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Abstract—The goal of human tracking is to detect people in a
scene and assign them a unique identifier that the tracker will
follow across multiple frames. Our tracker, FORT, implements
deep learning solutions such as, YOLOv7 for detection, ResNeXt-
50 for feature extraction and re-identification and an adapted
Kalman filter for tracking. The goal is to present a real time
tracking solution for the complex environment of top-view, fisheye
images. The proposed solution is then compared with the BoT-
SORT and StrongSORT trackers on a custom fisheye Multiple
Object Tracking (MOT) Challenge dataset.

Index Terms—fisheye, MOT, people tracking, re-identification,
tracking-by-detection, SORT, lightweight

I. INTRODUCTION

Human tracking is a still current challenging task [1]. In
a video, people change direction, pass next to each other,
are occluded, their detected positions can be unreliable and
as such, it is easy to lose or not be able to find a person.
These problems are emphasised in distorted contexts such as
in top view fisheye cameras. Indeed, a fisheye camera increases
the focal distance and embraces a wide field of view [2],
[3], making people look inclined and distorted in the image.
Consequently, people have irregular movements in the image,
their aspect ratio, size and orientation can change drastically
as they move. This context is extensively studied for detection
[4]–[9] and tracking tasks [10]–[13] as fisheye cameras give
180◦ of vision and as such find applications in many fields
such as security, autonomous driving and aeronautics.

In this paper, a tracker adapted to top view fisheye images
is proposed. The goal is for the algorithm to be a reliable, real
time solution that could be integrated in embedded systems,
while still incorporating deep learning solutions. The tracker
will consist of a detector from the YOLO (You Only Look
Once [14]) suite of algorithms and a tracker inspired by the
SORT (Simple Online Realtime Tracking [15]) suite of track-
ers. A reduced view of the algorithm’s architecture is presented
in Fig. 1. To test this tracker, the MOT (Multiple Object Track-
ing) Challenge will be used: a well-known benchmark for
state of the art trackers [16]. However, the datasets included in
MOT only contain videos from perspective cameras; therefore
we developed our own dataset to work with MOT Tools. Our
tracker and two other state of the art trackers will be tested on
this dataset. With this comparison, we aim to demonstrate the
effectiveness of our proposed approach for human tracking in
challenging top view fisheye image contexts.

The next section presents the related trackers, which are
compared with the proposed method. The Sec. III is dedi-

cated to the developed method for tracking people in fisheye
sequences. Then, evaluations and results are reported in the
Sec. IV, with comparison of recent methods. Eventually, Sec.
V will conclude this paper and propose some perspectives.

II. SORT AND RELATED TRACKERS

A. SORT – Simple Online and Realtime Tracking

People tracking consists in following through time the
position of a person. This is the point of the SORT algorithm
[15] which is based on the combination of statistics and
state estimation. It retrieves position data from a detection
algorithm. To know if two detections in different frames target
the same person, SORT combines the IoU (Intersection over
Union) and the Hungarian algorithm: an association algorithm.
The position prediction is done using a Kalman filter and is
based on several statistics: the position of the target, the scale
of the detection box, their respective velocities and its aspect
ratio.

B. Upgraded SORT

DeepSORT is a more advanced version of SORT [17]. It
adds the aspect ratio velocity to the statistics used for the
state estimation. In addition, it implements the use of the
Mahalanobis distance and the cosine distance to obtain better
association results. Moreover, the biggest breakthrough is the
use of deep learning to extract features from the image and
re-identify more easily the appearance of a target to better
associate it.
StrongSORT is an improvement of DeepSORT. For the asso-
ciation part, it adds the Exponential Moving Average which
allows for a better combination of re-identification features as
well as camera movement compensation [18].
BoT-SORT represents the latest improvement (2022) of SORT
by merging cosine distance with re-identification for better
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Fig. 1. Reduced architecture of the FORT algorithm for a frame at time t.
Detections and tracked objects are associated and their states updated at every
frame.
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Fig. 2. Global architecture of the FORT algorithm for a frame at time t. Detection BBoxes are created from the frame and are split into two groups using
associated confidence. Tracks from the previous frames have their new state predicted and are then associated with high confidence BBoxes. The remaining
Tracks are associated with low confidence BBoxes. Unmatched tracks are filtered depending on their age. Unmatched high confidence BBoxes are created
into new tracks. Finally, Track-BBox associations are used to update the state of the track using an adapted Kalman filter and the characteristic of each track
are updated using Exponential Moving Average (EMA).

associations as well as a new camera motion compensation
module [19]. This algorithm uses YOLOX [20] or YOLOv7
[21] as a detector.

III. FORT – GLOBAL ARCHITECTURE

The proposed method, FORT (Fisheye Online Realtime
Tracking), is divided into 3 steps: (i) Detection, (ii) Tracking
and (iii) Association; all detailed in this section.

A. Detection

The first step in tracking is the detection. To this end,
we compared three of the most recent, efficient and fast
algorithms to determine which would be more reliable in a
fisheye context:

• YOLOv5 [22], version L, update 6.2,
• YOLOX [20], version M,
• YOLOv7 [21], version X, called YOLOv7X.

These algorithms were then trained and tested on a dataset
composed of both Mirror Worlds1 images and images we
acquired (2 828 images for training and 491 for validating,
29% from Mirror Worlds and 71% from our acquisitions)
which were resized to 640×640 pixels. Training was done
for 10 epochs. Three statistics were collected during these
tests, interference time, the mean average precision mAP0.5

and mAP0.5:0.95 are used to quantify the detection accuracy:{
mAPH =

Number of detections where IoU⩾H
Number of detections ,

mAP0.5:0.95 = 1
10 ·

∑9
k=0 mAP(0.5+0.05·k),

(1)
with IoU =

Intersection area of both boxes
Union area of both boxes and H = 0.5.

We observe from these results that these algorithms, whose
sizes are relatively similar, do not obtain the same interference
time. As reported in Tab. I, only YOLOv7 brings us guarantees
in terms of precision in its results while keeping an interfer-
ence time lower than the two other algorithms, this is why this
algorithm was chosen for the detection process.

1www2.icat.vt.edu/mirrorworlds/challenge/

B. Tracking process
The output of the algorithm is stored in objects called

tracks, which are characterised by their state, features and
a unique identifier. Information on position and velocity are
stored within the state variable. The flowchart presented in
Fig. 2 gives a global overview of the tracking process.

Using the YOLOv7 detector, a list of detections is created
for each frame. These detections are then sorted according to
their confidence scores. Tracks carried over from the previous
frame have their new state predicted based on our physical
model. A first association is done between the high confidence
detections and the tracks. This process returns a list of track-
detection pairs, which are updated (see Sec. III-F), as well as
a list of unmatched detections which are used to create new
tracks. The remaining (unmatched) tracks are associated with
the low score detections, here the unmatched detections are
discarded, the unmatched tracks filtered and the track-detection
pairs updated.

C. Association

The goal of the association algorithm is to match tracks
left from the previous frame with detections from the current
frame. This algorithm takes in state predictions for each track,
bounding box (BBox) and corresponding sub image for each
detection. The state predictions are created using a physical
behaviour model based on the previous tracks’ states and
the elapsed time dt. As a first approach, we attempted to
account for the curvature of the fisheye lens by using a
pre-computed gradient. However, this approach required large
amounts of memory to be efficient and created problems where
the gradient diverged (image center and edge). Furthermore,
it gave very small performance gains in places where the

TABLE I
DETECTION PERFORMANCE OF DIFFERENT YOLO VERSIONS IN THE

CONTEXT OF AN OVERHEAD FISHEYE CAMERA (TESLA T4 GPU).

Version mAP0.5 mAP0.5:0.95 Detection (ms) Weights Size
YOLOv5l 0.716 0.421 31.3 147 MB
YOLOX 0.636 0.341 36.6 194 MB

YOLOv7x 0.789 0.393 28.5 137 MB

https://www2.icat.vt.edu/mirrorworlds/challenge/index.html


gradient was stable. This could be explained by the small
tracking interference time dt (<0.1s); as a result, consequently,
the space traveled in between the frames by the track can be
considered to be linear.

1) IoU: Using the IoU between the predicted track states
T ps and the Detected BBoxes Dbb, the IoU cost matrix A is
calculated. With n the number of detections and m the number
of tracks:

Ai,j = 1− IoU(T ps
i , Dbb

j ), ∀(i, j) ∈ [[1,m]] · [[1, n]]. (2)

2) Re-Identification (ReID): The IoU does not discrimi-
nate enough when two people are close together and also
discriminates too much when the state prediction is far from
the actual detection. To counter this, the characteristics of
the people contained within the detections are compared with
those of the people represented by each track. To extract these
characteristics, the head of the popular classification algorithm
ResNeXt-50 [23] is used, with weights pretrained on ImageNet
[24]. After obtaining features in each BBox Dfea and using
stored features in each track T fea, the cosine distance dcos

is computed between the features of each group to obtain the
ReID cost matrix B:

Bi,j = max(0, dcos(T fea
i , Dfea

j )), ∀(i, j) ∈ [[1,m]] · [[1, n]]. (3)

3) Final Association: Using an IoU threshold θIoU and
a ReID threshold θReID, the ReID cost matrix is filtered.
The goal is to penalise high ReID costs on BBoxes with
low overlap with the expected BBox. The final cost matrix is
composed of the lowest costs between the IoU cost matrix and
the ReID cost matrix. Finally, a distance threshold θd penalises
all detection-track pairs which are too far from each other.
Once the final cost matrix has been computed, an assignment
threshold (θcost) is set. Then, detection-track matches are
created using the Hungarian algorithm [25] only considering
detection-track pairs where the cost is below θcost. This
process outputs detection-track matches, unmatched detections
and unmatched tracks. The association process is summarized
in Fig. 3.

D
bb

Bounding Box

Image

IoU Cost Matrix

Linear
Association

Feature Cost
Matrix

Feature
Extraction
(ResNeXt)

T
ps

Bounding Box

T
fea

t-1

t-1

Features

Unmatched
Tracks

Unmatched
Detections

Track-
Detection

associations

Detections

IN

Tracks Associations

IN

Fig. 3. Detections and tracks association method. First the IoU is caculated
between each bounding box (BBox) and Track this creates the IoU cost matrix.
Secondly, features are extracted from the image in each BBox using the Head
of an image classifier (ResNeXt-50). The cosine distance is then calculated
between each BBox and Track creating the Feature cost matrix. These two
matrices are combined and a linear association is performed to create track
detection associations and leaving unmatched tracks and detections.

D. Kalman Filter

To update the state of each track, the state predictions
are combined with state measurements (i.e. detections). The
combination was done using the well known Kalman algorithm
[26]. This algorithm is, as of now, the optimal estimator for
linear system models. This filter uses a prediction step to
estimate the current state based on the previous state and a
correction step to update the estimation based on the new
measurement.

At time t, the prediction step gives the predicted new state
x′
t and error covariance P ′

t using the previous state xt−1 and
error covariance Pt−1 at time t− 1:{

x′
t = Ft · xt−1

P ′
t = Ft · Pt−1 · FT

t +Qt,
(4)

where Ft is the state transition matrix and Qt is the process
noise covariance.

The correction step reduces the error of the predicted new
stated and error covariance using the measurement yt: Kt = P ′

t · (P ′
t +Rt)

−1

xt = (I −Kt) · x′
t +Kt · yt

Pt = (I −Kt) · P ′
t ,

(5)

where Rt is the measurement noise covariance, Kt is the
Kalman gain, xt is the updated estimated state, and Pt is the
updated error covariance. With this technique, noise from the
detector can be reduced, however the matrix Ft indicates a
linear state transition. Unfortunately, the time step between
two consecutive states is too large to allow us to consider the
relation between these two states to be linear.

A potential solution to this is the Extended Kalman filter
[27] which linearises the model to solve the problem using the
Kalman method. Due to unsuccessful attempts in calculating
the gradient of the track state (see Sec. III-C), this algorithm
was not implemented.

E. Kalman Filter Suitable for Fisheye Environment

The proposed solution was the implementation of a neural
network to calculate the vector (Kalman Gain) [28], [29] used
to interpolate between the detection and the state prediction.
As of now, the network is a fully connected neural network
with 5 inputs, 10 hidden neurons and 8 outputs with sigmoid
activation functions on the hidden and output layers. As inputs,
the network takes the detected position, the difference between
the detected and predicted positions and whether or not the
track had been lost the previous frame.

F. Tracks Update

Each track is defined by its features and current state.
For a track-detection pair, the track’s features are updated
by interpolating between the track’s features and the features
obtained from the detection (Exponential Moving Average)
as in [30]. Also, the track’s state is updated by interpolating
between the predicted state and the detected state using factors
(Kalman Gain) outputted by the neural network detailed in
Sec. III-E. For reference, the algorithm is detailed in the
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flowchart presented in Fig. 4. The detections which are not
discarded are used to create new tracks, whose state and
features are initialised based entirely on the detection state
and features, with the state velocity set to 0. Tracks that are
not associated have their age updated. Once a track is too old,
it is discarded. The ones that remain have their state updated
using their predicted state and their features are not modified.

IV. EVALUATION AND RESULTS

State of the art tracking models are currently tested using
the MOTChallenge [16] benchmark. The benchmark provides
tools and annotated datasets. However, it does not provide a
set containing fisheye videos. To remedy this we annotated
a video (999 frames) which was appended to the Mirror
Worlds Dataset (19 videos for 8751 frames). STRONGSort,
BOT-Sort and FORT were then benchmarked on this dataset.
The detector used was YOLOv7X as detailed in Sec. III-A,
and default parameters were used across all trackers. On
ReID tasks, FORT used ResNeXt-50 [23], STRONGSort and
BoT-SORT used ResNet50 [31] all trained on ImageNet [24]
dataset.

A. MOT Metrics

The MOTChallenge benchmark gives multiple metrics, the
3 most common are HOTA [32], MOTA [33] and IDF1 [34].
MOTA takes values below 100. It measures the quality of the
position of the track relative to the ground truth and penalises
occurrences of a person’s identity switching with another.
IDF1 takes values between 0 and 100. It measures the fidelity
of a track’s identity relative to the ground truth identities.
HOTA aims to solve the shortcomings of MOTA and IDF1. It
currently is the metric of reference for state of the art trackers.

TABLE II
COMPARISON OF THE METRICS OBTAINED WITH THE DIFFERENT

TRACKERS ON THE ENTIRE DATASET (TESLA T4 GPU).

Tracking
Algorithm

Metrics Interference
time (ms)HOTA MOTA IDF1

StrongSORT [18] 46,2 46,1 64,1 81,3
BoT-SORT [19] 45,6 53,9 66,9 99,1

FORT 47,6 56,9 66,7 52,6

B. Statistical results

The benchmark results are presented in Tab. II. FORT
obtains the most promising results on HOTA. It is 2 points
ahead of BoT-SORT and 1 point ahead of StrongSORT. The
difference between the 3 algorithms gets bigger on the MOTA
metric showing better concurrence of FORT tracking results
with ground truth detections. On the IDF1 metric, BoT-SORT
takes the lead, showing better re-identification capabilities, but
FORT is only 0.2 points behind. Additionnaly, FORT shows
interference times 1.5 times faster than StrongSORT and 1.9
times faster than BoT-SORT. The most complicated video
comes from our acquisitions. The tracking results are detailed
in Tab. III. Here, YOLOv7X creates many false positives
and some false negative explaining the trackers’ low scores
(illustrated in Fig. 5, Video 3). However, the video is closer
to a real life context as it contains a poor image quality,
bright and dark areas, camera movement and a very cluttered
environment, as such, we denote it real conditions. Here,
FORT gives much better tracking results on all 3 metrics.

C. Visual results

Fig. 5 shows visual results on 3 different videos; for
each 3 non-consequent frames are displayed. Without camera
movement and in clear environments, the trackers do not
encounter too many bad detection problems (video 1 and 2).
Still, there are re-identification problems, StrongSORT creates
30 tracks up to frame (b) of Video 2. Furthermore, between
frames (b) and (c) of Video 2, a man reaches over the table. In
this instance, only FORT was able to keep a faithful detection
and identification. However, in Video 3 (real conditions), the
trackers do not perform as well. StrongSORT is not able to
manage the low quality of the detections, meaning a lack
of tracks on the people in the video and tracks of objects
cluttering the space as seen in all 3 frames. This explains the
very poor results of the trackers.

BoT-SORT and FORT have bboxes that enclose the people
properly, but the trackers are not able to keep the indices
constant during the entire video. This situation is even more
accentuated for BoT-SORT whose IDs reach 40 in frame (c).
A link to OneDrive is available to consult and compare the
performance of all 3 trackers on each video of the dataset2.

2Tracking results link

TABLE III
COMPARISON OF THE METRICS OBTAINED WITH THE DIFFERENT

TRACKERS ON THE real conditions video (TESLA T4 GPU).

Tracking
Algorithm

Metrics
HOTA MOTA IDF1

StrongSORT [18] 1,6 -10,8 2,2
BoT-SORT [19] 19,2 32 31,3

FORT 27,8 36 34,1

https://partage.imt.fr/index.php/s/kkdckzCJgT9MFDR
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Fig. 5. People tracking on three top-view fisheye videos, orange: StrongSORT [18], green: BoT-SORT [19], and blue: FORT.

V. CONCLUSION AND PERSPECTIVES

By using deep learning methods and combining modules
from multiple tracking models, FORT (Fisheye Online Re-
altime Tracking) is able to give reliable and fast tracking on
top down fisheye images. We use features and position data of
tracks and detections to associate them. Using the associations
and the Kalman Filter we are able to accurately update each
track and create new ones running in realtime (<35 ms).

Further improvements can be made, the Kalman filter net-
work could gain from a LSTM (acronym of long short-term
memory networks, see [35]) section and ResNeXt-50 features
could be more precise if the its weights were trained on images
pulled from fisheye contexts. Finally, the code for the FORT
algorithm can be found on GitHub3.

3https://github.com/BenoitFaureIMT/FORT

https://github.com/BenoitFaureIMT/FORT


ADDITIONAL RESULT

The Fig. 6 presents another example of people detection
in fisheye images. In this example taken from our dataset,
the tracking algorithms created to work on perspective images
(StrongSORT [18] and BoT-SORT [19]) make tracking errors
when the distortion of the fisheye image is too important. In
this case, only the proposed algorithm, FORT, is able to track
the person horizontally and the one with the head down while
BoT-SORT only tracks the person in the center of the camera
and StrongSORT does not track anyone.

Fig. 6. Example of tracking, orange: StrongSORT [18], green: BoT-SORT
[19], and blue: FORT (proposed tracking algorithm).
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