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Abstract—Theoretically, SLAM (Simultaneous Localization
and Mapping) systems acquire information from its environment
with sensors, extract landmarks from the received data and
estimate its location on a map based on the sensor measurements.
EuRoC datasets is a batch of visual-inertial measurements from
embedded stereo camera and inertia measurement unit in a
Micro Aerial Vehicle (MAV). The MAV flights include eleven
itineraries and took place in indoor environments: an indus-
trial environment and two motion capture rooms. OV2SLAM
(Online and Versatile Visual SLAM) is an open-source visual
feature points-based SLAM methods that is remarkably efficient.
A feature points-based method extracts and tracks keypoints
because they represent stable features. The native keypoint
detection method in OV2SLAM tested in the EuRoC MAV
datasets is a well-known KLT (Kanade-Lucas-Tomasi) corner
detector. Nevertheless, no other detector was experimented on
this SLAM method. This paper enables the investigation of
which corner detector is optimum for OV2SLAM method on the
EuRoC MAV datasets. Overall, the experiments are led on 10
itineraries containing 28 058 stereo-pair images in all. Thus, by
varying the parameter of the Gaussian influencing the detection
of the keypoints, a global score based on different statistics is
calculated in relation to the ground truth to classify which pair
detector/parameter is optimal on these datasets.

Index Terms—OV2SLAM, EuRoC datasets, Corner detection

I. INTRODUCTION, CONTEXT AND MOTIVATION

1) SLAM (Simultaneous Localisation And Mapping):
SLAM is a momentum technological method suitable for
autonomous systems such as robotics or self-driving cars.
It allows a system to analyze and describe an unknown
environment, which could be unsafe, make a map out of it
and place itself on it.

In 1986, the first statement about the SLAM problem
was made [18]. Thereafter, the pioneer work describing the
structure of the SLAM problem was led in 2006 [3]. Since
then, techniques and sensors have evolved to become more and
more efficient. Essentially, the SLAM can split into two parts:
(i) the algorithms and (ii) the used sensors. The software layer
of a SLAM estimates both: the location of the system and envi-
ronmental mapped landmarks. These two inputs are estimated,
so the truth positions of the system and the landmarks are
never known. Therefore, the algorithms however compelling
rely on probabilistic equations and are a continuous active
subject for scientific inquiry, see the following references: [1],
[4], [12], [19].

Consider a mobile vehicle equipped with a sensor and
moving through an environment taking relative observations

𝒖𝑘
𝒙𝑘

𝒙𝑘+1 𝒙𝑘+2
𝒙𝑘−1 𝒖𝑘+1 𝒖𝑘+2

𝒎𝑖

𝒎𝑗

𝒛𝑘−1,𝑖

𝒛𝑘,𝑗

Robot Landmark

Estimated

True

Fig. 1. Summary of the essential SLAM problem: a simultaneous estimation
of both vehicle (or robot) and landmark locations is required. The true
locations are never known or measured directly, whereas observations are
made between true robot and landmark locations.

of a number of unknown landmarks, as diagrammed in Fig. 1.
At a time instant k, the following quantities are defined:
• xk: the state vector describing the location and orientation

of the vehicle,
• uk: the control vector, applied at time k-1 to drive the

vehicle to a state xk,
• mi: a vector describing the location of the ith landmark

whose true location is assumed time invariant,
• zik: an observation taken from the vehicle of the location

of the ith landmark at time k; when there are multiple
landmark observations at any one time or when the
specific landmark is not relevant to the discussion, the
observation will be written simply as zk.

In addition, the following sets are also defined:
• X0:k = {x0, x1, ..., xk} = {X0:k−1, xk}: the history of

vehicle locations,
• U0:k = {u1,u2, ...,uk} = U0:k−1,uk: the history of

control inputs,
• m = {m1,m2, ...,mn}: the set of all landmarks,
• Z0:k = {z1, z2, ..., zk} = {Z0:k−1, zk}: the set of all

landmark observations.
In probabilistic form, the SLAM problem requires that the

probability distribution is computed for all times k. Given the
recorded observations and control inputs up to and including
time k together with the initial state of the vehicle, this
probability distribution describes the joint posterior density of
the landmark locations and vehicle state at each time k and is
denoted P (xk,m|Z0:k,U0:k, x0).
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Fig. 2. Selected images of the embedded videos [2], images of 752×480 pixel size. Images in (a)-(b) are extracted from the first flight in the Machine Hall
(MH 01) whereas in (c)-(d) from the first path in the Vicon Room 1 (V1 01).

TABLE I
BRIEF DESCRIPTION OF THE EUROC DATA-SETS

Name Description
MH 01 easy good texture, bright screen
MH 02 easy good texture, bright screen
MH 03 medium fast motion, bright screen
MH 04 difficult fast motion, dark screen
MH 05 difficult fast motion, dark screen
V1 01 easy slow motion, bright screen
V1 02 medium fast motion, bright screen
V1 03 difficult fast motion, motion blur
V2 01 easy slow motion, bright screen
V2 02 medium fast motion, bright screen
V2 03 difficult fast motion, motion blur

2) EuRoc MAV datasets: The EuRoC MAV datasets [2]
are visual-inertial datasets collected on-board a Micro Aerial
Vehicle (MAV). They include especially the embedded videos
(stereo-pair images, see Fig.2), the inertial measurement unit
(IMU) of eleven flights and their millimeter accurate position
ground truth from a laser tracking system. Five datasets takes
place in an industrial environment called Machines Room.
The six remaining flights are in a custom three-dimensional
(3D) environment in a room called Vicon Room equipped with
motion capture cameras (100 Hz). The datasets contain six-
dimensional (6D) pose ground truth and a detailed 3D scan
of the environment. The provided datasets are ranged from
slow flights under good visual conditions to dynamic flights
with motion blur and poor illumination, enabling researchers to
thoroughly test and evaluate their algorithms; the perturbations
are reported in Tab.I.

3) OV2SLAM: Online and Versatile Visual SLAM
(OV2SLAM) is an open-source visual SLAM design for
real-time applications [4]. The overall concept integrates a

succession of processes which are parallelized for each image
(i.e., image 2 processing begins during image 1 processing).
The simplified structure of OV2SLAM is diagrammed in Fig.
3. The Image pre-processing stage receives new images and
applies a contrast enhancement. The Key-points tracking is
a feature tracker using a well-known corner detector denoted
KLT [16] (see Tab.II); the corner detection is discussed in
the following sections. The Outlier filtering step allows
outliers removing that can still occur in the tracking process
and a RANSAC filtering is applied based on the epipolar
constraint. Thanks to this filtering step, no outliers are left
before estimating the camera position. The Pose estimation
stage uses a robust Huber cost function to minimize the
3D key-points re-projection errors. Finally, the Keyframe
creation stage triggers keyframe related functions such
mapping thread or the loop closer thread.

In this study, only the Key-points tracking part of the
OV2SLAM is fitted in order to improve the SLAM on the
EuRoc MAV datasets.

II. CORNER DETECTION: IMPORTANT FEATURES TO
TRACK

A. Keypoint detection
There are several methods to perform a visual SLAM:

the feature-based methods, the direct methods and the RGB-
Depth methods. OV2SLAM is a feature points-based method:
it extracts feature points from an image and keeps track of
those keypoints in a 3D space. In digital images, corners are
important features which are visually distinguishable because
they are localized at the maxima of edges absolute curvature
(detailed in [20]). Corner points represent anchor points, these
features should be consistently identified from an image and
the more the features are extracted reliably, the more your
SLAM will be accurate.
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Fig. 3. Architecture of OV2SLAM with real-time processing presented in [4]. The front-end thread figured contain the corner detection methods. It is
responsible for estimating the pose of the camera in real-time.



TABLE II
CORNERNESS MEASURE FORMULAS COMPUTED FROM IMAGE DERIVATIVES. HERE, • DENOTES THE CONVOLUTIONS WITH A GAUSSIAN WITH A

STANDARD DEVIATION σ > 0 OF IMAGES DERIVATIVES Ix , Iy AND THEIR INNER PRODUCTS. AS A REMINDER, (λ1, λ2) REPRESENTS THE EIGENVALUES
OF THE STRUCTURE TENSOR M IN EQ. (1).

Name Cornerness Measure Formula Parameter(s) Reference

KLT Min (λ1, λ2) = Min

(
Ix

2
+ Iy

2 ±
√

Ix
2
+ Iy

2 − 4 · IxIy
)

σ [16]

F
Det(M)

Trace(M)
=

λ1λ2

λ1 + λ2
=

λ1λ2

|∇I|2
=

Ix
2
Iy

2 − IxIy
2

Ix
2
+ Iy

2
σ [6]

HS Det(M)− k · (Trace(M))2 = Ix
2
Iy

2 − IxIy
2 − k ·

(
Ix

2
+ Iy

2
)2

σ, k [9]

Ro Det(M) = λ1λ2 = Ix
2
Iy

2 − IxIy
2

σ [14]

KZ
1(

λ−p
1 + λ−p

2

)1/p
σ, p > 0 [10]

B. Reliable corner detectors for repeatability
The importance and interest in corner detection lie no-

tably in its application in image matching, tracking, motion
estimation, panoramic stitching, object recognition, and 3D
reconstruction [15]. Repeatability is the main evaluation metric
widely used for interest point matching, where the obtained
points must be independent of varying image conditions [15]
[13]. From [20], the definition of “Repeatability” is given
by: Given two images of the same object or scene, taken
under different viewing conditions, a high percentage of the
features detected on the scene part visible in both images
should be found in both images. The repeatability of the
keypoint detector allows the improvement of the SLAM.
Hence, an investigation of several corner detectors regarding
the repeatability is led in [17] regarding real sequences of
[5] and the most reliable techniques compute the structure
tensor M. Considering a gray-level image I and its partial
derivatives: Ix and Iy , the 1st image derivative along the x
and y axis respectively, and, Ixy , the crossing derivative of I ,
the structure tensor M is given by:

M =

(
I2x IxIy
IxIy I2y

)
, (1)

where • indicates convolution with a Gaussian filter G of
standard deviation σ: G(σ, x, y) =

1

2πσ2
· e−

x2+y2

2σ2 with σ∈R∗
+

and (x, y) ∈ R2.

Spatial averaging, here tied to σ parameter, distributes this
information over a neighborhood. The eigenvectors of the
gradient structure tensor indicate local orientation, whereas
eigenvalues (λ1, λ2) give the strength or magnitude as a
measure: (i) in flat regions they are negligible, (ii) in the edges
λ1 or λ2 is small depending on the horizontal or vertical
edge, and (iii) noticeably both values λ1 and λ2 are large
in corner points –the eigenvalue representations are discussed
in [7], part III-B–. Based on this assumption, various corner
measurement formulations have been proposed; they are listed
and denominated in the Tab. II and summarized in [17]. Note
that KZ is equivalent modulo for the choice of a suitable matrix
norm and a normalization constant to: (i) F when p = 1, (ii)

KLT when p → +∞, and, (iii) p
√
2R for p → 0. In this study,

p is fixed to 2.
In a nutshell, these five corner detection techniques have

in common the tensor M of eq. (1), which is tied to the
same low-pass filter parameter, here denoted σ: the standard
deviation of the Gaussian. These corner detection techniques
are frequently utilized relating to their real-time application,
as in [8]. The objective here is to determine which corner
detector with which optimum parameter σ allows to create a
reliable SLAM on the EuRoC MAV datasets.

III. EVALUATION AND RESULTS

The objective of this paper is to observe how the mod-
ification of the corner detector or/and its parameter affects
the performance of the OV2SLAM algorithm on the EuRoC
MAV Datasets. The choice of a σ parameter value tied to the
Gaussian G for the corner detectors is usually made empiri-
cally because a too large value can delocalize the key-point
position and will “disrupt” the repeatability, as experimented
in [17]. Indeed, when the σ value increases, the key-points can
get misplaced increasingly (see example in [13]); additionally,
some of them could be merged. Meanwhile, too small σ values
may limit the detection of structures and will result the low
repeatability ratio for matching. Therefore, for each detector,
the σ value is studied here for each corner detector presented
in the Tab.II. In the native OV2SLAM algorithm, the corner
detector is the KLT method.

A. Absolute pose error

The study will focus on the notion of absolute errors of
positioning the drone in space. The absolute pose error (ape)
is calculated as follows:

ape =
√

x2
e + y2e + z2e . (2)

Examples of three ape along the first Machine Hall itinerary
are shown in Fig. 4. Thereafter, a maximum, a minimum,
a median, a mean or a standard deviation error of ape per
itinerary can be computed, as detailed in the next section.
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Fig. 4. 3D representation of the best path estimated by OV2SLAM with Rohr σ = 3, 5 (left), Harris σ = 3, 5 (center) and KLT σ = 2, 5 (right). The
represented path is tied to the Machine Hall 01 video containing 3 682 stereo-pair images in all.

B. Evaluation

Ten out of eleven of the itineraries proposed by EuRoc will
be analyzed, corresponding to 28 058 stereo-pair images in
all. The eleventh itinerary led the algorithm to failure with the
worst performing σ parameter/detector pairs. The five corner
detectors presented in Tab. II with a parameter σ between 0.5
and 4.5 are tested on each flight (with a step of 0.5). Each
combination will be compared to the ground truth. Hence, the
following errors are computed:

• Me: the maximum error,
• me: the minimum error,
• Me: the mean error,
• Mee: the median error,
• STDe: the standard deviation error.
These statistic errors are extracted from the comparison for

each detector and each parameter. Thereafter, each extracted
element is averaged over the ten runs and normalized as a
function of the worse error for each entity among all the
detectors and all the parameters. In order to rank the couples
detector/σ parameter, a final Score is computed by:

Score =
1

5
·
[
N (Me)+N (me)+N

(
Me

)
+N (Mee)+N (STDe)

]
,

(3)
where N represents the normalization function.

The 5 performance indicators in millimeters (mm) and total
scores are reported in Tab. III. Usually, the best performing
detector on the EuRoC MAV datasets is the Rohr detector with
σ=3,5. Nevertheless, the lower ranked detector/σ pairs at the
top of the leaderboard do not have a large score gap. The first
six detectors can be considered equivalent. It is noteworthy that
the Rohr detector appears three times in the top 6, and usually
performs better than other detectors. Another interesting point
is that the well-known Harris detector is mostly found in the
middle and bottom of the tab. Also, Kenney is not reliable
on this dataset. KLT detector is homogeneously repaired in
the tab. however it has mostly a low mean error. Forstner has
results rather grouped between the top end the middle of the
tab.; it is less affected by σ than the other detectors.

As a visual result, the Fig. 4 presents the estimated path
taken by the drone during the flight in the Machine Hall and
the ground truth. In the Harris and KLT path, the presence of
error is more spread out than in the Rohr path. In addition,

the maximal ape location in the itineraries is different for the
various detectors. In average, the Rohr detector has a lower
ape during the flight but still as a maximum ape equivalent to
the other two detectors.

TABLE III
RANKING OF DETECTOR/σ PAIRS. FOR EACH PAIR, THEIR AVERAGE

PERFORMANCES ON THE TEN SEQUENCES OF THE EUROC MAV DATASET
AND THEIR RESULTING SCORES ARE FIGURED. THE BOLDED SCORES

CORRESPOND TO THE BEST SCORE FOR EACH COLUMN. Me STANDS FOR
MAXIMUM ERROR, me FOR MINIMUM ERROR, Me FOR MEAN ERROR,
Mee FOR MEDIAN AND STDe FOR STANDARD DEVIATION ERROR IN

MILLIMETERS (MM).

Rank Detector σ Me Me Mee me STDe Score
1 Rohr (Ro) 3,5 156,23 68,43 64,98 9,49 27,73 0,464
2 Rohr (Ro) 0,5 162,40 65,74 60,98 10,15 28,56 0,468
3 KLT 2,5 166,78 65,20 60,74 10,10 29,14 0,470
4 Forstner (F) 0,5 177,60 68,92 64,21 7,35 32,96 0,471
5 Forstner (F) 2 165,45 69,46 63,54 9,01 29,90 0,471
6 Rohr (Ro) 1,5 175,78 70,24 63,43 8,39 33,33 0,480
7 Harris (HS) 3,5 170,23 66,33 63,12 10,99 29,12 0,487
8 KLT 1,5 166,02 66,22 62,47 11,84 27,81 0,488
9 Harris (HS) 2,5 166,10 70,22 64,19 10,23 31,54 0,491
10 Harris (HS) 1 177,91 69,14 63,49 10,76 29,83 0,495
11 Forstner (F) 1,5 155,50 72,01 69,85 11,03 29,04 0,496
12 Forstner (F) 2,5 168,45 70,82 66,51 11,15 30,53 0,503
13 Kenney (KZ) 1,5 181,95 74,78 69,12 8,36 34,76 0,504
14 Harris (HS) 1,5 179,52 72,14 67,11 9,82 33,27 0,507
15 Kenney (KZ) 1 185,76 72,14 65,18 10,32 32,32 0,510
16 Rohr (Ro) 3 209,15 70,99 65,43 8,75 34,25 0,512
17 Kenney (KZ) 2 170,72 73,23 69,18 10,10 34,81 0,514
18 Rohr (Ro) 4,5 157,76 73,87 69,86 11,24 33,18 0,514
19 KLT 0,5 171,82 65,79 60,41 14,43 30,64 0,523
20 Forstner (F) 3 164,54 69,81 66,52 13,21 31,57 0,523
21 KLT 2 159,76 70,36 63,80 13,96 31,51 0,525
22 Harris (HS) 2 204,14 69,63 64,64 10,31 35,57 0,526
23 Forstner (F) 1 172,60 71,82 65,07 12,32 34,11 0,527
24 KLT 1 188,48 75,61 70,01 10,50 35,12 0,534
25 KLT 3,5 191,64 74,72 69,70 10,85 35,36 0,538
26 Forstner (F) 4,5 188,00 76,44 71,79 11,64 33,84 0,545
27 Rohr (Ro) 2,5 172,27 74,31 72,59 13,92 31,33 0,549
28 KLT 4,5 194,78 84,03 76,29 8,76 38,81 0,552
29 Forstner (F) 3,5 200,51 76,37 69,15 14,10 32,43 0,569
30 KLT 4 209,17 79,14 70,85 11,98 37,25 0,574
31 Kenney (KZ) 4 186,21 81,20 76,64 13,56 36,42 0,585
32 KLT 3 211,70 75,52 70,06 12,85 39,83 0,586
33 Kenney (KZ) 3 238,07 74,26 69,74 14,09 35,23 0,598
34 Kenney (KZ) 0,5 237,28 74,26 62,02 13,49 41,51 0,599
35 Harris (HS) 3 261,85 78,82 73,16 12,60 36,49 0,612
36 Kenney (KZ) 4,5 192,44 84,04 80,70 15,26 35,43 0,613
37 Rohr (Ro) 2 188,46 87,06 79,55 16,83 36,88 0,634
38 Kenney (KZ) 2,5 217,77 85,00 80,43 15,72 39,38 0,646
39 Rohr (Ro) 4 289,82 85,06 78,96 10,82 45,83 0,656
40 Harris (HS) 0,5 258,39 79,63 70,65 15,74 43,62 0,661
41 Forstner (F) 4 274,40 91,08 79,89 11,27 47,09 0,665
42 Rohr (Ro) 1 284,10 81,03 64,61 14,29 56,12 0,694
43 Kenney (KZ) 3,5 320,53 91,74 75,44 11,56 65,26 0,746
44 Harris (HS) 4,5 337,12 105,91 90,96 19,53 57,50 0,856
45 Harris (HS) 4 312,13 141,23 140,54 19,38 61,92 0,973



IV. CONCLUSION AND DISCUSSION

Corners represent stable features possessing the defined
characteristics of a robust point of interest, they remain an
active research field for machine vision researchers like SLAM
methods. Structure tensor-based approaches for corner detec-
tion are currently utilized for their extraction, as well-known
Harris or KLT methods, but not only. In this work, we have
achieved a study of the impact of the choice of the corner
detector and its Gaussian parameter to the performance of a
visual SLAM. The tools of this study were the OV2SLAM [4]
method applied on the EuRoC MAV datasets [2], both made
available for research and improvement of SLAM systems.
In that respect, OV2SLAM uses corner detection which is
the center of this study. Five corner detectors having reliable
repeatability were selected from a prior work [17], namely:
Harris (H), Rohr (Ro), Kenney (KZ), Forstner (F) and Kanade-
Lucas-Tomasi (KLT). Five performance indicators have been
extracted from the passage of the different detector/σ pairs on
the EuRoC itineraries: namely the maximum, minimum, mean,
median and Standard deviation errors. These indicators al-
lowed to determine the best scores among forty-five detector/σ
pairs. This methodology led to the following conclusion:
usually Rohr detector is a better performing detector on the
ten first itineraries proposed by EuRoC datasets.

More experimentation on other and different datasets with
various contexts is needed to find if the Rohr detector generally
performs better than other techniques. Indeed, we must remain
critical of these results as they are only valid for the itineraries
provided by the EuRoC MAV datasets.

An accumulation of uncertainty in the position measurement
can lead to the SLAM system stalling. It is possible to
make up for a drift in the position estimate with corrective
solutions. These methods are called “Loop Closure”. Usually,
they involve threads running in parallel with front-end pro-
cessing. Technically, the system looks for matches between
newly detected interest points and previously recorded key-
points. These different methods are based on various types
of technology. In [21], a visual sequence-based loop-closure
detection pipeline is proposed. In [22], visual SLAM methods
based on deep learning are reviewed. In both approaches, the
performances of visual SLAMs are greatly improved. It is
therefore interesting to carry out continuous improvement on
the detection of corners (or other types of interest points) in
conjunction with loop closure methods.
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