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1 Introduction

The construction of predicting models by learning algorithms, such as statistical regression or neural
networks, needs a learning set A ⊂ D, where D is a set of samples D = {(xk, yk)|k = 1, . . . , n}.
The output of the learning algorithm is a predicting function y = L(x) that minimizes a given error
criteria such as E(L,A) =

∑
xk∈A(yk−L(xk))2 . Recent work on learning theory (see [10]) have shown

that a “little” learning error E(L,A) does not necessarily imply a “little” error on a new sample x.
To illustrate this idea, think of L as a polynomial of a given degree p. When p is near to |A|, the
polynomial L(x) fits the data very well, but this high degree will add noisy oscillations even where we
do not need them. To get round this difficulty, the statisticians employ a testing set T ⊂ D different
from A. The testing error is E(L, T ) =

∑
xk∈T (yk − L(xk))2. The model L is considered valid when

E(L, T ) ≈ E(L,A). This supposes that A and T realize a homogeneous partition of D.

In the following we give a geometric criterion to measure the homogeneity of a partition. We will see
that the “best” partition is hard to define and above all, hard to compute. This justifies our choice
for a heuristic searching algorithm like tabu search which will look for a “good” partition. This tabu
search algorithm has a set of important features including an efficient neighborhood and mechanisms
for dynamic tabu tenure, intensification and diversification.

Before we go into the details of our approach, we want to emphasize the necessity for a very fast method
in order to meet the need to supervise real world processes. The choices and solutions that follow were
mostly guided by this time constraint as well as the robustness of the homogeneity criterion.

2 A geometric criterion of homogeneity

A first measure of the homogeneity of a partition [A, T ] of D, needs the estimation of the probability
densities fA, fT and fD on A ,T and D respectively. Then, a homogeneous partition is obtained by
minimizing

K(A, T ) = dK(D,A) + dK(D, T ) (1)

where dK is the Kullback-Leibler distance (see [7, 8]) given by dK(D,A) =
∫

(fD−fA)2. Even when the
densities above are given by closed formulas (which is not the case for our instances), the integration
is performed by numerical methods which remain rather slow in high dimension. The reason is the
number of functional estimations which grows exponentially even for sophisticated integration methods
(see [6, 2]). It is clear then, that a searching algorithm that minimizes this measure of homogeneity
would hardly satisfy the time constraint.



Thus we use the following geometric criterion. Let EA, ET and ED be the ellipsoids defined by the
covariance matrices of A ,T and D respectively. We can rather easily (see [9]) calculate the volume
minimal ellipsoid EM containing EA ∩ ET . The homogeneity of the partition [A, T ] is given by:

H(A, T ) = ‖gA − gT ‖+ (volume(ED)− volume(EM ))2 (2)

where, gA and gT are the centers of gravity of A and T . A good feature of the volume is that it is
invariant under affine transformation of data. Remember that most of the normalization of the data
(as used in statistics) are affine transformations. On the other side, this volume criterion has a serious
drawback. It does not work on high dimension. The difficulty comes from the fact that the ratio of the
volume of a sphere over the volume of the circumscribed cube tends to 0 when dimension increases.
We show latter that one could obtain satisfactory results for dimensions up to 15.

For a given a partition, the subroutine that calculates H(A, T ) is written in Fortran 90 and makes
use of the mathematical functions of IMSL library.

3 A tabu search of a homogeneous partition

Tabu search TS is a heuristic designed for tackling hard combinatorial optimization problems. For a
comprehensive presentation of TS, we refer [4]. Contrary to genetic algorithms, where randomness is
extensively used, TS visits the search space in a more systematic way based on adaptive memory and
learning. Given the cardinality of data set |D| = n and |A| = k, our search space S is composed of all
binary vectors s ∈ {0, 1}n having k = |A| coordinates at 1 and n− k = |T | coordinates at 0. A typical
instance has n = 3000, k = 3

4n giving, by Stirling formula:

|S| =
(
n
k

)
≈ 4n+1

√
6πn 30.75n

≈ 22428

Given the correspondence between the partitions of D and the binary vectors s of S, in the following
we will note H(s) for H(A, T ).

3.1 Neighborhood and move

For a given instance (S,H) or our optimization problem, characterized by the search space S and the
objective function H (see 2), a neighborhood N is first defined to associate, to each s ∈ S a nonempty
subset N(s) of S. A neighbor s′ of s is obtained by choosing two indices i and j such that si = 1 and
sj = 0 and putting s′i = 0 and s′j = 1. We note this movement from s to s′ by move(i, j). The choice
of the indices i, j is done as follows:

• Take the hyperplane P (s) containing g = 1
2 (gA + gT ) and orthogonal to n = gA − gT . If, for a

given ε, ‖gA − gT ‖ < ε then n is the greatest axe of the ellipsoid EM ;

• Choose i, j such that xi ∈ A is in one side of P (s) and xj ∈ T is on the other side.

Similar neighborhoods, based on this “adding-dropping” technique has been used in many heuristic
algorithms (see [1, 3, 5]). The TS algorithm examines the value of H(s′) for each neighbor of s and
chooses one that has the minimum value. In order to do this, we keep in a special data structure δ,
move(i, j) and the value H(s′)−H(s). Each time a move is carried out, the elements of δ affected by
the move, are updated accordingly. It is clear that |N(s)| < k × (n − k). Thus, the initialization and
updating of δ requires, in the worst case, time O(k × (n− k)).



3.2 Tabu list management

The role of a tabu list is to prevent from short-term cycling. Each time a move(i, j) is carried out,
move(j, i) is classified tabu (that is forbidden) for a number of iteration (tabu tenure). The tabu
tenure t(j, i) is dynamically defined by a function depending on c(i, j) and freq(i, j), where c(i, j)
is proportional to the inverse of d(xi, P (s)) + d(xj , P (s)) and freq(i, j) is the number of times the
move(i, j) is done. The idea behind the term c(i, j) is to promote the choice of points to exchange far
from P (s).

In order to implement the tabu list, a vector T is used (as suggested in [4]) containing the numbers
t(j, i) + iter, where iter is the current number of iterations. In this way, it is easy to know whether
move(j, i) is tabu or not at iteration m: move(j, i) is forbidden if and only if t(j, i) + iter > m.

An aspiration criteria is however employed to cancel the tabu status of move(j, i) when the partition
s′ has a strictly better H(s′) value than H(s∗), s∗ being the best partition found so far.

The tabu search may lead to a state where no move is admissible. In that case, an intensification phase
can be started based on a heuristic using long-term information. To implement this, the algorithm
saves a set KER containing a few partitions s having H(s) very near to H(s∗). Then, starting with a
partition s in KER we visit all the neighbors of s.

However, it is possible that KER corresponds to a set of partitions trapped in a local minimum. It is
for this reason that the algorithm builds dynamically a diversification set DIV containing the indices
having an appearing frequency lower than the average. Thus, DIV corresponds to less visited regions of
S. During a diversification phase, the algorithm runs from initial configurations, whose coordinates are
fixed by using the information in DIV . These exploratory mechanisms have been successfully employed
in a VCSP (Value Constrained Satisfaction Problem) problem (see [12, 11])

4 Experimentation and results

Experiments are carried out on a set of 10 simulated instances and 10 realistic ones.

• Simulated instances: The simulated instances are samples of size 1500 coming from spaces of
dimension 6, ... , 15. For each dimension, the samples are a mixture of a fixed number of
normally distributed data. This knowledge on data distribution helps us to better appreciate the
quality of the partition procedure. Remark that we limit ourselves to dimension 15. The reason
for this is that the ellipsoids are more and more flattened when the dimension grows. Thus, our
criterion on ellipsoids’ volume is useless for large dimensions. Fortunately, the dimension of the
realistic cases we are working on never exceeds 15.

• Realistic instances: Five of these instances come from samples gathered by a set of ozone sensors
covering the Lyon region (France). These data are of dimension 8. Another set of data come
from an oil refinery. The dimension of these data goes from 6 to 10. Their size goes from about
400 to 2500.

For all these instances we will give the size of the instance, the number of iterations, the running time,
the best value of H , the first time that value was attained, the mean value of H . For these instances
we have calculated in the same time the values of K(A, T ) (1). We then give the correlations between
the two criteria H and K.
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1997.

[10] V.N. Vapnik. Statistical Learning Theory. John Wiley, 1998.

[11] M. Vasquez and J.K. Hao. A logic-constrained knapsack formulation and a tabu algorithm for the
daily photograph scheduling of an earth observation satellite. To appear in Journal of Computational
Optimization and Applications, 20(2): November 2001.

[12] M. Vasquez. Résolution en variables 0-1 de problèmes combinatoires de grande taille par la méthode
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