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ABSTRACT

Skin lesion segmentation in dermoscopy images is highly
relevant for lesion assessment and subsequent analysis. Re-
cently, automatic transformer-based skin lesion segmentation
models have achieved high segmentation accuracy owing to
their long-range modeling capability. However, limited la-
beled data for training the lesion segmentation models results
in sub-optimal learning results. In this paper, we propose
a Global-to-Local self-supervised Learning (G2LL) method
for transformer-based skin lesion segmentation models to al-
leviate the problem of insufficient annotated data. Firstly, a
structure-wise masking strategy for Masked Image Modeling
(MIM) is proposed to force the model to learn the recon-
struction of masked structures by exploring the semantic
local contexts. Instead of masking patches randomly in the
whole view, it computes superpixels to divide the images into
several structured regions. Then, it masks the fixed number
of patches in each region, thus it allows the exploration of
the structural knowledge and solves the shape variance in
the meanwhile. Secondly, a self-distilling architecture is de-
ployed to enhance global context learning where the masked
images are sent to a student network and the relative un-
masked images are fed to a teacher network for knowledge
distillation. In this context, extensive experiments on both the
ISIC-2017 and the ISIC-2019 datasets containing a total of
28 081 images show that the proposed approach is superior to
state-of-the-art self-supervised learning methods.

Index Terms— skin lesion segmentation, self-supervised
learning, structure-wise masking

1. INTRODUCTION

Accurate segmentation of skin lesions for dermoscopy im-
ages is significant for the diagnosis and treatment planning
of melanoma, which is the most fatal skin disease. Reliable
automatic segmentation algorithms are expected to surpass
human experts in segmentation accuracy and computational
efficiency, but they depend on a large amount of accurate
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pixel annotation for lesions. Additionally, low contrast be-
tween healthy and lesion areas (due to illumination or sensor
problems/calibration) makes it difficult to determine the le-
sion boundaries. Also, hairs in dermoscopy images may de-
stroy the lesion appearance, falsifying the segmentation.

In order to address the challenge of lesion segmentation in
dermoscopic images, several approaches have been proposed.
Hand-crafted features are applied in early work, producing
weak and unstable performance in skin lesion segmentation
[1]. With the development of Convolutional Neural Networks
(CNNs), U-Net [2] and Dilated Convolution [3] exhibit ex-
cellent segmentation performance in medical images. The
subsequent CNN-based methods utilize the multi-scale fea-
tures enhancement, the receptive field expansion, and atten-
tion mechanisms to enhance the segmentation [4, 5, 6, 7].
Nevertheless, the receptive field of CNN-based networks is
limited [8]. Inspired by the success of Vision Transform-
ers (ViT) in the natural image domain, several studies apply
transformers to skin lesion segmentation and have obtained
better results than CNNs [8, 9, 10].

Unfortunately, the lack of extensive skin lesion anno-
tations is a major obstacle to building accurate and robust
transformer-based networks. To address it, Self-Supervised
Learning (SSL) in medical image analysis shows promis-
ing performance based on different designs of pretext tasks,
which can be categorized into two approaches. On the one
hand, the discriminative method [11] applies contrastive
learning to learn image-level representation similarity and
instance discrimination, which have been proven effective on
classification tasks yet less valid for segmentation tasks that
require fine-grained features. On the other hand, the genera-
tive method [12] uses an auto-encoder to recover the original
image from the distorted counterpart, showing a good capac-
ity for capturing local context. Nevertheless, generating the
whole image is computationally expensive and another group
based on the Masked Image Modeling (MIM) pretext task has
been proven successful [13, 14]. They mask a proportion of
image patches and predict the masked parts from unmasked
patches, saving a part of the computational cost.

In this paper, we propose a Global-to-Local self-supervised
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Fig. 1. An overview of G2LL for pre-training of transformer-based skin lesion segmentation model. The top part is a masked
image patches recovery pretext task for local learning. The bottom part is knowledge self-distillation for global learning. The
left part shows the process of structure-wise mask generation.

Learning (G2LL) method to learn universal feature represen-
tation for the transformer-based network from an unlabeled
skin lesion dataset. Specially, we follow the masked image
reconstruction pretext task to learn interaction in the local
area [14]. To improve the learned representations that can
better suit the subsequent skin lesion segmentation tasks, we
propose to randomly mask the image patches in the struc-
tured region segmented by the superpixel algorithm [15]
rather than the whole image. Furthermore, to enhance the
learned global contexts that can be used to solve the large
lesion shape and size variance at the finetuning time, we
propose to utilize a teacher-student network architecture be-
tween the feature extraction of masked and unmasked images
with self-distillation. The teacher network is fed with the
unmasked images and the produced unmasked features are
used to supervise the feature extraction of the student net-
works with the masked images. Extensive experiments on the
ISIC-2017 dataset and evaluations by means of well-known
Dice and IoU (Intersection over Union) metrics show that our
proposed approach improves the segmentation performance
and is superior to competing SSL methods.

2. PROPOSED METHOD

The overview learning framework of G2LL has been visu-
alized in Fig. 1; it contains two ViT backbones, named stu-
dent model and teacher model, to learn the local contexts and
global features. According to the structural information com-
puted by superpixels [15], we mask highly likely diseased
image patches instead of randomly selected patches in the
images (see Sec. 2.2). The student model takes unmasked
image patches as input to learn local context features with a
pixel-level loss for skin lesions. The teacher model is used
to extract global features from the unmasked image to distill
knowledge to the student model.

2.1. Basic MIM Pre-training Model

Our method is based on the classical MIM approach, MAE
(Masked AutoEncoder [14]), which adds a shallow decoder
after the ViT encoder to reconstruct pixels and learn local fea-
tures. Hence, this subsection gives a brief description of this
method and our advanced method will be introduced in the
next parts.

In MAE manner, each dermoscopy image X is divided
into n patches {Xi}ni=1 where each patch contains 16×16×3
pixels. A random masking strategy is applied to mask a
portion of image patches Xmask and the remaining patches
Xvisible are fed into ViT backbone fenc to encode local fea-
tures Fvisible.After that, a shallower decoder fdec, consisting
of a 2-layers transformer block with 384 hidden dimensions
and 6 heads in each layer, generates X̂mask from local fea-
tures Fvisible and the learnable vector Tmask representing the
masked token. The MSE (Mean Square Error) loss between
X̂mask and Xmask is utilized to optimize the reconstruction
learning phase.

The mathematical description of MIM can be written as:

Fvisible = fenc (Xvisible), (1)

X̂mask = fdec (Fvisible, Tmask), (2)

LMSE =
1

m

m∑
i=1

(
X̂mask −Xmask

)2

, (3)

where m is the number of masked patches.

2.2. Structure-wise Mask Strategy

MAE [14] and SimMIM (Simple framework for Masked Im-
age Modeling [16]) apply a high mask ratio γ for randomly
masking image patches, to learn meaningful feature represen-
tation. Unlike natural images, The scale of skin lesions in der-



moscopy images varies dramatically. Besides, dermoscopy
images hold lower context complexity compared to natural
images, so a high value of γ for dermoscopy images is very
hard to learn useful representation and finally leads to unsta-
ble feature learning. However, a low mask ratio γ for MIM
is too easy to train a model, so masked patches can easily
be recovered by their neighbors with little meaningful feature
learning.

To this end, we introduce a compromised solution for
MIM, i.e., to mask more patches under the key structured
regions where lesions may be present with a low γ value.
Specifically, an image is divided into patches as before; then,
we produce superpixels by SLIC method [15] as a meaningful
label for segmenting image patches into K (empirically set to
8 as default) structured areas. Each patch is assigned the su-
perpixel label that the most pixels hold within its area. Thus,
we can mask the patches under the key structured regions.
For dermoscopy images, the skin lesion usually locates in the
center of the image. So, we focally mask n×γ×β patches in
the central regions, while the patches in marginal areas are
less masked.

The structure-wise mask is used to improve the structure
learning of MAE. The Xvisible in Eq. (1) is modified as:

Xvisible = X ⊗M, (4)

where X is the augmentation view of input dermoscopy im-
ages and M ∈ RH×W is the structure-wise masks. Here, H
and W represent the height and width of the image respec-
tively and ⊗ refers to element-wise multiplication.

2.3. Knowledge self-distillation Enhance Global Feature

We utilize knowledge self-distillation to enhance global fea-
ture learning. It uses siamese encoders to calculate feature
representations from different augmented views u and v of
the same image. The student model is MAE and the teacher
model is ViT architecture which is the same as the one used
in the student model. The mask strategy illustration afore-
mentioned is applied on both u and v before sending it to
the student model. We fed the non-masked view of u and v
to the teacher model for knowledge self-distillation. In de-
tail, we follow DINO (self-DIstillation with NO labels [17])
to extract the feature of the class token as the global feature
with ViT, then project it with 3-layer Multi-Layer Perception
(MLP) projector as Pθs(·) and Pθt(·). The objective Loss
function for knowledge self-distillation is formulated as be-
low:

LDistill = −
∑

x∈{u,v}

Ft(x, τt) · log(Fs(x
′, τs)), (5)

with

Ft(x, τt) = softmax

Pθt

(
h
[CLS]
t (x)

)
− C

τt

, (6)

Fs(x
′, τs) = softmax

Pθs

(
h
[CLS]
s (x′)

)
τs

, (7)

where x′ is the masked view of x and h
[CLS]
t (·) refers to the

encoded class token of x in the teacher model. C is the center
of teacher outputs. τs and τt are temperature parameters; the
setting of these hyper-parameters follow [17]. Finally, the loss
for G2LL is Lssl = λ1 · LMSE + λ2 · LDistill, where λ1 and
λ2 are the hyper-parameters to control local and global feature
learning (we set λ1 = 1 and λ2 = 1 for better convergence).

3. EXPERIMENTS
3.1. Dataset

Two publicly available datasets, ISIC-2019 [18] and ISIC-
2017 [19], are used to evaluate our method. ISIC-2019 com-
prises 25 331 dermoscopy images with 8 different lesion cat-
egories. ISIC-2017 contains a total of 2 750 dermoscopy im-
ages and corresponding pixel-level annotations for segmenta-
tion. It is officially divided into a train set (2 000 images), a
validation set (150 images), and a test set (600 images). All
the images contained in ISIC-2017 and ISIC-2019 datasets
are in RGB space (Red, Green and Blue) and PNG format.

3.2. Implementation

In the pre-training stage, the images from ISIC-2019 are em-
pirically resized to 256×256. A group of data augmentations
is used to generate different input views, including color jitter,
random grayscaling and Gaussian blur. We employ the small
variant of ViT (ViT-S/16) with patch size 16×16 as ViT back-
bone. The model is optimized by an AdamW optimizer [20]
with an initial learning rate of 0.00015. We train the model
for 300 epochs with a batch size of 128. A cosine learning
rate scheduler is adopted and warm-up for 40 epochs.

In the fine-tuning stage, the images from ISIC-2017 are
also resized to 256×256. We employ an encoder-decoder
network similar to TransUNet [21], in which the encoder is
ViT-S/16 and the decoder is several groups of the convolu-
tional block to produce segmentation maps. The optimizer
employed in the downstream segmentation task is Adam with
a learning rate of 0.0003. We load parameters of ViT-S/16
from the pre-training stage and fine-tune the segment model
for 100 epochs with a batch size of 16. Finally, all experi-
ments are implemented in PyTorch with 2 NVIDIA Geforce
GTX 1080Ti GPUs.

3.3. Comparison with State-of-the-art Methods

The proposed approach is compared with several transformer-
based SSL methods, MAE [14] and DINO [17]. As shown in
Table 1, skin lesion segmentation results are presented with
different ratios of training data for fine-tuning. All pre-trained
methods attain better performance in skin lesion segmenta-
tion compared to the “Random Init.” method trained from



Table 1. Comparison of skin lesion segmentation trained with
1%, 10%, 50%, and 100% of official training samples on
ISIC-2017. “Random Init.” means training from scratch and
“Supervise” denotes the full-supervision of ISIC-2019 data.
“↑” means the high value the better. The Dice (%) and IoU
(%) scores are presented on the test set of ISIC-2017.

Method
1% 10% 50% 100%

Dice↑ IoU↑ Dice↑ IoU↑ Dice↑ IoU↑ Dice↑ IoU↑
Random Init. 68.98 58.37 76.64 66.35 79.54 69.74 81.19 71.58

Supervise 73.93 62.91 79.35 69.20 81.40 71.92 81.90 72.57
MAE [14] 73.50 62.89 79.46 69.28 81.39 72.16 81.58 72.31
DINO [17] 73.17 62.41 78.85 68.87 81.37 71.92 81.38 71.91

G2LL(Ours) 74.43 63.27 80.28 70.34 81.98 72.70 82.46 72.96

scratch. Notably, our proposed SSL method surpasses all
the SSL approaches and the supervised approach. In com-
parison to the supervised method, which is pre-trained on
ISIC-2019 with classification labels, our approach shows a
higher Dice score (0.5%∼ 0.98% improvement) and IoU
score (0.36%∼ 1.14% improvement) across different parti-
tions of training data. Our SSL method is also superior to
MAE and DINO on both metrics consistently.

We visualize some samples of dermoscopy images and
segmentation results generated by different methods in Fig.2.
It shows that our proposed approach produces competitive
segmentation performance with supervised pre-training meth-
ods. In comparison to the SSL method, our method generates
more stable segmentation which is close to the ground truth.

3.4. Ablation Study

We conduct extensive ablation experiments to demonstrate
the effectiveness of different mask strategies in the MIM
process. The original mask strategy is a random mask with
a fixed mask ratio, it generates sub-optimal results on der-
moscopy images. We introduce the semantic mask, a strategy
for masking image patches under different structured areas.
A further improvement is the semantic focal mask strategy,
which focally masks the key structured areas where skin le-

Table 2. Ablation experiments on different mask strategies
for MAE pretrained on the ISIC-2019 dataset. All exper-
iments are fine-tuned on 100% of training samples on the
ISIC-2017 dataset. “↑” means the high value the better.

Mask Strategy Dice↑ (%) IoU↑ (%)

Random Mask 81.54 71.97
Semantic Mask 81.76 72.22

Semantic Focal Mask 82.16 72.62

sions probably exist. The mask ratio γ is 25% and focal
weight β is 70% in our experiments.

The fine-tuning results of the above experiments are pre-
sented in Table 2. Compared to the random mask, the seman-
tic mask achieves a 0.22% improvement in the Dice score
and a 0.25% improvement in the IoU score. It verified that
structure prior guidance is beneficial for useful representation
learning. Furthermore, the semantic focal mask attains im-
provement with 0.62% in the Dice score and 0.65% in the
IoU score, respectively.

4. CONCLUSION

This paper proposed a Global-to-Local self-supervised Learn-
ing (G2LL) approach to improve the performance of skin
lesion segmentation in dermoscopy images with global and
local context modeling. Experiments are conducted on the
downstream segmentation task, where the results have shown
that the proposed method has achieved superior performance
compared to the latest methods. It is also noticeable that
our method has outperformed the full-supervised learning
technique, indicating that the representations learned by the
SSL method will be more useful for downstream lesion seg-
mentation. The extensive ablation experiments have clearly
verified the improvement of our structure-wise masking strat-
egy. Eventually, to account for computational costs, all
experimental results are reported by a single run.

In the future, we will explore the influence of semi-
supervised learning in the context of label-efficient skin lesion
segmentation regarding dermoscopy images.

Image GT Random Supervise DINO MAE Ours

Fig. 2. Visual comparison of skin lesion segmentation results on two samples from the test set of ISIC-2017. The IoU and
Dice scores are displayed in the lower right corner of each image. Note that the image on the bottom contains hairs.
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