

(Young Whan & Kim 1990)     
 

 

(Lee et al. 1993)      

(Sussna 1993) Dist RDAG ℝ+ Yes 

Originally defined as a parametric semantic relatedness. Under specific con-

straints, this measure can be used as a semantic similarity. Shortest path 

technique taking into account non-uniform strength of connotation tuned 

according to the depth of the compared classes and specific weight associat-

ed to predicates. 

(Richardson et al. 1994) X X X X 

Propose to integrate several intrinsic metrics (e.g., depth, density) to weight 

the relationships and define hybrid measures mixing the structural and in-

formation theoretical approach. No measure explicitly defined. 

(Wu & Palmer 1994) Sim RDAG [0,1] Yes 
Similarity assessed according to the depth of the compared classes and the 

depth of their LCA.  

(Leacock & Chodorow 

1994; Leacock & Chodorow 

1998) 

Sim RDAG ℝ+ Yes 

(Rada et al. 1989) formulation penalizing long shortest path between the 

compared classes according to the depth of the taxonomy. 

(Resnik 1995) Sim RDAG [0,2𝐷] Yes 
Similarity based on the shortest path technique which has been bounded by 

(twice) the max depth of the taxonomy (D). 
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(Hirst & St-Onge 1998) Sim / Rel None ℝ+ Yes 
Shortest path penalizing multiple changes of predicate. Can be used as a 

similarity or relatedness measure depending on the relationships considered. 

(Zhong et al. 2002) Dist RDAG [0,max[ Yes 
Taxonomical distance taking into account the depth of the compared classes. 

With max defined as max = 2 
1

2𝑘
𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑢,𝑣)) with k a given constant. 

(Pekar & Staab 2002) Sim RDAG [0; 1] Yes 
Shortest path technique which take into account the depth of the LCA of the 

compared classes. 

(Mao & Chu 2002) Sim DAG ℝ+ No 
Modification of Rada’s measure taking into account class specificity as a 

non-linear function of the number of descendants a class has. 

(Li et al. 2003) 

(Li et al. 2006) 

 

Sim RDAG ℝ+ No 

Measure considering both the length of the shortest path linking the com-

pared classes and their depth. 

(Ganesan et al. 2003) Sim    Refer to leafsim 

(Yu et al. 2005) Sim RDAG [0; 1] Yes Measure allowing non-null similarity only to ordered pair of classes. 

(Wu et al. 2006) Sim RDAG [0; 1] No 

Take into account compared classes (i) commonality (length of the longest 

shared path from the classes to the root), (ii) specificity (defined as a func-

tion of the shortest path from the class to leaves it subsumes) and (iii) local 

distance (Rada distance). 

(Slimani et al. 2006) Sim RDAG [0; 1] Yes 
Modification of the Wu and Palmer measure to avoid neighbours classes to 

have higher similarity values that classes which are ordered. 

(Blanchard et al. 2006) Sim RDAG [0,1] No 

Expression based on a specific expression of an abstract formulation of the 

Dice coefficient defined for trees and extended for DAG in (Blanchard 

2008)
i
 

(Nagar & Al-Mubaid 2008) Sim DAG ℝ+ Yes Use a modification of shortest path constrained by the LCA. 

(Cho et al. 2003) 

 
Sim DAG ℝ+ No 

Multiple factors are considered to take into account the specificity of the 

compared classes. 

(Alvarez & Yan 2011) Sim / Rel RDAG [0; 1] No 

SSA, exploits three components evaluating the shortest path linking the 

compared classes (a weighting scheme is applied to the graph), their LCA, 

and their literal definitions. 

(J. Wang et al. 2012) Sim RDAG [0; 1] Yes 
Approach taking into account the depth of the compared classes, as well as 

the depth of all their DCAs.  

(Shenoy et al. 2012) Sim RDAG   
Modification of the Wu and Palmer measure to avoid neighbours classes to 

have higher similarity values that classes which are ordered. 

(Ganesan et al. 2012) Sim RDAG   
Modification of the Wu and Palmer measure to avoid neighbours classes to 

have higher similarity values that classes which are ordered. 

                                                      
i In french 
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Table 4: Semantic similarity measures or taxonomical distances defined using an structural approach. These measures can be used to compare a pair of 

classes defined in a taxonomy or any pair of elements defined in a partial ordered set. 

 

 

Information Theoretical Approach 

 

Name Type KR const. Range IOI Comment 

(Resnik 1995) Sim DAG 
[0; 1] 

[0; 𝑖𝑛𝑓] 
No 

Similarity considered as the IC of concepts’ MICA. The range depends on the 

IC. 

(Jiang & Conrath 1997) Dist DAG [0; 1] Yes 
Taxonomic distance computed as a function of the IC of the compared classes 

and their MICA. 

(Lin 1998) Sim DAG [0; 1] Yes 
Similarity computed as a ratio between the IC of the MICA of the compared 

classes and the sum of the ICs of the compared classes. 

(Schlicker et al. 2006) 

(Li et al. 2010) 
Sim DAG [0; 1] No 

Lin measure modified to take specificity into account, i.e. to avoid high score of 

similarity comparing two general classes. 

(Couto et al. 2007) Sim DAG [0; 1] No 
Lin measure in which all the DCAs of the compared classes are taken into ac-

count. 

(Yu, Jansen, Stolovitzky, et al. 

2007) 
Sim DAG [0; 𝑖𝑛𝑓] No 

Total Ancestry Measure (TAM) considering the Yu el al. definition of the LCA. 

(Pirró & Seco 2008; Pirró 

2009) 
Sim DAG [0; 𝑥] No 

With 𝑥 the maximal class IC. 

(Pirró & Euzenat 2010a) Sim DAG [0; 1] Yes Information Theoretical expression of the Jaccard Index. 

(Jain & Bader 2010) Sim DAG [0; 1] No 

Build a meta-graph reducing the original ontology into cluster of related con-

cepts. Similarity is assessed through a specific function evaluating LCA infor-

mation content. 

(Gaston K. & Nicola J. 2011) 

simDIC 
Sim DAG [0; 1] Yes 

Specific formulation of a set-based measure considering classes as their sets of 

ancestors. 

(Mazandu & Mulder 2013) 

Sim Nuniver 
Sim DAG [0; 1] Yes 

IC of the MICA of the compared classes divided by the maximal IC of the com-

pared classes. 

 

Table 5: Semantic similarity measures or taxonomical distances defined using an information theoretical approach. These measures can be used to compare 

a pair of classes defined in a taxonomy or any pair of elements defined in a partial ordered set.  
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Feature-based Approach 
 

Name Type KR const. Range IOI Comment 

(Stojanovic et al. 2001) 

(Maedche & Staab 2001) 
Sim DAG [0; 1] Yes Feature-based expression relying on the Jaccard index. 

(Bodenreider et al. 2005) 

 
Sim DAG DAG [0,1] 

Cosine similarity on a vector-based representation of the classes. The vec-

tor representation is built according to the set of instances of the classes. 

(Ranwez et al. 2006) Dist  DAG ℝ+ Yes 

The distance is a function of the number of descendants of the LCA of the com-

pared concepts. Distance properties have been proved (positivity, symmetry, tri-

angle inequality). 

(Jain & Bader 2010) Sim DAG [0; 1] No 

Build a meta-graph reducing the original ontology into cluster of related concepts. 

Similarity is assessed through a specific function evaluating LCA information 

content. 

(Batet, Sánchez & Valls 2010) Sim DAG ℝ+ Yes 
Comparison of the classes according to their ancestors. Formulation expressed as 

a distance converted to a similarity using negative log. 

 

Table 6: Semantic similarity measures or taxonomical distances designed using a feature-based approach. These measures can be used to compare a pair of 

classes defined in a taxonomy or any pair of elements defined in a partial ordered set. 

 
 

Hybrid Approach 
 

Name Type G constraint Range IOI Comment 

(Jiang & Conrath 1997) 

(Couto et al. 2003) 

(Othman et al. 2008) 

Sim 

Dist 
RDAG [0; 1] Var. 

Strategy based on the shortest path constrained by the LCA of the compared clas-

ses. Relationships are weighted according to the difference of IC of the classes 

they link. 

(Al-Mubaid & Nguyen 2006) Sim DAG [0; ∞] Yes Assigns cluster(s) to classes. The similarity is computed considering multiple 
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metrics. 

(Alvarez & Yan 2011) 
Sim / 

Rel 
RDAG [0; 1] No 

Exploits three components evaluating classes, their shortest path (a weighting 

scheme is applied to the graph), their LCA, and their literal definitions. 

(Wang et al. 2007) Sim/Rel RDAG [0; 1] Yes 

Originally defined as a semantic relatedness, it can be used to compute semantic 

similarity. Define a non-linear approach to characterize the strength of connota-

tion and the notion of S-value to characterize the informativeness of a class. 

(Paul et al. 2012) Sim    Multiple approaches are mixed 

 

Table 7: Semantic similarity measures or taxonomical distances designed using a hybrid approach. These measures can be used to compare a pair of classes 

defined in a taxonomy or any pair of elements defined in a partial ordered set. 
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5.6 Semantic Similarity between Groups of Classes 
 

 
Two main approaches are commonly distinguished to introduce semantic similarity measures 

designed for the comparison of two sets of classes, i.e., groupwise measures:  

 Direct approach, the measures which can be used to directly compare the sets of clas-

ses according to information characterizing the sets with regard to the information de-

fined in the graph.  

 Indirect approach corresponds to the measures which assess the similarity of two sets 

of classes using a pairwise measure, i.e. a measure designed for the comparison of pairs 

of classes. They are generally simple aggregations of the scores of similarities associat-

ed to the pairs of classes defined in the Cartesian product of the two compared sets.  

 

 Once again, a large diversity of measures have been proposed, we distinguish some of them. 

 

5.6.1 Direct Approach 

 

The direct approach corresponds to a generalization of the approaches defined for the compari-

son of pairs of classes in order to compare two sets of classes.  

 

It is worth noting that two sets of classes can be compared using classical set-based approaches. 

They can also be compared through their vector representations, e.g., using the cosine similarity 

measure. Nevertheless, these are in most cases not meaningful since these measures do not take 

into account of the similarity of the elements composing the compared sets
i
.  

 

 

5.6.1.1 Structural approach 

 

Considering 𝐺𝑋
+ as the graph induced by the union of the ancestors of the classes which com-

pose the set 𝑋, (Gentleman 2007) defined the similarity of two sets of classes (𝑈, 𝑉) according to 

the length of the longest 𝑠𝑝(𝑐, 𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓, 𝑟𝑜𝑜𝑡) which links the class 𝑐 to the 𝑟𝑜𝑜𝑡 in 𝐺𝑈
+ ∪

𝐺𝑉
+.  

 

 

5.6.1.2 Feature-based Approach 

 

The feature-based measures are characterized by the approach adopted to express the features 

of a set of classes. 

  

Several measures have been proposed from set-based measures. Considering 𝐶(𝐺𝑋
+) as the set 

of classes contained in 𝐺𝑋
+, we introduce SimUI (Gentleman 2007)

 ii
, and the Normalized Term 

Overlap measure (NTO): 

 

                                                      
i These simple approaches are generally used when the compared sets contain redundant elements (refer to section 5.2.2.5).  
ii Also published through the name Term Overlap in (Mistry & Pavlidis 2008). 
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𝑠𝑖𝑚𝑈𝐼(𝑈, 𝑉) =
|𝐶(𝐺𝑈

+) ∩ 𝐶(𝐺𝑉
+)|

|𝐶(𝐺𝑈
+) ∪ 𝐶(𝐺𝑉

+)|
 

 

𝑠𝑖𝑚𝑁𝑇𝑂(𝑈, 𝑉) =
|𝐶(𝐺𝑈

+) ∩ 𝐶(𝐺𝑉
+)|

min(|𝐶(𝐺𝑈
+) |, |𝐶(𝐺𝑉

+)|)
 

 

 

 

5.6.1.3  Information theoretical measures 

 

 

Among other, (Pesquita et al. 2007) proposed to consider the information content of the classes 

(originally 𝑒𝐼𝐶): 

 

𝑆𝑖𝑚𝐺𝐼𝐶(𝑈, 𝑉) =
∑ 𝐼𝐶(𝑢)𝑢∈𝐶(𝐺𝑈

+) ∩ 𝐶(𝐺𝑉
+)

∑ 𝐼𝐶(𝑢)𝑢∈𝐶(𝐺𝑈
+) ∪ 𝐶(𝐺𝑉

+)

 

 

 

5.6.2 Indirect Approach 

 

Section 5.5 presents numerous pairwise measures for the comparison of pairs of classes. They 

can be used to drive the comparison of sets of classes. 

 

5.6.2.1 Improving the Direct Approaches for the Comparison of Sets of Classes 

 

One of the main drawbacks of basic vector-based measures is that they consider dimensions as 

mutually orthogonal and do not exploit class relationships. In order to remedy this, vector-based 

measures have been formulated to:  

 Weight dimensions considering class specificity evaluations (e.g., IC) (Huang et al. 

2007; Chabalier et al. 2007; Benabderrahmane, Smail-Tabbone, et al. 2010). 

 Exploit an existing pairwise measure to perform base vectors’ products (Ganesan et al. 

2003; Benabderrahmane, Smail-Tabbone, et al. 2010). 

Therefore, pairwise measures can be used to refine the measures proposed to compare sets of 

classes using a direct approach. 

 

 

5.6.2.2 Aggregation Strategies 

 

A two-step indirect strategy can also be adopted in order to take advantage of pairwise 

measures to compare sets of concepts: 

1. The similarity of pairs of classes obtained from the Cartesian product of the two com-

pared sets has to be computed.  

2. Pairwise scores are next aggregated using an aggregation strategy, also called mixing 

strategy.  
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Classical aggregation strategies can be applied (e.g. max, min, average); more refined strategies 

have also been proposed. Among the most used we present: Max average (AVGMAX), Best 

Match Max – BMM (Schlicker et al. 2006) and Best Match Average – BMA (Pesquita et al. 

2008): 

 

𝑠𝑖𝑚AVG(𝑈, 𝑉) =
∑ ∑ 𝑠𝑖𝑚(𝑢, 𝑣)𝑣∈𝑉𝑢∈𝑈

|𝑈| × |𝑉|
 

 

𝑠𝑖𝑚AVGMAX(𝑈, 𝑉) =
1

|𝑈|
∑ 𝑚𝑎𝑥𝑣∈𝑉𝑠𝑖𝑚(𝑢, 𝑣)

𝑢∈𝑈

 

 

𝑠𝑖𝑚𝐵𝑀𝑀(𝑈, 𝑉) = max (𝑠𝑖𝑚𝐴𝑉𝐺−𝑑𝑖𝑟(𝑈, 𝑉), 𝑠𝑖𝑚𝐴𝑉𝐺−𝑑𝑖𝑟(𝑉, 𝑈)) 

 

 

𝑠𝑖𝑚𝐵𝑀𝐴(𝑈, 𝑉) =
𝑠𝑖𝑚𝐴𝑉𝐺−𝑑𝑖𝑟(𝑈, 𝑉) + 𝑠𝑖𝑚𝐴𝑉𝐺−𝑑𝑖𝑟(𝑉, 𝑈)

2
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5.6.3 List of Groupwise Semantic Similarity Measures 

 

 

Direct Groupwise Measures 
 

Name Type Approach 
KR 

const. 
Range IOI Comment 

(Ganesan et al. 2003) 

Optimistic Genealogy  

Measure 

Sim Hybrid RDAG [0,1] Yes 
Feature-based approach taking into consideration struc-

tural properties during the comparison 

(Popescu et al. 2006) A Sim 
Feature-

based 
DAG [0,1] yes Weighted Jaccard 

(Popescu et al. 2006) B Sim 
Feature-

based 
DAG [0,1]  Fuzzy Measure 

(Chabalier et al. 2007) Sim 

Feature-

based 

(Vector) 

RDAG [0,1] Yes 
Groups of classes are represented using the Vector Space 

Model and compared using the cosine similarity.  

(Gentleman 2007) 

SimLP 
Sim Structural RDAG [0,1] Yes 

Similarity as a function of the longest-path shared found in 

the graph induced by the sets of classes characterizing the 

compared instances. 

(Cho et al. 2007) Sim 
Feature-

based 
RDAG ℝ+ No 

Feature-based measures taking into account the specificity of 

the compared classes. 

(Pesquita et al. 2008) 

SimGIC 
Sim 

Feature-

based 
DAG [0,1] Yes 

Jaccard measure in which a set of classes is represented by 

the classes contained in the graph it induces. 

(Sheehan et al. 2008) 

SSA 
Sim 

Feature-

based 
RDAG [0,1] Yes 

Extend the notion of MICA to pair of genes then redefine 

the Dice coefficient. 

(Ali & Deane 2009) Sim 
Feature-

based 
DAG [0,1] No 

Commonality is assessed considering shared nodes in the 

graph induced by the ancestors of the compared sets of clas-
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ses. 

(Jain & Bader 2010) 

TCSS 
Sim 

Feature-

based 
RDAG [0,1] No 

Max Strategy Considering (Jain & Bader 2010) pairwise 

measure 

(Diaz-Diaz & Aguilar-Ruiz 

2011) 
Sim Structural RDAG [0,1] Yes 

Distance taking into account the shortest path between the 

classes and the depths of the compared classes. 

(Alvarez & Yan 2011) 
 

Sim/R

el 
Structural None ℝ+ Yes Structural measure 

(M. A. Alvarez et al. 2011) 

SPGK 
Sim Structural None  Yes 

The set of classes is represented by its induced subgraph. A 

similarity measure is used to compare the two graphs. 

(Teng et al. 2013) 

 
Sim      

 
 

Indirect Groupwise Measures 
Based on a Direct Approach 

Name Type Approach 
KR 

const. 
Range IOI Comment 

(Ganesan et al. 2003) 

GCSM 
Sim 

Feature-

based 
RDAG [0,1] Yes 

GCSM: Generalized Cosine-Similarity Measure. 

Groups of classes are represented using the Vector Space 

Model. The dimensions are not considered independent, i.e. 

the similarity of two dimensions is computed using an ap-

proach similar to the one proposed by Wu and Palmer. The 

similarity of the vector representation of the instances is 

estimated using to the cosine similarity. 

 

(Huang et al. 2007)   RDAG [0,1] Yes  

(Benabderrahmane, 

Smail-Tabbone, et al. 2010) 

Intelligo 

 

Sim 

Feature-

based 

(Vector) 

RDAG [0,1] Yes 

Groups of classes are represented using the Vector Space 

Model - Also consider (Benabderrahmane, Devignes, et al. 

2010). The dimensions are not considered to be independent. 
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Indirect Groupwise Measures 

Mixing strategies 
 

Name Range IOI Comment 

Classic approaches 

Max/Min/AVG, etc. 

(Azuaje et al. 2005) 
 depends 

 

depends 

 

Properties depend on the measures used to compute the 

pairwise scores which will be aggregated. In (Couto et al. 

2007) the max was used. 
 

 

Best Match Max (BMM) 

Best Match Average 

 (Azuaje et al. 2005) 
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5.7 Unification of Similarity Measures for the Comparison of Classes 
 

This section presents the works related to the unification of knowledge-based semantic 

measures dedicated to the comparison of classes. 

 

 

5.7.1 Similitude between Semantic Measures 

 

Several similitudes have been observed between SMs. As an example, in a tree, the edge-

counting strategy defined by (Rada et al. 1989) can also be expressed as a function of the depths 

of the compared classes and the depth of their LCA (Blanchard 2008): 

 

𝑑𝑖𝑠𝑡𝑅𝑎𝑑𝑎(𝑢, 𝑣) = 𝑑𝑒𝑝𝑡ℎ(𝑢) + 𝑑𝑒𝑝𝑡ℎ(𝑣) − 2 𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑢, 𝑣)) 

 

Therefore the depth can be seen as a simple expression of the function 𝜃 used to estimate the 

specificity of a particular class. The edge-counting strategy can thus be defined through the ab-

stract expression: 

 

𝑑𝑖𝑠𝑡𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡(𝑢, 𝑣) = 𝜃(𝑢) + 𝜃(𝑣) − 2 𝜃(𝐿𝐶𝐴(𝑢, 𝑣)) 
 

We can see that this expression generalize the information theoretical distance proposed by 

(Jiang & Conrath 1997): 

 

𝑑𝑖𝑠𝑡𝐽𝐶(𝑢, 𝑣) = 𝐼𝐶(𝑢) + 𝐼𝐶(𝑣) − 2 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣)) 

 

 

 

In the same manner, it has also been stressed by several authors, e.g., (Blanchard et al. 2008), 

that, in a tree
i
, the measure proposed by Wu and Palmer can be reformulated by: 

 

 

𝑠𝑖𝑚𝑊𝑃(𝑢, 𝑣) =
2 𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑢, 𝑣))

𝑑𝑒𝑝𝑡ℎ(𝑢) + 𝑑𝑒𝑝𝑡ℎ(𝑣)
 

 

Therefore, once again, this expression can be generalized by an abstract similarity measure: 

 

 

𝑠𝑖𝑚𝐷𝑖𝑐𝑒−𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡(𝑢, 𝑣) =
2 𝜃(𝐿𝐶𝐴(𝑢, 𝑣))

𝜃(𝑢) + 𝜃(𝑣)
 

 

Such an abstract expression of a similarity measure highlights the relationship between the 

structural measure proposed by Wu and Palmer and the information theoretical measure proposed 

by Lin: 

 

 

                                                      
i In which a transitive reduction has been performed. 
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𝑠𝑖𝑚𝐿𝑖𝑛(𝑢, 𝑣) =
2 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣))

𝐼𝐶(𝑢) + 𝐼𝐶(𝑣)
 

 

 

A similar approach can be adopted to underline the relationship between some feature-based 

measures and information theoretical measures. Indeed, under specific tuning, comparing two 

classes using a feature-based measure, i.e., according to their shared and distinct features, can be 

equivalent to considering a particular expression of an information theoretical measure. 

 

As an example, defining 𝐴(𝑢) the features of the class 𝑢, and using a SM based on the Dice in-

dex, we obtain the following feature-based measure: 

 

𝑠𝑖𝑚𝐷𝑖𝑐𝑒−𝐹𝐵(𝑢, 𝑣) =
2 |𝐴(𝑢) ∩ 𝐴(𝑣)| 

|𝐴(𝑣)| + |𝐴(𝑢)|
 

 

Since in a tree, two classes have a unique LCA, this feature-based expression can be reformu-

lated as: 

 

𝑠𝑖𝑚𝐷𝑖𝑐𝑒−𝐹𝐵(𝑢, 𝑣) =
2 |𝐴(𝐿𝐶𝐴(𝑢, 𝑣))| 

|𝐴(𝑣)| + |𝐴(𝑢)|
 

 

 

Thus, this expression is a specific expression of the abstract formulation of Dice formula 

𝑠𝑖𝑚𝐷𝑖𝑐𝑒−𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 presented above, defining 𝜃(𝑢) = |𝐴(𝑢)|. 
 

Using a similar reformulation of the measure proposed by (Stojanovic et al. 2001), (Blanchard 

2008; Blanchard et al. 2008) also underlined that, in trees, feature-based expressions can be re-

formulated using depth estimator (since 𝐴(𝑐) = 𝑑𝑒𝑝𝑡ℎ(𝑐) + 1). Therefore, in a tree, we obtain: 

 

𝑠𝑖𝑚𝐶𝑀𝑎𝑡𝑐ℎ(𝑢, 𝑣) =
|𝐴(𝑢) ∩ 𝐴(𝑣)|

|𝐴(𝑢) ∩ 𝐴(𝑣)|
=  

𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑢, 𝑣)) + 1

𝑑𝑒𝑝𝑡ℎ(𝑢) + 𝑑𝑒𝑝𝑡ℎ(𝑣) + 2 − (𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑢, 𝑣)) + 1)
 

 

 

 

5.7.2 Framework for the Expression of Semantic Measures 

 

 

The feature model proposed by Tversky was the first formulation of a framework from which 

several similarity measures can be derived through parametric formulation of measures (Tversky 

1977). The feature model proposes to compare objects represented through sets of features. It 

therefore requires the features of the elements we want to compare to be specified.  

 

For the comparison of classes, this model requires the definition of a function characterizing 

the features of a class. The similarity is next intuitively defined based on the common and distinc-

tive features of the compared classes. This approach is used for a long time to compare sets ac-

cording to the study of their shared and distinct elements (e.g., Jaccard Index, Dice coefficient). 

As we have seen in section 2.2.2, Tversky defined the contrast model and the ratio model as func-
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tions which can be used to compare objects represented as sets of features. Below we recall the 

formulation of the ratio model: 

 

𝑠𝑖𝑚𝑅𝑀(𝑢, 𝑣) =
𝑓(𝑈 ∩ 𝑉)

𝛼 𝑓(𝑈\𝑉) + 𝛽 𝑓(𝑉\𝑈) +  𝑓(𝑈 ∩ 𝑉)
 

Such a general parameterized formulation of a similarity measure can be used to derive a large 

number of concrete measure. As an example, considering the salience of a set of feature (i.e., the 

function 𝑓) as the cardinality of the set, and 𝛼 = 𝛽 = 1, the ratio model leads to the original defi-

nition of the Jaccard index. Setting 𝛼 = 𝛽 = 0.5 leads to the Dice coefficient.  

A large diversity of set-based measures can expressed from specific instances of such parame-

terized functions. In other words, such general measures are abstract similarity measures which 

can be used to instantiate concrete similarity measures through the definition of a limited set of 

parameters. 

 

The framework proposed by Tversky constrains the compared objects to be represented as sets 

of features and the similarity to be assessed as a function of the commonalities and differences of 

the two sets. By definition the contrast model and the ratio model are therefore constrained to set-

based formulations of measures. These models are more particularly constrained to fuzzy set the-

ory, since, originally, Tversky defined the commonalities and differences of two objects as a 

function of the salience of their shared and distinct features. 

 

Most set-based measures can be expressed using Caillez and Kuntz 𝜎𝛼 formulation, and Gower 

and Legendre 𝜎𝛽 formulation (Blanchard et al. 2008). Since set-based measures can be used to 

design semantic measures, 𝜎𝛼 and 𝜎𝛽 can be generalized in a straightforward manner according to 

the Tversky feature approach: 

 

𝜎𝛼(𝑢, 𝑣) =
𝑓(𝑈 ∩ 𝑉)

(
𝑓(𝑈)𝛼 + 𝑓(𝑉)𝛼

2 )
1/2

 

 

𝜎𝛽(𝑢, 𝑣) =
𝛽 𝑓(𝑈 ∩ 𝑉)

 𝑓(𝑈) +  𝑓(𝑉) + (𝛽 − 2)𝑓(𝑈 ∩ 𝑉)
 

 

Therefore defining the function 𝑓(𝑋) as the cardinality of the set of features 𝑋, the abstract 

formulation 𝜎𝛼 can be used to derive the Simpson (𝛼 = −∞) and Ochaiai (𝛼 =  0) coefficients, to 

cite a few (Choi et al. 2010). The 𝜎𝛽 reformulation can also be used to express other numerous 

measures, e.g. Sokal and Sneath (𝛽 =  0.5), and Jaccard index (𝛽 =  1) and Dice coefficient 

(𝛽 =  2) (Blanchard et al. 2008; Choi et al. 2010).  

 

In (Roddick et al. 2003) the authors propose a model of semantic distance relying on a graph-

based approach which quantifies the distance between data values as a function of graph traversal. 

However, Blanchard and collaborators, were the first to take advantage, in an explicit manner, of 

abstract definition of SMs for the comparison of pairs of classes defined in KRs (Blanchard et al. 

2008). In their studies, the authors focused on an information theoretical expression of semantic 

measures to highlight relationships between several measures proposed in the literature. As we 
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have seen based on the intuitive notion of commonalities and differences, and based on a particu-

lar expression of the notion of specificity, the authors underlined that the expressions proposed by 

Wu and Palmer and Lin can both be derived from an abstract expression of the Dice Index.  

 

𝑠𝑖𝑚𝑊𝑃(𝑢, 𝑣) =
2 𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑢, 𝑣))

𝑑𝑒𝑝𝑡ℎ(𝑢) + 𝑑𝑒𝑝𝑡ℎ(𝑣)
 

 

 

𝑠𝑖𝑚𝐿𝑖𝑛(𝑢, 𝑣) =
2 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣))

𝐼𝐶(𝑢) + 𝐼𝐶(𝑣)
 

 

Therefore both Wu and Palmer and Lin measures rely on a general expression of the Dice coef-

ficient, here named (𝑠𝑖𝑚𝐺−𝐷𝐼𝐶𝐸) which corresponds to the ratio model defining 𝛼 = 𝛽 = 0.5, 

they can also be seen as particular expression of 𝜎𝛽 with = 2 : 

 

𝑠𝑖𝑚𝐺−𝐷𝐼𝐶𝐸(𝑢, 𝑣) =
2 𝑓(𝑈 ∩ 𝑉)

𝑓(𝑈) + 𝑓(𝑉)
 

 

Indeed, defining 𝑈 ∩ 𝑉 as the properties of the least common ancestors of the compared con-

cepts which maximizes a function 𝜃 – with 𝜃(𝑐) = 𝑑𝑒𝑝𝑡ℎ(𝑐) for the measure proposed by Wu 

and Palmer and 𝜃(𝑐) = 𝐼𝐶(𝑐) for the measure proposed by Lin, and considering 𝑓(𝑈) = 𝜃(𝑢) 

with the respective 𝜃 function selected to distinguish the LCA in the two measures, we can derive 

both measures from the general expression 𝑠𝑖𝑚𝐺−𝐷𝐼𝐶𝐸 . Another expression derived from such a 

general expression of the Dice coefficient have been proposed by the authors in (Blanchard et al. 

2006). Several other abstract expressions of measures can be found in (Blanchard et al. 2008; 

Blanchard 2008). 

In their studies, summarized in the PhD thesis of Blanchard (Blanchard 2008)
i
 and in 

(Blanchard & Harzallah 2005; Blanchard et al. 2008), the authors stressed the suitability of the 

decomposition of SMs through abstract expressions to further characterize their properties and to 

study groups of measures. 

 

Other authors have also demonstrated relationships between different similarity measures and 

took further advantage of abstract frameworks to design new measures or to study existing ones 

(Cross 2006; Pirró & Euzenat 2010a; Cross & Yu 2010; Sánchez & Batet 2011; Cross et al. 

2013). These contributions mainly focused on establishing local relationships between set-based 

measures and measures framed in Information Theory. (Pirró & Euzenat 2010a) present an In-

formation Theoretical expression of the component distinguished by the feature model (common-

alities and difference) and therefore enable the expression of numerous measures based on the 

ratio model or the contrast model. Table 8 presents the mapping between feature-based and in-

formation theoretical similarity models proposed by the authors. 

 

 

 

 

 

 

 

                                                      
i In french 
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Description Feature-based model Information-theoretic model 

Salience of Common Features 𝑓(𝑈 ∩ 𝑉) 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣)) 

Salience of the features of 𝑢 

not shared with the features of 

𝑣 

𝑓(𝑈\𝑉) 𝐼𝐶(𝑢) − 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣)) 

Salience of the features of 𝑣 

not shared with the features of 

𝑢 

𝑓(𝑉\𝑈) 𝐼𝐶(𝑣) − 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣)) 

 

Table 8 : Mapping proposed by (Pirró & Euzenat 2010a) between the feature model and the information 

theoretic approach (reproduction with some modifications in order to be in accordance with the notions and 

notations introduced). 

 

Setting 𝛼 = 𝛽 = 1, the authors proposed the definition of a new measure which correspond to a 

particular expression of an abstract form of the Jaccard coefficient: 

 

𝑠𝑖𝑚𝐹𝑎𝑖𝑡ℎ(𝑢, 𝑣) =
 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣))

𝐼𝐶(𝑢) + 𝐼𝐶(𝑣) − 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣))
 

 

 

 (Sánchez & Batet 2011) also proposed a framework, grounded in information theory, which al-

lows several measures (i.e., edge-counting and set-based coefficients) to be uniformly redefined 

according to the notion of IC. They explicitly defined a mapping table to take advantage of set-

based measures for the expression of measures framed in information theory. 

 

Expressions found in set-based similarity 

coefficients 
Approximation in terms of IC 

|𝑈| 𝐼𝐶(𝑢) 

|𝑉| 𝐼𝐶(𝑣) 

|𝑈 ∩ 𝑉| 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣)) 

|𝑈\𝑉| = |𝑈| −  |𝑈 ∩ 𝑉| 𝐼𝐶(𝑣) − 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣)) 

|𝑉\𝑈| = |𝑉| −  |𝑈 ∩ 𝑉| 𝐼𝐶(𝑣) − 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣)) 

|𝑈 ∪ 𝑉| = |𝑈| + |𝑉| − |𝑈 ∩ 𝑉| 𝐼𝐶(𝑢) + 𝐼𝐶(𝑣) − 𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣)) 

|𝑈| + |𝑉| 𝐼𝐶(𝑢) + 𝐼𝐶(𝑣) 

 

Table 9: Mapping proposed by (Sánchez & Batet 2011) between expressions found in set-based similari-

ty measures and the information theoretic approach (reproduction with some modifications in order to be in 

accordance with the notations introduced). 

 

 

Based on the correspondences defined in Table 9, the authors derived several SMs from set-

based measures. They also proposed several redefinitions of structural measures using the notion 

of information content. As an example they underlined the link between the edge-counting strate-

gy and the information theoretical measure defined by Jiang and Conrath
i
: 

 

                                                      
i This correspondence have also been underlined in (Blanchard 2008). 
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𝑠𝑝(𝑢, 𝑣) ≃ 𝑑𝑒𝑝𝑡ℎ(𝑢) + 𝑑𝑒𝑝𝑡ℎ(𝑣) − 𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝐴(𝑢, 𝑣)) 

𝑠𝑝(𝑢, 𝑣) ≃ 𝐼𝐶(𝑢) − 𝐼𝐶(𝑣) + 𝐼𝐶(𝑣) − 𝐼𝐶(𝑢) 

𝑠𝑝(𝑢, 𝑣) ≃ 𝐼𝐶(𝑢) + 𝐼𝐶(𝑣) − 2𝐼𝐶(𝑀𝐼𝐶𝐴(𝑢, 𝑣)) 
 

 

In the same vain (Cross 2004; Cross 2006; Cross et al. 2013) proposed a similar contribution in 

which feature-based approaches and measures based on Information Theory are expressed 

through the frame of the fuzzy set theory.  

 

 In (Mazandu & Mulder 2013), the authors propose another general framework and unified de-

scription of measures relying on the notion of information content for the comparison of pairs of 

classes. Like (Blanchard et al. 2008), the authors focused in an information theoretical definition 

of measures to underline similarities between existing measures. 

 

Despite the suitability of these frameworks for studying some properties of SMs, only a few 

works rely on them to express measures (Sánchez & Batet 2011; Cross et al. 2013). Moreover, 

current frameworks only focus on a specific paradigm (e.g., feature-based strategy), to express 

measures. In fact, most existing frameworks only encompass a limited number of measures and 

were not defined in the purpose of unifying measures expressed using the variety of paradigms 

reviewed in section 3.4.1.  

 

The main limitation of these frameworks rely on the fact that they derive from the feature mod-

el or an information theoretical expression of the feature model and are therefore by definition 

limited to these paradigms. To overcome this limitation (Harispe, Sánchez, et al. 2013) recently 

proposed a framework framed in the strategy adopted to characterize the representation of the 

compared elements. This framework has its roots in the teaching of cognitive sciences regarding 

the central role played by the representation adopted to characterize compared elements. There-

fore, contrary to the other frameworks, this proposal is not limited to specific approaches con-

strained by a particular representation of the compared elements (feature-based, structural, infor-

mation theoretical). Indeed, this framework defines the possibility to explicitly express the strate-

gy adopted to characterize the representation of a class (set-based representation, information-

theoretical, graph-based, etc.).The framework further distinguishes the primitive functions com-

monly found in SM expressions (e.g., functions used to characterize the commonality and the 

differences of the compared representations, the saliency of a representation). 

 

 

 

5.8 Semantic Relatedness between Two Classes 
 

The semantic measures which can be used to assess the semantic relatedness of a pair of classes 

generalize those defined for the estimation of the semantic similarity. These measures take ad-

vantage of all predicates defined in the semantic graph. Generally, these measures are specific 

expressions of the structural measures presented for the estimation of the semantic similarity of 

two classes. Refer to the contributions of (Sussna 1993; Wang et al. 2007). 
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5.9 Semantic Relatedness between Two Instances 
 

This subsection presents the various approaches which can be used to compare a pair of in-

stances
i
. 

Evaluating the proximity between instances requires defining a representation (or canonical 

form) to characterize an instance. Four approaches can be distinguished depending on the canoni-

cal form adopted: 

 Instances represented as graph nodes.  

 Instances represented as sets of classes. 

 Instances represented as sets of properties.  

 Hybrid techniques 

Most of the measures used to compare instances have already been introduced in section 5.4.1. 

We briefly recall the various strategies which can be adopted according to the representation of an 

instance, and we particularly focus on the comparison of instances through the notions of projec-

tions. 

5.9.1 Comparison of Instances Using Graph Structure Analysis 

 

Two instances can be compared using their interconnections in the graph of relationships de-

fined in the KR. In this case, structural measures introduced in section 5.4.1 can be used in a 

straightforward manner, e.g., shortest path techniques, random walk approaches, SimRank (Jeh & 

Widom 2002). 

 

5.9.2 Instances as Sets of Classes 

 

The semantic relatedness of two instances can be evaluated regarding reductions of the com-

pared instances as sets of classes. In this case, the approaches defined to estimate the semantic 

similarity of two sets of classes are used (refer to section 5.6). Such an approach is commonly 

used to compare instances characterized by classes or concepts structured in a KR, e.g. gene 

products annotated by Gene Ontology terms, documents annotated by MeSH descriptors, etc. 

 

5.9.3 Instances as a Set of Properties 

 

The comparison of instances is most of the time driven by the comparison of their representa-

tion through sets of properties. The SMs which can be used to compare such representations of 

instances are the measures introduced for the graph property model in section 5.4.1.2. 

 

The following presentation focuses on the comparison of instances characterized through the 

notion of projection. These approach has been defined in (Harispe, Ranwez, et al. 2013a) and 

generalizes the comparison of instances represented through sets of properties. 

 

 

5.9.3.1 Characterization of Properties through Projections 

 

                                                      
i This is an extended version of the state of the art presented in (Harispe, Ranwez, et al. 2013a) 
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A direct or indirect property of an instance 𝑖 corresponds to a partial representation of 𝑖. In Fig-

ure 16 for example, the rollingStones instance can be represented by its name or music genres. A 

simple property of an instance is therefore expressed through resources linked to it. Representing 

an instance through its labels is therefore the same as considering all the 𝑙 labels for which a path 

links 𝑖 to 𝑙 through the relationship rdf:label. In other words, it correspond to considering all 

the labels for which a triplet (i,rdf:label,l) exists.  

 

In a general manner, the path linking two resources is characterized by path pattern <
𝑟0, … , 𝑟𝑛 >, with 𝑟𝑖 ∈ 𝑅, the set of predicates defined in the KR. A path is therefore associated in 

this manner with a range defined by the type of resources specified by the range of 𝑟𝑛, the last 

predicate composing the path pattern. The definition of path pattern thus enables to characterize 

some of the properties of instances through a path 𝑝: 𝐼 → 𝐾′, with 𝐾′ the range of path pattern 𝑝, 

a set of values that may be included in 𝐶, 𝐼 or composed of values of the type rdfs:Datatype, 

e.g., String.  

 

Let’s distinguish three types of paths pattern depending on the range of their last predicate 𝑟𝑛: 

- Data: the range of 𝑟𝑛 is a set of data values, e.g. Strings, Dates (Figure 16, case 2). 

- Instances: the range of 𝑟𝑛 is a set of instances (Figure 16, case 1). 

- Classes: the range of 𝑟𝑛 is a set of classes (Figure 16, case 3). 

 
A path pattern may be used to characterize simple (either direct or indirect) properties of an in-

stance. Complex properties however require several paths in order to be expressed. As an exam-

ple, the comparison of two music bands through the Euclidian distance between their places of 

origin does indeed involve defining a complex property encompassing the latitude and longitude 

of a place that requires two paths <ℎ𝑜𝑚𝑒𝑡𝑜𝑤𝑛, 𝑔𝑒𝑜: 𝑙𝑎𝑡 > and <ℎ𝑜𝑚𝑒𝑡𝑜𝑤𝑛, 𝑔𝑒𝑜: 𝑙𝑜𝑛𝑔 > 

(Figure 16, case 4). In other words, the information characterizing a music band via a property 

defining its place of origin corresponds to the projection of the instance onto two specific re-

sources capable of being reached through paths in the semantic graph. In order to characterize all 

properties of an instance, the notion of path pattern can thus be generalized by introducing the 

notion of projection. 
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Figure 16: Examples of properties associated with the class MusicBand. 

 

 

5.9.3.2 Definition of a Projection 

 

A projection refers to projecting a mathematical structure from one space to another. In formal 

terms, a projection 𝑃 is composed of a set of paths and is defined by 𝑃: 𝐼 → 𝐾, with 𝐾 being the 

set defining the types of projection 𝑘 ∈ 𝐾, onto which an instance can be projected.  

 

The projection type corresponds to the range associated with the projection, i.e., the type of 

values potentially used to characterize the instance. When simple projections are used, i.e., when 

the projection is composed of a single path pattern, then the projection range is defined by the 

path range, i.e., 𝐾 = 𝐾′. Yet when complex projections involving multiple paths are used, other 

types of projections can be defined, in yielding 𝐾 = 𝐾′ ∪ 𝐾′′ with 𝐾′′ being a set indicating the 

complex objects available for use in representing the complex properties of an instance. Let’s 

note that complex objects are used to represent properties not explicitly expressed in the 

knowledge base, e.g. geographic location (latitude, longitude).  

 

Four types of projections can therefore be distinguished: the three capable of being associated 

with a single path pattern (Data, Instances, Classes), and the Complex type used to represent an 

instance by means of a set of complex objects combining various (simple) properties. Let’s de-

note 𝑃𝑘 the projection of range 𝑘 ∈ 𝐾 and 𝑃𝑘(𝑖) the type 𝑘 projection of instance 𝑖. 
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5.9.3.3 Characterization of Instances through Projections 

 

Any instance can be represented by a set of projections. We therefore define a set of projections 

as a context of projection which can be associated to any set of instances, e.g., class, SPARQL 

query. 

 

Let’s consider the definition of a context of projection defined in order to characterize the in-

stances of a specific class. We denote 𝐶𝑃𝑐 the context of projection associated to class 𝑐. This 

context of projection defines the approach adopted to represent an instance of class 𝑐, by distin-

guishing the various properties of interest when characterizing an instance of 𝑐. The proximity of 

two instances of 𝑐 will next be computed regarding the projections defined in 𝐶𝑃𝑐. 

The SM used to assess the proximity takes into account all projections composing the context 

of projection which has been defined. Therefore, this SM requires a method to compare two in-

stances considering a specific projection.  

 

 

5.9.3.4 Comparison of Two Projections 

 

Each projection is associated with a measure 𝜎𝑘 that enables comparing a pair of instance pro-

jections of type 𝑘, where 𝜎𝑘: 𝑘 × 𝑘 → [0,1]. Recall the types of projections which have been de-

fined: Data, Instances, Classes, and Complex. 

 

 Classes: Two projections of the Classes type can be compared using a SM adapted to a 

comparison of classes.  

 

 Data: A comparison of Data type projection requires defining a measure adapted to the 

type of values constituting the sets of data values produced by the given projection. As 

an example, two strings may be compared using the Levenshtein distance (Levenshtein 

1966).  

 

 Instances type projections, the projection is associated to a set of instances, they can be 

compared using set-based measures, e.g., in order to evaluate the size of the intersection 

of the two sets.  

 

 Complex projections require defining a measure to enable comparing two complex ob-

jects. Let’s note that in some cases, complex objects or compared values will require 

some data pre-processing prior to use of the proximity function; as an example, such a 

pre-processing step could consist of computing the body mass index from the size and 

weight of an instance of a class Person. 

 

As previously observed, a projection defines a set of resources that characterize a specific 

property of an instance. To estimate the similarity of two instances relative to a specific projec-

tion, a measure 𝜎𝑘 must be specified so as to compare two sets (sometimes singletons) of re-

sources. Various approaches are available for evaluating these two sets, namely: 
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 Cardinality: The measure evaluates the cardinality of both sets, e.g., by comparing two 

instances of a class parent with respect to the number of children they have. 

 

 Direct method: A measure adapted for a set comparison is to be used (e.g. Jaccard in-

dex); one example herein would be to compare instances relative to the number of 

overlapping resources, e.g. the number of common friends. Vector representations can 

also be used. 

 

 Indirect method: This method relies on evaluating the proximity of the pair of re-

sources able to be built by considering the compared sets (a Cartesian product of sets), 

e.g. couples of strings. In this case, an aggregation strategy must be defined to aggre-

gate the proximity scores obtained for all resource pairs built from the Cartesian prod-

uct of the two compared sets. Classical operators such as Min, Max, Average or more 

refined approaches may be used to aggregate the scores (refer to section 5.6.2.2). 

 

As pointed out above, when an indirect method is used to compare two projections, a measure 

enabling the comparison of two sets of resources needs to be defined. Several approaches are 

available for comparing sets of classes, strings or numerical values. Note that the relevance of a 

measure is once again defined by both the application context and the semantics the similarity 

scores are required to carry. 

 

Two groups of instances can be compared by using a direct or an indirect approach. When an 

indirect approach is selected, a strategy to enable comparing a couple of instances must be deter-

mined. It is therefore possible to use the context of projection defined for the class of the two in-

stances under comparison. This context of projection actually defines the properties that must be 

taken into account when comparing two instances of this specific type. Applying such a strategy 

potentially corresponds to a recursive treatment, for which a stopping condition is required. In all 

cases, computing the proximity of two projections should not imply use of the context of projec-

tion containing both projections. A proximity measure can thus be represented through an execu-

tion graph highlighting the dependencies occurring between contexts of projection. Consequently, 

this execution graph must be analysed to detect cycles, for the purpose of ensuring computational 

feasibility. If a cycle is detected, the measure will not be computable. 

 

 

 

5.9.3.1 Comparison of Two Instances through Their Projections 

 

 

Once a measure has been chosen to compare each projection, then a general SM 𝜎𝑐  can be ag-

gregated between two instances 𝑢 and 𝑣 of the set of instances 𝑐, e.g: 

 

𝜎𝑐(𝑢, 𝑣) = ∑ 𝑤𝑖 × 𝜎𝑘(𝑃𝑖
𝑘(𝑢), 𝑃𝑖

𝑘(𝑣))

𝑃𝑖
𝑘∈ 𝐶𝑃𝑐,∃𝑃𝑖

𝑘(𝑢) ∧ ∃𝑃𝑖
𝑘(𝑣) 

 

where 𝑤𝑖 is the weight associated to the projection 𝑃𝑖
𝑘 and the sum of weights equals 1. This 

measure exploits each projection shared between the compared instances. In other words, the in-

stances of the class are compared based on a specific characterization of all relevant properties 

that must be taken into account in order to rigorously conduct the comparison. 
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5.9.1 Hybrid Techniques 

 

(Pirró 2012) proposes an hybrid techniques taking into consideration the direct properties char-

acterizing the compared instances as well as the shortest path linking the two instances. 
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6 Challenges  
 

At the light of the state-of-the-art of the large diversity of SMs presented in this survey, this 

section highlights some of the challenges offered to the communities involved in SM study.  

 

 

6.1 Better Characterize Semantic Measures and their Semantics 

 

All along this paper we have stressed the importance to control the semantics associated to 

SMs, i.e., the meaning of the scores produced by the measures. This particular aspect is of major 

importance since the semantics of measures must be explicitly understood by users of SMs as it 

conditions the relevance to use a specific measure in a particular context. Indeed, the semantics of 

a SM is generally not discussed in proposals (expect some broad distinction between similarity 

and relatedness). However, for instance, measures only based on taxonomical analysis 

(knowledge-based semantic similarity measures) can have different meanings depending on the 

assumptions on which they rely. In this paper, we have underlined that the semantics associated to 

SMs can only be understood with regard to the semantic proxy used to support the comparison, 

the mathematical properties associated to the measures and the assumptions on which the 

measures are based.  

The semantics of the measures can therefore only be captured if a deep characterization of SMs 

is provided. In the last decades, researchers have mainly focused in the design of SMs and despite 

the central role of the semantic of SMs, only few contributions focused on this specific aspect. As 

we have seen, this disinterest to the study of the semantics of the measures can be partially ex-

plained by the fact that numerous SMs have been designed in order to better mimic human appre-

ciation of semantic similarity/relatedness. In this case, the semantics to be carried by the measures 

is expected to be implicitly constrained by the benchmarks used to evaluate measures’ accuracy. 

Nevertheless, despite evaluation protocols based on ad-hoc benchmarks are meaningful to com-

pare SMs in particular contexts of use, they do not give access to a deep understanding of 

measures and therefore lack to provide the information needed to take advantage of SMs in other 

contexts of use. 

The implications of a better characterization of semantic measures are numerous. We already 

stressed its importance for the selection of SMs in specific contexts of use. Such a characteriza-

tion could also benefit cognitive sciences. Indeed, as we have seen in section 2.2, the proposals of 

cognitive models aiming to explain human appreciation of similarity have been supported by the 

study of properties expected by the measures. As an example, recall that the spatial models have 

been challenged according to the fact that human appreciation of similarity has proven not to be 

in accordance with the axioms of distance. Therefore, characterizing: (i) which SMs best per-

formed according to human expectations of semantic similarity/relatedness and (ii) the properties 

satisfied by these measures, could help cognitive scientists to improve existing models of simi-

larity or derive more accurate ones. 
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In this paper, we have proposed an overview of the various SMs which have been proposed to 

compare units of language, classes or instances semantically characterized. In section 3.1, we 

distinguished various aspects of SMs which must be taken into account for their broad classifica-

tion: 

 The types of elements which can be compared. 

 The semantic proxies used to extract semantic evidences on which will be based the 

measures. 

 The canonical form adopted to represent the compared elements and therefore enable 

the design of algorithms for their comparison. 

 

 In section 2.3.1, we also recalled some of the mathematical properties which can be used to 

further characterize SMs. In section 2.1.3, based on the several notions introduced in the litera-

ture, we proposed a characterization of the general semantics which can be associated to SMs 

(e.g., similarity, relatedness, distance, taxonomical distance). Finally, all along this paper, and 

particularly in section 5.3, we distinguished several semantic evidences on which can be based 

SMs and we underlined the assumptions associated to their consideration.  

 

We encourage SM designer to provide an in-depth characterization of the measures they pro-

pose. To this end, they can use the various aspects and properties of the measures distinguished in 

this paper. We also encourage the communities involved in the study of SMs to better define what 

a good semantic measure is and what makes a measure better than another. In this aim, the study 

of the role of contexts seems to be of major importance. Indeed, as we have seen in section 4.2, 

accuracy of measures can only be discussed with regard to specific expectations of measures. 

Several other properties of measures could also be taken into account and further investigated:  

- Algorithmic complexity. 

- Degree of control on the semantics of the scores produced by the measures. 

- The confidence which can be associated to a score. 

- The robustness of a measure, i.e., the capacity for a measure to produce robust scores con-

sidering the uncertainty associated to expected scores or perturbations of the semantic 

proxies on which rely the measure (modification of the KRs, corpus modifications).  

- The discriminative power of the measure, i.e., the distribution of the scores produced by a 

measure. 

 

 

6.2 Provide Tools for the Study of Semantic Measures  
 

 

The communities studying and using SMs require software solutions, benchmarks, and theoret-

ical tools to compute, compare and analyse SMs. 

 

6.2.1 Develop benchmarks 

 

As we have seen in section 4.2.2 several benchmarks exist to evaluate semantic similarity and 

relatedness. Most of these benchmarks aim at evaluating SMs’ accuracy according to human ap-

preciation of similarity. For the most part they are composed of a reduced number of entries, e.g., 

pairs of words/concepts, and have been computed using a reduced pool of subjects.  
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Initiative for the development of benchmarks must be encouraged in order to obtain larger 

benchmarks in various domains of study. Word-to-word benchmarks must be conceptualized as 

much as possible in order for them to be used to evaluate knowledge-based SMs
i
. It is also im-

portant to propose benchmarks which are not based on human appreciation of similarity, i.e. 

benchmarks relying on an indirect evaluation strategy. 

 

6.2.2 Develop Generic Open-source Software Solutions for Semantic Measures 

 

In section 4.1, we proposed an overview of the main software solutions dedicated to SMs. They 

are of major importance to: (i) ease the use of the theoretical contributions related to SMs, (ii) 

support large scale comparisons of measures and therefore better understand the measures, (iii) 

develop new proposals. 

 

Software solutions dedicated to distributional measures are generally developed without being 

restricted to a specific corpus of texts. They can therefore be used in a large diversity of contexts 

of use as long as the semantic proxy considered corresponds to a corpus of texts.  

 

Software solutions dedicated to knowledge-based SMs are most of the time developed for a 

specific domain (e.g., refer to the large number of solutions developed for the Gene Ontology 

alone). Such a diversity of software is limiting for SMs designers since implementations made for 

a specific KR cannot be reused in applications relying on others KRs. In addition, it hampers the 

reproducibility of results since some of our experiments have shown that specific implementa-

tions tend to produce different results
ii
. In this context, we encourage the development of generic 

open-source software solutions not restricted to specific KRs. This is challenging since the for-

malism used to express KRs is not always the same and specificities of particular KRs sometimes 

deserve to be taken into account to develop SMs. However, there are several cases in which ge-

neric software can be developed. As an example, numerous knowledge-based SMs rely on data 

structures corresponding to partial ordered set or more generally semantic graphs. Other measures 

are designed to take advantage of KRs expressed in standardized languages such as RDF(S), 

OWL. Generic software solutions can be developed to encompass these cases. The development 

of the Semantic Measures Library is an example of such an initiative (Harispe, Ranwez, et al. 

2013b). Reaching such a goal could open interesting perspectives. Indeed, based on such generic 

and robust software supported by several communities, domain specific tools and various pro-

gramming language interfaces can next be developed to support specific use cases and KRs.  

 

The diversity of software solutions also has benefits as it generally stimulates the development 

of robust solutions. Therefore, another interesting initiative, complementary to the former, could 

be to provide generic and domain specific tests to facilitate both the development and the evalua-

tion of the software solutions. Such tests could for instance be the expected scores to be produced 

by specific SMs according to a reduced example of a corpus/KR. This specific aspect is important 

in order to standardize the software solutions dedicated to SMs and to ensure users of specific 

solutions that the score produced by the measures are in accordance with the original definitions 

of the measures. 

                                                      
i It is quite common to find papers describing knowledge-based SM evaluation using word-to-word benchmarks without giv-

ing access to the concepts associated to each words and the strategy adopted when multiple concepts could be associated to a 

word. 
ii This can be explained by bugs or particular interpretations on the definitions of measures or on the way to handle KRs. Refer 

to https://github.com/sharispe/sm-tools-evaluation for an example in the biomedical domain.  

https://github.com/sharispe/sm-tools-evaluation
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As we have seen in section 4.2, evaluation of SMs is mainly governed by empirical studies 

used to assess their accuracy according to expected scores/behaviours of the measures. Therefore, 

the lack of open-source software solutions implementing a large diversity of measures hampers 

the studies of SMs. It explains for instance that evaluations of measures available in the literature 

only involve the comparison of a subset of measures which is not representative of the diversity 

of SMs today available. Initiatives aiming at developing robust open-source software solutions 

giving access to a large catalogue of measures must therefore be encouraged. It’s worth to note 

the importance of these solutions to be open-source. Our communities also lack open-source 

software dedicated to SMs evaluation. Indeed, despite some initiative in specific domains
i
, evalu-

ations are not made through a common framework like it’s done by most communities, e.g. in-

formation retrieval, ontology alignment. 

 

6.2.3 Develop Theoretical Tools for Semantic Measures 

 

The large amount of SMs which have been proposed is hard to study, e.g. deriving interesting 

properties of measures require the analysis of each measure. However, as we have seen in section 

5.7, several initiatives have proposed theoretical tools to ease the characterization of measures; 

they open interesting perspectives to study groups of measures. Such theoretical frameworks have 

proven to be essential to better understand the limitation of existing measures and the benefits of 

new proposals. They are also critical to distinguish the main components on which the measures 

rely. Characterizing such components open interesting perspectives to improve families of SMs 

based on the components, e.g., the definition of the GrasM strategy to better characterize the 

commonality of two classes is an example of the redefinition of a component used by several 

measures. 

 

 

6.3 Standardize Knowledge Representation Handling 
 

In section 5.2.2, we discussed the process required to transform a KR to a data structure which 

can be processed by the measures. Such a process is actually too much subject to interpretations 

and deserves to be carefully discussed and formalised. Indeed, as an example, we stressed that 

numerous measures consider KRs as semantic graphs despite the fact that the formalism on which 

KRs rely cannot be mapped to semantic graphs without some loss of knowledge. The impact of 

such a reduction of KRs is of major importance since it can highly impact the results produced by 

the measures
ii
. The treatment performed to map a KR to a semantic graph is generally not docu-

mented which explains some of the difficulties encountered to reproduce experiments. 

 

6.4 Promote Interdisciplinarity 
 

From cognitive sciences to biomedical informatics, the study of SMs involves numerous com-

munities. Efforts have to be made to promote interdisciplinary studies and to federate the contri-

butions made in the various fields. We briefly provide a non-exhaustive list of the main commu-

                                                      
i E.g., CESSM to evaluate SMs designed for the Gene Ontology. Note that this solution is not open-source, it can therefore not 

be used to support large scale evaluations and it’s impossible to reproduce the experiments and the conclusion derived from 

them… 
ii Consider for instance the simple case of a taxonomy corresponding to a semantic graph in which redundant relationships 

have been defined. 
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nities involved in the studies of SMs as well as communities which could contribute to their stud-

ies or field of studies which must be relevant to solicit to further study SMS. The list is alphabeti-

cally ordered: 

 Biomedical Informatics and Bioinformatics: active in the definition and study of 

SMs. These communities are also active users of SMs. 

 

 Cognitive Sciences: propose cognitive models of similarity and mental representations 

which can be used to improve the design of SMs and better understand human expecta-

tions regarding similarity/relatedness. These communities can also use empirical stud-

ies made for the evaluation of SMs to discuss the cognitive models they propose. 

 

 Complexity Theory: study of the complexity of SMs. 

 

 Geoinformatics: Definition and study of SMs. They are also active users of SMs. 

 

 Graph Theory: several major contributions relative to graph processing. Essential for 

the optimization of measures based on graph-based KRs. This community will play an 

important role in the near future of knowledge-based SMs since large semantic graphs 

composed of billions of relationships are today available. Processing such semantic 

graphs require optimization techniques to be developed. 

 

 Information Retrieval: define and study SMs taking advantage of corpus of texts or 

KRs. 

 

 Information Theory: play an important role to better understand the notion of infor-

mation and to define metrics which can be used to capture the amount of information 

conveyed, shared and distinct between the compared elements, e.g., notion of infor-

mation content. 

 

 Knowledge Engineering: study of KRs and define KRs which will further be used by 

some SMs. This community could for instance play an important role to characterize 

the assumptions made by the measures. 

 

 Logic: define formal method to express and take advantage of knowledge. This com-

munity can play an important role to characterize the complexity of knowledge-based 

semantic measures for instance. 

 

 Machine Learning: play an important role for the definition of techniques and param-

eterized functions which can be used for the definition and tuning of SMs. 

 

 Measure Theory: define a mathematical framework for the study of the notion of 

measure. Essential to derive properties of measures, better characterize SMs and to take 

advantage of theoretical contributions proposed by this community. 

 

 Metrology: study both theoretical and practical aspects of measurements. 

 

 Natural Language Processing: actively involved in the definition of distributional 

measures. They propose models to characterize corpus-based semantic proxies and to 

define measures for the comparison of units of language. 
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 Optimization area: important contributions which can be used to optimize measures, 

to study their complexity and to improve their tuning. 

 

 Philosophy: play an important role in the definition of essential concepts on which 

SMs rely on, e.g., definitions of the notions of Meaning, Context. 

 

 Semantic Web and Linked Data: define standards (e.g., languages, protocols) and 

process to take advantage of KR. The problematic of ontology alignment and instance 

matching are actively involved in the definition of (semantic) measures based on KRs. 

This community is active in the definition of measures. 

 

 Statistics and Data Mining: Important contributions which can be used to characterize 

large collection of data. Major contributions in clustering can for instance be used to 

better understand SMs. 

 

6.5 Study the Algorithmic Complexity of Semantic Measures 
 

 As we have seen all along this survey, most contributions have focused on the definition of 

SMs. Their algorithmic complexity is however near inexistent despite the fact that this aspect is 

essential for practical applications. Therefore, to date, no comparative studies can be made to 

discuss the benefits of using computationally expensive measures. This aspects is however essen-

tial to compare SMs. Indeed, in most application contexts, users will prefer to reduce measure 

accuracy for a significant reduction of the computational time and resources required to use a 

measure. To this end, SM designers must, as much as possible, provide algorithmic complexity of 

their proposals. In addition, as the theoretical complexity and the practical efficiency of an im-

plementation are different, developers of software tools must provide metrics to discuss and com-

pare measures’ implementation efficiency. 

 

 

6.6 Support Context-Specific Selection of Semantic Measures  
 

Both theoretical and software tools must be proposed to orient end-users of SMs in the selec-

tion of measures according to the needs defined by their application contexts. Indeed, despite 

most people only (blindly) consider benchmark results to select a measure, efforts have to be 

made in order to orient end-users in the selection of the best suited approach according to their 

usage context, understanding the implications (if any) to use an approach compared to another.  

The several properties of measures we have presented to characterize the measures can be used 

to guide the selection of SMs. Nevertheless, numerous large-scale comparative studies have to be 

performed to better understand the benefits to select a specific SM in a particular context of use. 
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7 Conclusions 
 

In this paper, we have introduced the large diversity of semantic measures (SMs) which can be 

used to compare various types of elements, i.e., units of language, concepts or instances, based on 

texts and knowledge representation analysis. These measures have been proved to be essential 

tools to drive the comparison of such elements by taking advantage of semantic evidences which 

formally or implicitly support their meaning or describe their nature. From Natural Language 

Processing to Biomedical Informatics, SMs are used in a broad field of applications and have 

become a cornerstone for designing intelligent agents which will for instance use semantic analy-

sis to mimic human ability to compare things.  

 

SMs, through the diverse notions presented in this paper (e.g., semantic similarity/relatedness 

and distance), have been actively studied by several communities over the last decades. However, 

as we have seen, the meaning of the large terminology related to SMs was not clearly defined and 

misuses are frequent in the literature. Based on the commonly admitted definitions and new pro-

posals, this paper presents a classification and clear distinctions between the semantics carried by 

the numerous notions related to SMs. 

 

The extensive survey presented in this paper offers an overview of the main contributions relat-

ed to the broad subject of SMs. It also underlines interesting aspects regarding the interdiscipli-

nary nature of this field of study. Indeed, as we have seen, the design of SMs is (implicitly or 

explicitly) based on models of mental representations proposed by cognitive sciences. These 

models are further expressed mathematically according to specific canonical forms adopted to 

represent elements and functions designed to compare these representations – this whole process 

enables computer algorithms to compare units of language, concepts or instances, taking into ac-

count of their semantics.  

  

Our analysis of existing contributions underlines the lack of an extensive characterization of 

measures and provides several aspects and properties of SMs which can be used to this end. We 

also stressed the importance for our communities to better capture the semantics associated to 

SMs, i.e., to control the meaning which can be associated to a score produced by a SM. Our anal-

ysis helped us to distinguish three main characteristics which can be used to characterize this se-

mantics: (i) the semantic evidences which are used to drive the comparison, (ii) the mathematical 

properties of the measure and (iii) the assumption on which is based the measure.  

 

Finally, at the light of the state-of-the-art of the analysis of the large diversity of contribution 

related to SMs presented in this paper, we stressed the importance: (i) to better characterize SMs, 

(ii) to develop both software and theoretical tools dedicated to their analysis and computations, 

(iii) to standardize and to formalize some treatments performed by SMs which are subject to in-

terpretations, (iv) to facilitate the selection and comparison of measures (e.g., by exploring new 

properties of measures, by defining new domain-specific benchmarks), and (v) to promote inter-

disciplinarity to federate the efforts made by the several communities involved in SMs study.  

 

Contributions 
 

This paper summarizes the state-of-the-art related to semantic measures which have been made 

by Sébastien Harispe during his PhD thesis. Sébastien Harispe wrote the paper; co-authors (PhD 

supervisors) supervised the project and provided corrections and advices. 
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Appendix 
 

1. Categorization of Contributions Related to Semantic Measures 
 

 

This appendix proposes a categorization of some contributions related to semantic measures. In 

each category reference ordering is made by date. 

 

 

 Seminal works 

Contributions commonly admitted as seminal contributions by the different communities 

involved in the study of semantic measures: 

(Tversky 1977; Lin 1998; Deza & Deza 2013) 

 

 Surveys 

Different surveys relative to the notion of semantic measures (most of them focus on a 

specific type of measure and/or focus on a specific application content (e.g. NLP, Bioin-

formatics): 

o Natural Language Processing (S. M. Mohammad & Hirst 2012),  

o Biomedical studies (Pesquita, Faria, et al. 2009; Jiang et al. 2013)  

o Geo-Spatial data (Schwering 2008), 

o General survey: (Slimani 2013)  

 

 Influence of context on Judgment of semantic similarity 

 (Mcdonald & Ramscar 2000) 

 

 Graph-theoretic framework for semantic distance 

 (Tsang & Stevenson 2010) 

 

 Semantic relatedness studying object properties in ontologies 

(D’Amato et al. 2005a; D’Amato et al. 2005b; D’Amato et al. 2006; D’Amato et al. 

2009) 

 

 Semantic measures and description logics in ontologies 

(D’Amato et al. 2005a; Fanizzi & D’Amato 2006; D’Amato et al. 2009) 

 

 Semantic measures applied to Wikipedia 

 (Strube & Ponzetto 2006; Gabrilovich & Markovitch 2009) (Yazdani & Popescu-Belis 

2013). Refer to (Yazdani & Popescu-Belis 2013) for more measures using Wikipedia. 

 

 

 

 Fuzzy semantic similarity between ontological concepts 

 (Cross 2004; Song et al. 2007) 

 

 Semantic measures and Wordnet 
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 (Richardson et al. 1994; Richardson & Smeaton 1995; McHale 1998; Budanitsky 2001; 

Lewis 2002; Kim & Zhang 2002; Zavaracky 2003; Seco et al. 2004; Pedersen et al. 2004; 

Yang & Powers 2005; Varelas et al. 2005; Budanitsky & Hirst 2006; Patwardhan & 

Pedersen 2006; Hoa A. Nguyen 2006; Angryk 2007; Liu et al. 2007; Zhou et al. 2008; 

Pirró & Seco 2008; Xia et al. 2009; Qin et al. 2009; Agirre et al. 2009; Wang & Hirst 

2011; H. Li et al. 2011) (Pirró & Euzenat 2010b) 

 

 

 Semantic similarity and MeSH 

(Hliaoutakis 2005; Zhu et al. 2009) 

 

 Semantic similarity applied to the Biomedical domain 

(Caviedes & Cimino 2004; Spasić & Ananiadou 2005; Al-Mubaid & Nguyen 2006; 

Steichen et al. 2006; Hoa A. Nguyen 2006; Pedersen et al. 2007; Yoo et al. 2007; Faria et 

al. 2007; Zhang et al. 2007; Köhler et al. 2009; McInnes et al. 2009; Batet, Sánchez, Valls, 

et al. 2010; Batet, Sánchez & Valls 2010; Ferreira & Couto 2010; Saruladha, Aghila & 

Bhuvaneswary 2010; Grego et al. 2010; Pakhomov et al. 2010; Wang et al. 2010; Sánchez 

& Batet 2011; Pakhomov et al. 2011; M. H. Schulz et al. 2011; J. Li et al. 2011; Sánchez, 

Solé-Ribalta, et al. 2012; Paul et al. 2012; Garla & Brandt 2012; Liu & McInnes 2012) 

- see also the section dedicated to the Gene Ontology  

 

 

 Semantic measures and the Gene Ontology 

 (Lord et al. 2003; Couto et al. 2003; Cao et al. 2004; Couto et al. 2005; Sevilla et al. 

2005; Yu et al. 2005; Wu et al. 2005; Guo et al. 2006; Othman et al. 2006; Wu et al. 

2006; Schlicker et al. 2006; Pesquita et al. 2007; Couto et al. 2007; Pesquita 2007; Wang 

et al. 2007; Guo 2008; Sheehan et al. 2008; Pesquita et al. 2008; Othman et al. 2008; 

Mistry & Pavlidis 2008; Nagar & Al-Mubaid 2008; Schlicker & Albrecht 2008; Al-

Mubaid & Nagar 2008; Xu et al. 2008; Fontana et al. 2009; Pesquita, Pessoa, et al. 2009; 

Pesquita, Faria, et al. 2009; Xu et al. 2009; Z. Du et al. 2009; P. Du et al. 2009; Ruths et 

al. 2009; G. Yu 2010; Tedder et al. 2010; Benabderrahmane, Devignes, et al. 2010; Jain 

& Bader 2010; Yu et al. 2010; Benabderrahmane, Smail-Tabbone, et al. 2010; Li et al. 

2010; Richards et al. 2010; Alvarez & Yan 2011; Park et al. 2011; Mukhopadhyay & De 

2011; M. Alvarez et al. 2011; Gaston K. & Nicola J. 2011; Kozielski & Gruca 2011; 

Mina & Guzzi 2011; Couto & Silva 2011; Cho et al. 2011; Baralis et al. 2011; J. Wang et 

al. 2012; Yang et al. 2012; Guzzi et al. 2012; Sy et al. 2012; Mazandu & Mulder 2012; 

Xu et al. 2013) 

  

 Application to image caption retrieval 

 (Smeaton & Quigley 1996) 

 

 Applications to GeoInformatics 

(Andrea Rodríguez & Egenhofer 2004; Schwering & Raubal 2005; Akoka et al. 2005; 

Rodríguez et al. 2005; Janowicz 2006; Keßler et al. 2007; Schwering 2008; Janowicz et 

al. 2008; Formica & Pourabbas 2008; Su et al. 2010; Janowicz et al. 2011; Ballatore et al. 

2012) 

 Semantic measures and algorithmic 

(Maguitman & Menczer 2005; Maguitman et al. 2006) 
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 Construction of semantic network of related concepts 

 (Szumlanski & Gomez 2010) 

 

 Ontology-based clustering (and classification) 

(Sanderson & Croft 1999; Maedche & Zacharias 2002; Pekar & Staab 2002; Pantel & Lin 

2002; Nauer & Napoli 2006; Al-Mubaid & Nguyen 2006; Yoo et al. 2007; Ginter et al. 

2007; Zhang et al. 2007; Fanizzi et al. 2008b; Batet et al. 2008; Esposito et al. 2008; 

Esposito et al. 2010; M. Schulz et al. 2011; Batet 2011b) 

 

 Non English Language Processing using semantic measures 

(Wu & Palmer 1994; Osathanunkul et al. 2011) 

 

 General studies of ontology-based semantic measures 

(Blanchard & Harzallah 2005; Blanchard et al. 2008) 

 

 Semantic measures and social networks 

(Waltinger et al. 2009; Capocci et al. 2010) 

 

 Semantic measures using multiple ontologies 

(Rodríguez & Egenhofer 2003; Xiao & Cruz 2005; Petrakis et al. 2006; Kai et al. 2007; 

M.C. Lange, D.G. Lemay 2007; Al-mubaid & Nguyen 2009; Batet, Valls, et al. 2010; 

Saruladha, Aghila & Bhuvaneswary 2010; Coates et al. 2010; Saruladha & Aghila 2011; 

Chiabrando et al. 2011; Saruladha 2011; Sánchez, Solé-Ribalta, et al. 2012; Batet et al. 

2013) 

 

 Unclassified Semantic measures between pairs of classes defined in a knowledge repre-

sentation. 

 (Schickel-Zuber & Faltings 2007; Mazuel & Sabouret 2008; Bin et al. 2009; Cai et al. 

2010; Xiquan et al. 2010; Li & Xia 2011; Spagnola & Lagoze 2011; Ye et al. 2011; 

Sánchez, Batet, et al. 2012) 

 

 

 Information Retrieval and Semantic measures 

(Lee et al. 1993; Richardson & Smeaton 1995; Hliaoutakis 2005; Hliaoutakis et al. 2006; 

Knappe 2006; Baziz et al. 2007; Saruladha, Aghila & Raj 2010a; Saruladha, Aghila & 

Raj 2010b; Delbru 2011; Sy et al. 2012)  (Varelas et al. 2005) 

 

 

 Semantic measures and Web of Documents 

(Bollegala 2007a; Bollegala et al. 2007; Bollegala 2007b; Bollegala et al. 2009; Sánchez 

et al. 2009; Al-mubaid & Nguyen 2009; Batet, Sánchez & Valls 2010; Bollegala et al. 

2010; Iosif & Potamianos 2010; Jian 2011) 

 

 Semantic Measures and Semantic Web  

(Delbru 2011) 

- See section related to ontology mapping/matching instance matching and Linked data 

 

 Semantic Measures and Ontology matching and mapping 

(Euzenat & Shvaiko 2007; Ge & Qiu 2008; Wang & Jou 2011) 
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 Semantic Measures and Instance Matching 

(Castano et al. 2011) 

 

 

 Semantic Measures and reasoning 

(Huang & Harmelen 2008) 

 

 Semantic Measures and ontology development 

(Ramezani 2011) 

 

 Semantic Measures and Linked Data 

(Sheng et al. 2010; Passant 2010; Olsson et al. 2011; Baumann & Schirru 2012)  

 

 Semantic Measures between RDF instances (or entities characterized in a graph) 

(Bisson 1995; Oldakowski & Bizer 2005; Albertoni & De Martino 2006; Volz et al. 

2009; Araujo et al. 2011; Harispe, Ranwez, et al. 2013a; Andrejko & Bieliková 2013) 

(Pirró 2012) 

 

 

 Semantic relatedness and conceptual network 

 (Gurevych 2005) 

 

 Semantic measures between texts 

 (Mihalcea et al. 2005) 

 

 Semantic measures for question answering 

 (C. Wang et al. 2012) 

 

 

 Semantic measures and machine translation 

 (Wu & Palmer 1994) 

 

 Semantic measures and paraphrase detection 

 (Iordanskaja et al. 1991; Fernando & Stevenson 2008) 

 

 Information Content  

(Resnik 1995; Seddiqui 2010; Sánchez et al. 2011; Sánchez & Batet 2012) 

 

 Semantic measures and Cognitive Sciences 

(Tversky 1977; Miller & Charles 1991; Landauer & Dumais 1997; Schwering 2005; 

Martin 2007; Binder & Desai 2011; Aimé 2011; Decock & Douven 2011) 

  

 Semantic measures and Disambiguation 

(Resnik 1999) (Sussna 1993) 

 

 Unification of measures  

(Cross et al. 2013) (Mazandu & Mulder 2013) (Blanchard & Harzallah 2005; Blanchard 

et al. 2008; Blanchard 2008) (Cross 2006; Pirró & Euzenat 2010a; Cross & Yu 2010; 
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Sánchez & Batet 2011; Cross et al. 2013) (Harispe, Sánchez, et al. 2013)  (Roddick et al. 

2003) 

 

 Graph-based measures (can be applied to deal with semantic graphs) 

(Entringer et al. 1976; Chartrand et al. 1998; Fogaras & Rácz 2005; Fouss et al. 2007; 

Goddard & Oellermann 2011) 

 

 Software solutions and tools for semantic measures 

(Pedersen et al. 2004; Oldakowski & Bizer 2005; Bernstein et al. 2005; Janowicz et al. 

2007; McInnes et al. 2009; Rus et al. 2013) (Pesquita, Pessoa, et al. 2009) 

 

 

 Other contributions (unclassified) 

(Tsang 2008) (Banerjee & Pedersen 2003) (Haase et al. 2004) (Budanitsky 1999) (S. M. 

Mohammad & Hirst 2012) (Salahli 2009) (Jarmasz & Szpakowicz 2002) (Jiang & 

Conrath 1997) (Raftopoulou & Petrakis 2005) (Rada et al. 1989) (Hall 2006) (Wu et al. 

2009) (Zhao et al. 2009) (Lee et al. 2008) (Shi & Setchi 2010) (Tudhope & Taylor 1997) 

(Hawalah & Fasli 2011) (Pirró 2009) (Cross 2006) (Haralambous & Klyuev 2011) 

(Danowski 2010) (Patwardhan 2003) (Hughes & Ramage 2007) (Roddick et al. 2003) 

(Ramage et al. 2009) (Fanizzi et al. 2008a) (Stuckenschmidt 2009a) (Pirró & Euzenat 

2010a) (Mario Jarmasz 2003) (Lemaire & Denhière 2008) (Li et al. 2003) (Resnik 1995) 

(Tsang & Stevenson 2006) (Iosif & Potamianos 2010) (Stevenson M 2005) (Cheng et al. 

2009) (Ranwez et al. 2006) (Cho et al. 2003) (Anna 2008) (Van Buggenhout & Ceusters 

2005) (Tadrat et al. 2011) (Agirre et al. 2010) (Liu 2011) (Halawi et al. 2012) (Cordi et 

al. 2005) (Ramage et al. 2009) (Maedche & Staab 2001) (Alqadah & Bhatnagar 2011) 

 

 Related work 

(Orozco & Belanche n.d.) (Bisson 1995) (Kovács 2010) 

 

 

 

2. Semantic measures for Text Segments Comparison 
 

Most of the work related to text segment comparison has focus on vector model as well as n-

gram language and topic models. These models follow a direct approach. A second approach, 

defined as indirect, regroup the models which assess the semantic similarity/relatedness of texts 

according to the similarity of their words. Both approaches are briefly detailed in this appendix. 

 

 

Direct Approaches 

 

Lexical overlap 

 

The similarity of two texts can be assessed based on the number of words or n-gram the two texts 

have in common. Note that this type of measures is not based on the semantic analysis of texts. A 

large diversity of combination of parameters can be used (Rus et al. 2013): 

 Pre-processing: Collocation detection, punctuation stop, word removal. 

 Filtering option: all words, content of words. 
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 Weighting schemes. 

 

Measures based on extensions of the LSA word-to-word measures have also been proposed for 

text-to-text comparison (Lintean et al. 2010). They characterize a text through a LSA vector build 

summing individual words’ vectors (vectors are therefore compared using classical techniques, 

e.g., cosine similarity). 

Other approaches based on Latent Dirichlet Allocation (Blei et al. 2003) can be used to com-

pare texts adopting a topic model approach. Texts are considered as random mixture over latent 

topics and each topic is associated to a distribution over words, i.e., has a probability to generate 

specific words (the probabilities are defined through supervised labelling or co-occurrence analy-

sis). The distributions over topics associated to each document and the similarity of topics (the 

distribution over words) can next be used to compare two texts. 

 

 

 Indirect Approaches – Word-to-Word Aggregation 

 

Indirect approaches model the semantic similarity/relatedness of texts according to the similari-

ty and the specificity of the words composing them. 

 

In (Mihalcea et al. 2006), the authors proposed to sum the maximal similarity between the Car-

tesian product of the two sets of words composing the two texts. The specificity of words is also 

taken into account using the Inverse Document Frequency (IDF) (Jones 1972). Any word-to-word 

similarity measures can be used (a word disambiguation step may be needed). In (Rus et al. 

2013), the authors proposed the optimal lexical matching strategy, an approach derived from the 

assignment problem
i
. In (Fernando & Stevenson 2008) all similarities of the pairs of words con-

tained in the Cartesian product were considered. Measures based on the aggregation or extensions 

of the LSA word-to-word measures have also been proposed for text-to-text comparison (Lintean 

et al. 2010). 

 

 

3. Corpora of Texts for Distributional Approaches 
 

List of some resources commonly used to compute the similarity of words from corpora analy-

sis: 

 British National Corpus (BNC) 

 Associated Press news history 

 Wall street journal 

 Tipster corpus 

 Brown corpus 

 

 

 

 

 

                                                      
i Famous combinatorial optimization problem. 
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4. How to Map a Knowledge Representation to a Semantic Graph 
 

RDF(S) Graphs and Semantic Measures 

 

This note discusses some technical aspects relative to the computation of SMs on RDF(S) 

graphs. It mainly presents the considerations to be taken into account to map an RDF(S) graph to 

the kind of semantic graph generally expected by SMs.  

 

The simple graph data model, considered for algorithmic studies and definitions of SMs, differs 

from the RDF graph specification in multiple ways, e.g. no blank nodes or literals in some cases. 

These differences do not prevent the use of SMs on RDF graphs. Nevertheless, to ensure both 

coherency and reproducibility of results, guidelines regarding the use of these measures on those 

graphs have to be rigorously defined. Handling of RDF graphs which take advantage of precise 

formal vocabularies such as RDFS must also be clearly defined. To our knowledge, required pre-

processing enabling the use of SMs on RDF(S) graphs has not been previously discussed in litera-

ture. We will refer to RDFS entailment rules, please consider the W3C specification for rule 

numbering
i
. 

 

On RDF(S) graphs, instances and classes are not clearly separated as “A class may be a mem-

ber of its own class extension and may be an instance of itself”
ii
 (e.g. using punning techniques, 

meta-class). Such cases are not limiting to our work as in general practice, instances and classes 

can easily be distinguished using basic rules and restrictions. Moreover, the separation of instance 

data and the taxonomy of classes is considered as a fundamental aspect of knowledge representa-

tion modelling which is therefore usually respected. The definition of a function enabling two 

distinguish the type to associate to a node, i.e., Class (C), Instance (I), Predicate (P) or Data value 

(D) is therefore not considered to be limiting
iii
. 

 

SMs algorithms heavily rely on graph traversals. In order for the measures scores to be accurate 

and reproducible, the graph must first be entailed according to RDFS entailment rules. The graph 

needs to be reduced for some properties required by the measures to be respected. Both graph 

entailment and reduction required prior to SMs computation are detailed. 

 

Since most treatments associated to SMs are expressed in terms of graph traversals, a RDFS 

reasoner must be used to infer all implicit relationships based on RDFS entailment rules 3, e.g. 

rdf:type inference according to the domain/range associated to a property (predicate). To re-

duce the complexity of the entailment, only the RDFS entailment according to rules 2, 3 and 5, 7 

must be applied. Rules 2 and 3 are respectively related to rdfs:domain and rdfs:range type 

inference. Rules 5 and 7 are related to sub-property relationships and are therefore important in 

order to infer new statements according to rules 2 and 3. Other entailment rules have no direct 

implications on the topology of the resulting graph as inferred relationships will not be considered 

by SMs algorithms. 

                                                      
i RDF Semantics, http://www.w3.org/TR/rdf-mt  
ii RDF Schema, http://www.w3.org/TR/rdf-schema  
iii Note that in OWL-DL the sets of classes, predicates and instances (concepts, roles and individuals) must be disjoint  

(Horrocks & Patel-Schneider 2003). 

http://www.w3.org/TR/rdf-mt
http://www.w3.org/TR/rdf-schema
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The graph must respect certain properties. Not all inferable relationships, according to the tran-

sitivity of taxonomic relationship or chain of transitive relationships (i.e. transitivity over 

rdfs:subClassOf), are to be considered. This treatment can be carried out through an efficient 

transitive reduction algorithm (see section 5.2.2.5). Furthermore, some classes associated to 

RDFS Vocabulary and/or other classes not explicitly defined in the ontology must be ignored 

prior to the treatment, e.g. rdfs:Property, rdfs:Class. Triplets associated to these excluded 

classes and RDFS axiomatic triples
i
 must also be ignored. Such pre-processing is important to 

ensure coherency of both SMs and particular metrics (e.g., information content). As an example, 

an RDFS reasoner will infer that all classes are subclasses of rdfs:Resource and create the 

corresponding triplets. Thus, considering the edge-counting measure, the maximal distance be-

tween two concepts will be set to 2, which is not the expected behaviour for most usage contexts. 

 

In RDF graphs, blank nodes or reification techniques can be used to model specific information 

into the graph. We consider that any blank node is associated to a class, a predicate, an instance of 

a class or a specific relationship. As an example, consider the set of RDF statements:  
 

_r1   rdf:subject     ex:luc 

_r1   rdf:predicate   foaf:knows 

_r1   rdf:object      ex:louise 

_r1   ex:Degree      ex:High 

 

 

This set of statements can be graphically represented by the graph (A) in Figure 17.  
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Figure 17: Example of mapping between (A) an RDF graph modelling a specific knowledge using par-

ticular design pattern, and (B) a semantic graph representation of this knowledge as it is expected by most 

SMs.  

 

In (A), the node _r1 corresponds to a blank node used to express properties on a specific relationship 

(reification). The representation expected by SMs is generally based on the classical graph property model. 

 

Nevertheless, most SMs expect such a knowledge to be expressed as the graph presented in 

Figure 17 (B). As an example, the path between ex:luc and ex:tom is expected to be: 

 
[ex:luc, ex:louise, ex:tom]foaf:knows 

 

 

However, in the graph, the shortest path between the two instances is: 

 
[ 

 (ex:luc,rdf:subject-,_r1), 

 (_r1,rdf:object,ex:louise), 

 (ex:louise, foaf:knows,ex:tom) 

] 

 

 

 

From OWL to Semantic Graphs (TODO) 

 

We describe some modifications which can be performed to map a KR expressed in OWL into 

a semantic graph which can be processed by most SMs framed in the relational setting. 

 Reference (Horrocks & Patel-Schneider 2003) 

 

 

 

 

5. From Distance To Similarity and vice-versa 
 

 

A similarity 𝑠 (bounded by 1) can be transformed to a distance 𝑑 considering multiple ap-

proaches (Deza & Deza 2013). A distance can also be converted to a similarity. Some of the ap-

proaches used for the transformations are presented above. 

 

Similarity to distance 

 

 

If 𝑠𝑖𝑚 is normalized: 

𝑑𝑖𝑠𝑡 = 1 − 𝑠𝑖𝑚 
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𝑑𝑖𝑠𝑡 =
1 − 𝑠𝑖𝑚

𝑠𝑖𝑚
 

 

𝑑𝑖𝑠𝑡 = − ln  𝑠𝑖𝑚 
 

 

Distance to Similarity 

 

𝑠𝑖𝑚 =
1

𝑑𝑖𝑠𝑡 + 1
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


