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This paper presents a new algorithm to solve the problem of dense disparity map estimation in stereo-vision. Our method is an iterative process inspired by variationnal approach. A new criteria is used as the attachment term based on the distance to local minimum of a similarity measure. Our iterative process is heuristic. Nevertheless, we are able to interpret this algorithm presenting both combinatorial and continuous characteristics. The quality and precision of the results obtained by our method both on image benchmarks and real data clearly demonstrate the the validity of this approach.

INTRODUCTION

The aim of stereo-vision is to give a perception of a scene in three dimensions using two or several images taken from different points of view. Usually, stereo-vision is used to compute three dimensions reconstruction of rigid scenes. In order to solve this problem, we need first to compute matches between features of the given images. This paper focuses on stereo-vision image matching.

Matching problem often appears in various vision tasks such as: motion, image registration, pattern recognition, and stereo-vision. Unfortunately, each similarity measure that can be defined gives a percentage of false matching due to noise and ambiguity. In sparse stereo matching, we often concentrate on features or image primitives such as points of interest, segments, regions. As an example, points of interest [START_REF] Gouet | Stereo matching of color images using differential invariants[END_REF] are especially chosen for their neighborhood specificity to reduce matching ambiguity (points of interest are frequently used to recover the epipolar geometry in uncalibrated stereo-vision). Generally a matching scheme proceed in two steps, a first step of computing scores of similarity and a second step of relaxation involving geometrical informations able to deal with ambiguous and weak correspondances.

In this paper, we are interested in dense correspondences i.e correspondences of all non occluded pixels of the image. The matching of image features have obtained a lot of attention in the literature see [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF]. The results of all these methods can be compared on the basis of the disparity maps that they can deliver. Roughly speaking, disparity is a value related to the displacement of pixels from one image to another, and the disparity map contains the disparity value of all the matching pixels (a precise definition of disparity will be given in the next section).

Different characteristics allow to give the specificity of dense matching in comparison to the sparse one:

• Disparity map is defined over the entire image domain. It has to be a piecewise continuous function preserving the edge's depth.

• Concerning the improvement of the ambiguous matches (as in textured region for example), relaxation cannot be done over the entire image domain for obvious computational reasons. It is the role of a global regularization constraint to overcome this problem.

Features like segments or corners points [START_REF] Boufama | Towards a fast and reliable dense matching algorithm[END_REF] have been intensively studied for stereo-vision but they cannot lead to precise dense disparity maps, principally due to the fact that these features do not appear on the homogeneous areas of the images. The use of regions for matching is difficult because of the lack of robustness of the characterization of regions under projective transforma-With the development of the Partial Derivative Equations (PDE) and the increase of the computational speed, a new strategy based on a variational approach has been proposed by [START_REF] Alvarez | Dense disparity map estimation respecting image discontinuities: a pde and scalespace based approach[END_REF]. Their scheme naturally introduces a global regularity constraint and a depth edge constraint into the variational formulation. After solving the Euler-Lagrange equation they obtain a PDE composed of two terms: a regularization term and an attachment term. As their PDE is a gradient descent of an energy functional, it is very important to have an energy "as convex as possible". For this reason, they use a coarse-to-fine approach based on a multi-scale gaussian smoothing, and at each scale, they compute a disparity map. At the end of this process they obtain the final disparity map.

Recently [START_REF] Maier | Dense disparity maps respecting occlusions and object separation[END_REF] has proposed a non hierarchical approach which takes into account the edges accurately. In (N. Slesareva et al., 2005) the authors propose to use a Total Variation regularization [START_REF] Blomgren | Total Variation Methods for Restoration of Vector Valued Images[END_REF] and an attachment term coming from the optical flow literature. This method seems to give promising results especially for noisy images.

We propose a new scheme allowing to compute directly the disparity map without multi-scale approach. As the other methods our approach involves two terms of regularity and data attachment. As regularity term, we use the regularity constraint of [START_REF] Alvarez | Dense disparity map estimation respecting image discontinuities: a pde and scalespace based approach[END_REF], but for the attachment term, in order to overcome the problem of numerous local minima (one of the characteristics of the dense matching), we use the signed distance to the local minima given by a similarity measure. With this modification, our scheme is no more deduced from a variational method but, the iterative process that we have defined has heuristic justifications:

• All pixels minimizing a given similarity measure are candidates for matching and have the same importance. For the non ambiguous pixels, the matching candidate is often unique and will be the first match found by our iterative process. For ambiguous ones (as in textured region) the regularity constraint is used to improve the matches.

• Local minima of the similarity measure which are close to each other collapse into one in the set of matching candidates for our attachment term.

The resulting winning position is the one with the smallest disparity measure.

Our regularisation term is continuous, while the attachement term can be considered as combinatorial by its discrete valuations. In the following of this paper our method will be referenced as Iterative Scheme to Local Minima (ISLM). Note that the combinatorial aspect of our method is not implemented as a kind of relaxation, but by properties of the valuation of our attachment term.

The paper is organized as follows: section 2 presents the epipolar constraint and the disparity map. Section 3 presents PDE based on variational approach [START_REF] Alvarez | Dense disparity map estimation respecting image discontinuities: a pde and scalespace based approach[END_REF]. The role of Nagel-Enkelmann operator, used in our work, as a diffusion-reaction term preserved discontinuity will be explained here. Section 4 presents our attachment term and its properties, we discuss the differences with the Alvararez variational approach. Our generic attachment term can be computed with different similarity measures, and we present here a simple square difference on a correlation mask. Section 5 develops the computation of our attachment term. Finally, in section 6 experimentations are presented. We use synthetic data where the true disparity is known and also real images. The pertinence of our approach is demonstrated by quantitative results when the true disparity is known, and by qualitative results otherwise.

EPIPOLAR GEOMETRY AND DISPARITY ESTIMATION

We note by I 1 and I 2 the two different views of a rigid scene. Each three-dimensional point P of the scene form a plane with the two optical centers C 1 and C 2 . The intersection of this plane and the retinas are lines, respectively l 1 and l 2 called epipolar lines. The epipolar constraint expresses the fact that pixels p 1 and p 2 , which are respectively the projections of P on I 1 and I 2 , lie respectively on l 1 and l 2 (see Figure ( 1)).

tions. Dynamic programming often focuses on the study of specific lines in the image (i.e the epipolar lines presented in the next section) doing a combi-natorial search for matches.

This search has to satisfy a regularity constraint on these lines and between them [START_REF] Ohta | Stereo by intra-and interscanline search using dynamic programming[END_REF]. The satisfaction of this constraint, while preserving edges, remains a difficult task. In practice, the epipolar constraint allows the reduction of the search space for a corresponding pixel of p 1 (image I 1 ) to the line l 2 instead of all the image domain I 2 . As a consequence, epipolar constraint increases the matching quality and the computational speed. This constraint is algebraically expressed by the fundamental matrix 3 × 3 F . We have:

F . t (x 1 , y 1 , 1) = t (a 2 , b 2 , c 2 ) (1) with a 2 x 2 + b 2 y 2 + c 2 = 0
(2) where, p 1 = t (x 1 , y 1 , 1) and p 2 = t (x 2 , y 2 , 1) are projective pixels coordinates, t (a 2 , b 2 , c 2 ) represents the equation of l 2 . So, the epipolar constraint can be written as:

(x 2 , y 2 , 1) F t (x 1 , y 1 , 1) = 0
(3) In the following, we will consider that the fundamental matrix is known, (see for fundamental matrix computation [START_REF] Torr | the development and comparison of robust methods for estimating the fundamental matrix[END_REF][START_REF] Zhang | a robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[END_REF]).

We need to estimate the disparity of all the pixels. Disparity for a pixel p 1 is a two dimensional affine vector h = p 1 p 2 in the image I 2 (keeping coordinates of p 1 from the image I 1 ). Thanks to the fundamental matrix, only one coordinate of this vector needs to be memorized. If we note o the projection of p 1 on l 2 , we have h = p 1 o + op 2 with:

p 1 o = p 1 F p 1 a 2 2 + b 2 2 (4)
Using the fundamental matrix, disparity h can be defined only by op 2 which will be referred as λ in the following (see figure (2)). Thus, our dense stereo correspondence problem is reduced to the estimation of a grey level image λ over the image domain chosen to be I 1 .

A VARIATIONAL APPROACH FOR STEREO-VISION

This section presents the variational minimization approach introduced by [START_REF] Alvarez | Dense disparity map estimation respecting image discontinuities: a pde and scalespace based approach[END_REF] in order to solve this stereo-vision problem. We explain there the role of the Nagel-Enkelmann operator.

The functional energy E var model classically contains two terms:

E var (λ) = C E Regular (∇λ) + E Attach (λ) (5)
In order to minimize this functional we can use a gradient descent strategy after discretization with the corresponding PDE:

dλ(t) dt = -∇E var (λ(t)) (6) 
We note here λ(t) the image obtained after t iterations of the gradient descent. To obtain a good disparity result with this PDE, two conditions must be verified:

• The disparity image corresponding to the global minimum of the energy must be close to the true disparity one, the minimization of variational method (eq. 5) is well designed to our stereo problem. • The λ tmax solution obtained by the PDE (6) has to be the global minimum of the variational function (5).

To avoid local minima of their PDE, the authors use a coarse-to-fine hierarchical approach based on gaussian smoothing, see [START_REF] Alvarez | Dense disparity map estimation respecting image discontinuities: a pde and scalespace based approach[END_REF] for more details. Now we are going to discuss the first condition just stated before.

A Definition of Energy

We note Ω the entire image domain defined with variable x and y and

I λ (x, y) := I ((x, y) + h(λ))
The equation (eq. 5) is composed of two terms of different weights C and 1.

The regularization term is defined as follows:

E Regular = Ω 1 |∇(I1)| 2 + 2ν 2 t ∇λ D(∇I1) ∇λ dx dy (7)
with :

D(∇I 1 ) = -∂I1 ∂y ∂I 1 ∂x -∂I1 ∂y ∂I 1 ∂x + ν 2 Id (8)
The attachment term is:

E Attach (λ) = Ω (I λ 1 (x, y)-I 2 (x, y)) 2 dx dy (9)
The PDE obtained by the Euler-Lagrange conditions from equation ( 5) is:

dλ dt = Ω C div(D(∇I)∇λ) + (I λ 1 (x, y) -I 2 (x, y)) a 2 ∂I λ 1 ∂y + b 2 ∂I λ 1 ∂x a 2 2 + b 2 2 dx dy
with reflecting boundary conditions.

The role of these two terms of the PDE in our stereo problem is:

• The minimization of the attachment term implies that the matches must have close intensity values, according to a lambertian hypothesis. • The minimization of regularization term imposes a continuity constraint in the disparity image. In homogeneous regions the disparity should be continuous with a step at the depth edges.

More details of the Nagel-Enkelmann reaction-1)

3)

2) 4) In this scheme, diffusion will allow to extend the disparity value in homogeneous regions (and so express regularity constraint), and the reaction term will preserve depth contour. To preserve these depth contour, we use the gradient of image I 1 , because a depth edge implies an image edge. Note that an image edge does not always correspond to a depth edge (for example, the edges of the paving stones on the floor in the image corridor (see fig. 7)).

Next, we give an attachment term taking into account the similarity measure, especially for the ambiguous matches.

TWO DIFFERENT ATTACHMENT TERMS

This section presents our attachment term and how it deals with ambiguous matches by embedding the distance to the local minima of a similarity measure. We present first the similarity measure used by Alvarez.

Attachment Term of the Variational Approach

Under lambertian hypothesis the attachment term used by Alvarez is expressed as the square difference of grey levels:

|I 1 (x, y) -I λ 2 (x, y)| 2 (10)
The main inconvenience with this formulation is that it creates numerous local minima corresponding to the possible disparities. As a consequence, these local minima can easily drive the search of the disparity image toward a false solution. To overcome this problem the authors have introduced a multi-scale approach.

Local minima occur frequently in dense disparity problems, and the similarity measure given by the diffusion operator used for the regularization process will be presented in the next subsection. The different attachment terms will be discussed in detail in the section 4.

Nagel-Enkelmann Operator

Nagel-Enkelmann operator has received a lot of attention in computer vision, especially for optical flow analysis [START_REF] Nagel | Constraints for the estimation of deplacement vector fields from image sequences[END_REF]. From a physical point of view, it can represent the behavior of the heat distribution in an isolated volume (with neglected convexion). We give an example in the figure (3), where we compute Nagel-Enkelmann diffusion in a "Florence flask". The initial heat distribution is given at the image heat t0 and the flask is associated to an image Flask. Note that the heat diffusion is isotropic inside the Florence flask, and is stopped by reaction at the edge. We will briefly explain the equivalence between this diffusion-reaction and our problem. Then we will discuss the role of each element of the Nagel-Enkelmann operator.

The heat(x, y), intensity value is the heat at the point (x, y) corresponding to the disparity λ(x, y) in our stereo problem, and I 1 plays the role of the image Flask. When multiplying by ∇λ, the first term of equation ( 8) produces the reaction in the PDE (diffusion direction is constraint to be along the edge). The second term acts as a diffusion (into the PDE it corresponds to a classical heat equation in an homogeneous medium). ν is the weight of the diffusion term. The equation ( 7) is normalized by

|∇(I 1 )| 2 +2ν 2 .
squared difference of intensities is not well-suited to discriminate which local minima corresponds to the true disparity. Moreover, even if it is natural in a classical denoising image algorithm to use difference of intensity pixels as attachment term, it will be natural for the disparity map estimation to introduce a difference of disparity as attachement term.

A New Attachment Term

Our attachment term is the following:

E Attach = Ω Disp min (x, y, λ) 2 dx dy (11)
where,

Dispmin(x, y, λ) = argmin d∈[-V,V ] (S (I1(x, y), I2(x, y) λ+d )) (12) 
with, • S a similarity measure between the pixel at (x, y) coordinates from image I 1 and the pixel (x, y) + h(λ + d)) from image I 2 . S equals 0 if the pixels are similar and otherwise a positive value . • V is a "small" integer constant. For a pixel (x, y) at the current disparity λ, Disp min is the signed distance which can minimize the similarity measure in the interval [-V, V ]

Our attachment cannot lead to a gradient strategy from Euler-Lagrange as in variational method, because arg min is not a function. To minimize heuristically this energy, we use the iterative process:

dλ dt = Cdiv(D(∇I))∇λ + Dispmin(x, y, λ)
Note that it is classical to lose the variational meaning in regularization PDE techniques such as MCM, AMSS regularization for example. Anyway, these PDE have some good interpretations, because they are defined in the multi-scale frame [START_REF] Alvarez | Axioms and fundamental equation of image processing[END_REF][START_REF] Chambolle | Partial differential equation and image processing[END_REF]. They correspond to PDE defined by properties such as isotropy, euclidean invariance, affine invariance, etc. Due to the use of the arg min, and because of the violation of comparison principle [START_REF] Alvarez | Axioms and fundamental equation of image processing[END_REF], our iterative process is not defined in the multi-scale approach. Nevertheless, we can define directly some good properties for this Iterative Scheme to Local Minimum (ISLM). Iterative processes using arg min have been used for classification problems [START_REF] Macqueen | Some methods of classification and analysis of multivaluate observation[END_REF]. Here we have to give at each pixel a value in a class, and it is the purpose of the arg min. We can define some links between our problem and a classifying one : the different class for a pixel with our method are the minima of their similarity measure S.

Taking the signed distance to the local minima as the attachment term gives four principal properties: 

will be [m 1 -V, m 1 + d(m 1 , m 2 ) + V ] due
to the absorption of m 2 .

• Our attachment term gives the same weight to all local remaining minima, and has no effect on homogeneous areas, so the regularization process can move the disparity from a local minimum to another one easily by a combinatorial process. This property is complementary to the first one. For the pixels whose similarity local minimum is not defined, i.e we are in a homogeneous region, no attraction is done. It is clearly the regularization process that allows to move from an attractor to another one.

• The non ambiguous matches (i.e the ones where the global minimum score is the true disparity) are the first disparities found by our process. These matches restrict, by the regularization constraint, the research of the ambiguous ones to a subset of the potential matching candidates. The combinatorial nature of this stage gives a propagation process and is a consequence of the way our attachment term is evaluated.

• The form of the object is better preserved : we have observed that the position of the minima on the boundary of the objects are more stable than the corresponding values of S along the epipolar line's pencil.

The two last properties will be illustrated by experimental data (see 6).

IMPLEMENTATION

We use a simple explicit scheme for ISLM:

λ(t) = λ(t -1) + dt * (C div (D(∇I) ∇λ(t -1)) + Disp min (x, y, λ(t -1)))
By lack of place, we do not present the explicit Nagel-Enkelmann discretization operator, see [START_REF] Alvarez | Dense disparity map estimation respecting image discontinuities: a pde and scalespace based approach[END_REF] for an example of more sophisticated and accurate implementation.

We use as a similarity measure S the square difference on a correlation mask oriented in the direction of the epipolar line between the pixel (x, y) and (x, y) + h(λ). Formula (3) gives the way to compute the epipolar line, and so the mask direction in image I 2 with (x, y) coordinates. The mask direction of the pixel in the image I 1 is found at the same way with t F , the transposed fundamental matrix. This classical result can be found by transposition of the two terms of the same formula. We present in the experimental section 6, some examples where the 1 × 1 mask (generally we use a 3 × 3 mask). This gives the same similarity measure used by Alvarez. By the way, we show the improvements obtained independently by the use of the local minimal distance and our correlation mask similarity measure.

To avoid some local minima produced by the noise and to give no attraction value for the regions where score S has small variation, our local distance attachment will be set to zero if the score improvement of the local minimum is less than a threshold. We smooth the stereo images I 1 and I 2 with a small gaussian with 0.25 as standard deviation value.

EXPERIMENTATIONS

The experimentations present the disparity obtained on synthetic and real images. We stress the stability over all the tests because our method is heuristic and we have no proof of the convergence. Thanks to the knowledge of the true expected disparity for our synthetics images, we present quantitative results and compare them with other methods. Qualitative results with disparity obtained from the same stereo couple from [START_REF] Alvarez | Dense disparity map estimation respecting image discontinuities: a pde and scalespace based approach[END_REF] will be presented for the real images.

The Quantitative evaluation is computed with the Error function E:

E(λ t ) = Ω-Occult |λ t (x, y) -λ T rue (x, y)| dx dy
Occ is the occulted region not taken into account. Detection of occulted region can be done by post "EnergieByDispMoins3" "EnergieByDispMoins6" "EnergieByImages" "EnergieByRandom"

Figure 4: E function with different starting from different disparity images for the iterations between 0 and 500 iterations, correlation disparity, constant disparity and random map converge to the same disparity map with less than 0.12 pixel error.

processing stage, or embedded in PDE as in [START_REF] Maier | Dense disparity maps respecting occlusions and object separation[END_REF]. As well as [START_REF] Alvarez | Dense disparity map estimation respecting image discontinuities: a pde and scalespace based approach[END_REF][START_REF] Slesareva | Optic flow goes stereo: A variational method for estimating discontinuity-preserving dense disparity maps[END_REF] we use a border layer of fifteen pixels size. We use the Corridor stereo scene from: http://www-dbv.cs.uni-bonn.de/stereo data/ For this stereo couple of images the true disparity is available with a very accurate sub-pixel precision. We have tried our method on several other images and obtained also very good results.

Our method has been tested with different initial disparity map. Figure ( 4) present the evolution of the error E criteria of ISLM with the number of iterations. The final disparity image is quite the same for all the initial disparities. ISLM converge for a disparity computed by a classical correlation algorithm, for constant map with disparity fixed at 0, -1, -2, -3, etc. (as it was already done in [START_REF] Alvarez | Dense disparity map estimation respecting image discontinuities: a pde and scalespace based approach[END_REF]) and more surprising, for random images with values in [-3, 3] (this experience was done with different random seeds and several ranges).

For the random initial disparity, first iteratives steps regularize the value to zero that is the average of the noise. All the disparities of the squares on the floor are wrong, the background is the first region where the disparity is found by our algorithm. After that, the squares on the floor are found incrementally by diffusion, range by range. The evolution of our iterative process for random disparity is presented by the first movie at: http://www.lgi2p.ema.fr/˜montesin/Demos/ StereoDense/3d dense.html

The second movie (same address) shows the iterative process of the evolution of I 1 (x, y + h(λ t )) tacking λ t0 as the null image. By definition of the disparity map, I 1 (x, y + h(λ t )) must converge to an image close to I 2 . With a constant and null map as starting point, we can identify clearly the pixel's moves, and by the way the dynamic of ISLM. As the random M ethods E Sub-pixel Correlation method 0.4978 Alvarez [START_REF] Alvarez | Dense disparity map estimation respecting image discontinuities: a pde and scalespace based approach[END_REF] 0.2639 Slesareva (N. Slesareva et al., 2005) 0.1731 ISLM 0.1194 initial value, the pixels in the background are moved first to the positions of I 2 . These pixels reach at the beginning their good position because the disparity is the smallest on this region, the objects in front with larger disparity move to their I 2 positions at the end.

In the figure (5), the influence of both ISLM parameters on the error is presented. Our heuristic converge for a good disparity in most of the cases. T X and T Y are the size of the correlation mask. On this benchmark, only the parameter of local research V is important for a good convergence, with V < 4 we always obtain a disparity with sub pixel precision. Note that with T X = T Y = 1, the similarity measure is the one used by Alvarez, and we clearly demonstrate how our local distance improved the error E independently of our correlation mask. Table (6) compare the best result obtained with different methods. The best quantitative result is obtained by our method, and we present in (7) qualitatives ones. On this images we can see that the shapes of the cone and the sphere are better preserved by ISLM.

Experiments for detection of the noise influence (with noisy images available on the same internet address) give results that we compare with those from (N. Slesareva et al., 2005) on figure (8). Here again our quantitative results are better, and the higher the error value is, the more significant the improvement is (see Column Ratio).

We use now the real images from the INRIA available at Figure 7: From the left to the right and from the top to the bottom, the stereo couple, the true disparity, the disparity from correlation algorithm, PDE from Alvarez [START_REF] Alvarez | Dense disparity map estimation respecting image discontinuities: a pde and scalespace based approach[END_REF], method from Slesareva (N. Slesareva et al., 2005), and finally our method. Note that the form of the cone and the sphere are better preserved. http://www-sop.inria.fr/robotvis/demo. We present the three dimensions reconstruction. ISLM convergence is more time consuming than the other algorithms, with initial disparity found by classical correlation algorithm it takes 6 minutes and 14 seconds to avoid 0.17 pixels precision, and 26 minutes 47 seconds to converge to 0.12 with a Pentium 4). Due to our attachment term, we can not deal with less time consuming implementation as an implicit scheme. So our method seems not to be designed for real time process as software but by hardware and parallel implementation.

CONCLUSION

In this paper we have presented an iterative algorithm for the stereo dense disparity estimation principally based on a new attachment term. In order to give more consistent value to the similarity measure of our itera- tive process, we use a correlation mask oriented along the epipolar line. Then instead of taking a similarity value as attachment term we use the distance to local minimum obtained by the similarity. Consequently our iterative scheme is no more linked to an energy minimization but presents some characteristics of a relaxation process embedding in the same framework continuous and combinatorial aspects. The experimentations show that our method convergences and produces the best known quantitative results on image benchmarks presenting continuous aspects in diparity values. Now we are trying our method on middlebury benchmarks. These benchmarks are different from corridor scene because first the disparity image contains a lot of disparity steps, and second that the disparities available in the middlebury benchs have discrete values. As our algorithm gives a continuous range of values, the error is difficult to clearly interpret. Links to other studies can be done, leading us to expect again new improvements simply by the use of other similarity measures. For example, the similarity measure from (N. Slesareva et al., 2005), or [START_REF] Takeo | A stereo matching algorithm with an adaptative window : theory and experiment[END_REF] can be used in our attachment term.
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 1 Figure1: Epipolar constraint: plane (P, C1, C2) intersects l 1 and l2 and p1 and p2 are projections of P on the images. p 1 and p2 lie on the epipolar lines.
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 2 Figure 2: λ is the signed distance from projection o of p1 on epipolar line l2 to p2.
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 3 Figure 3: Diffusion-Reaction with Nagel-Enkelmann Operator, first and second image represent respectively the flask and the initial heat value (circle image) images 3 and 4 are the diffusion-reaction after respectively 2000 and 5000 iterations, dt=0.3, total heat i.e sum of pixel's intensities remains constant.
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 5 Figure 5: Different values for the specifics parameters for ISLM. For the first one, the present influence of the variable issued from the variational parameters C and ν (with T X = T Y = V = 3), in the second table we give the influence on the error E of the specific variables of ISLM T X, T Y and V (with C = 464.936394, Mu = 0.037500and dt = 0.3).
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 6 Figure 6: Comparisons with other techniques.

Figure 8 :

 8 Figure 8: Comparison with methods from (N.Slesareva et al., 2005) on noisy images, C = 21.9215, ν = 0.375, T X = T Y = V = 3 dt = 0.3. Ratio gives E from Slesareva divided by E from ISLM.

Figure 9 :

 9 Figure 9: Two views on Herve face, and a view on the 3D reconstruction, ν = 0.0625, C = 21.75 T X = T Y = 7 V = 3.
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  The number of matching candidates is decreased because local minima of the attachment term of PDE that are near to each other collapse into one for ISLM. The position of this minimum corresponds to the one with smallest similarity. A minimum for the d min attachment term corresponds to a minimal similarity S in the neighborhood [-V, V ]. By the way, all local minima m 1 , m 2 , ... for the similarity measure S, employed by the PDE, with d(m i , m j ) < V , collapse into one in ISLM. The position of this minimum is the pixel corresponding to the one with the smallest similarity measure. Let m 1 be the minimum found by fusion of m 1 and m 2 . After collapsing, the attraction interval domain of m 1