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A B S T R A C T

In some sensitive domains where data imperfections are present, standard classification techniques reach their
limits. To avoid misclassifications that have serious consequences, recent works propose cautious classification
algorithms to handle this problem. Despite of the presence of uncertainty and/or imprecision, a point prediction
classifier is forced to bet on a single class. While a cautious classifier proposes the appropriate subset of
candidate classes that can be assigned to the sample in the presence of imperfect information. On the other
hand, cautiousness should not be at the expense of precision and a trade-off has to be made between these
two criteria. Among the existing cautious classifiers, two classifiers propose to manage this trade-off in the
decision step by the mean of a parametrized objective function. The first one is the non-deterministic classifier
(ndc) proposed within the framework of probability theory and the second one is ‘‘evidential classifier based
on imprecise relabelling’’ (eclair) proposed within the framework of belief functions. The theoretical aim of
the mentioned hyper-parameters is to control the size of predictions for both classifiers. This paper proposes to
study this hyper-parameter in order to select the ‘‘best’’ value in a classification task. First the utility for each
candidate subset is studied related to the values of the hyper-parameter and some thresholds are proposed to
control the size of the predictions. Then two illustrations are proposed where a method to choose this hyper-
parameters based on the calibration data is proposed. The first illustration concerns randomly generated data
and the second one concerns the images data of fashion mnist. These illustrations show how to control the
size of the predictions and give a comparison between the performances of the two classifiers for a tuning
based on our proposition and the one based on grid search method.
1. Introduction

In some sensitive applications misclassification can have serious
consequences. This is the case in applications having impacts either on
people’s health or on the environment [1], e.g., in medical diagnosis
applications when a classifier is involved to detect early-stage cancer.
In such applications, cautious decisions are necessary when imperfect
data are present. This leads some recent works to focus on cautious
classification. Among the existing cautious classifiers, we focus on
those providing a subset of candidate class labels to a new sample to
classify. We refer to those classifiers as set-valued classifiers. We can
cite among these classifiers the Naive Credal Classifier (ncc) [2,3], the
strong dominance based classifier [4], the non-deterministic classifier
(ndc) [5], the credal decision trees (CDT) [6], the imprecise credal
decision trees (ICDT) [7], the classifiers based on generalized criteria
such as Hurwicz (GHC), OWA (GOWAC) [8], eclair classifier [9,10],
etc. One can find in [8–10] other works concerning cautious prediction
including works about conformal prediction [11–14] that are discussed
in this paper. But cautiousness should not be at the expense of precision
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and a trade-off has to be made between these two criteria. On one
hand, a classifier that predicts always the whole set of the candidate
classes is cautious but its predictions are uninformative. On the other
hand, a classifier that predicts always a single class is precise when the
predictions are good but it is not cautious. Some set-valued classifiers
can control this trade-off as the ndc and eclair classifiers. Indeed, the
utility function implemented in the decision step of both classifiers
has a hyper-parameter 𝛽 that is used to control the trade-off between
precision and cautiousness. This hyper parameter is considered as a
user-modifiable parameter for the application of those classifiers and
its theoretical aim is to control the size of the predicted subset of
classes. The choice of 𝛽 depends on the level of cautiousness required
for the application in which the classifier is going to be used. This paper
proposes to study this parameter in the case of the two classifiers and
aims to propose suggestions for the choice of the parameter value in the
case of classification task. In the first experiment results, we show, on
simulated data, the impact of the selected hyper-parameter value on the
prediction of the two classifiers when faced to strange samples, i.e., to
vailable online 20 July 2023
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which the standard classifiers failed to predict the true class labels. In
the second experiment, concerning the images data of fashion mnist, a
comparison between the performances of the two classifiers for a tuning
based on our proposition and the one based on grid search method is
presented. The paper is organized as follows. In the second section,
the reminders about the decision step in the classifiers eclair and ndc
and the measures of set-valued classification performances are given.
The third section presents the studies of the expected utility functions
introduced in the decision step of the two classifiers. Finally, the fourth
section presents the experimental results.

2. Reminders and notations

The set-valued classifiers eclair and ndc are based on the results
of the standard point prediction classifiers to provide respectively the
posterior mass function and the posterior probability function for a
sample 𝒙 to classify among a set of classes 𝛩 = {𝜃1,… , 𝜃𝑛}. We
ocus in this paper on the decision step of those two classifiers that
nvolves a utility function that is the 𝐹𝛽 score. In this section we give

some reminders about the 𝐹𝛽 score and it exploitation in the case of
imprecise predictions by the two classifiers. The evaluation of imprecise
predictions is performed using five measures from the state of the art
that are presented in the end of this section. To simplify notations, we
adopt the following notations for the singleton subsets and subsets of
two elements, in the rest of the paper: 𝜃𝑖 ∶= {𝜃𝑖}, 𝜃𝑖𝑗 ∶= {𝜃𝑖, 𝜃𝑗}.

.1. 𝐹𝛽 score

The 𝐹𝛽 score used in the decision step of eclair and ndc to predict
subset of candidate classes is an adaptation of the 𝐹𝛽 score from

information retrieval field and supervised classification methods to
set-valued classification. In the context of binary point prediction for
classification, the 𝐹𝛽 score is defined as:

𝐹𝛽 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 𝑡𝑟𝑢𝑡ℎ) =
(1 + 𝛽2) recall ⋅ precision
(𝛽2 ⋅ precision) + recall

, (1)

where the quantity precision defined as:

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑏 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑡𝑟𝑢𝑒

𝑛𝑏 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑡𝑟𝑢𝑒 + 𝑛𝑏 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑡𝑟𝑢𝑒
,

and the quantity recall defined as:

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑏 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑡𝑟𝑢𝑒

𝑛𝑏 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑡𝑟𝑢𝑒 + 𝑛𝑏 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑓𝑎𝑙𝑠𝑒
,

are two known performance measures in information retrieval and
machine learning. This general expression of 𝐹𝛽 score in Eq. (1) is
parametrized by 𝛽 that is chosen such that recall is considered 𝛽 times
s important as precision.

.2. The decision step in ndc classifier

The principle of ndc is very simple. Let us consider a sample 𝒙 and a
rained point prediction model, denoted 𝛿, that can provide a posterior
robability for the classification of 𝒙. The ndc classifier consists in a

decision rule 𝑟𝑛𝑑𝑐 that is applied to determine the set-valued prediction
for 𝒙. Note that, precise predictions are given as singleton subsets. The
predicted subset of classes, using the rule 𝑟𝑛𝑑𝑐 , is the one maximizing
the expected utility where the utility associated to each subset of classes
is defined using the 𝐹𝛽 measure. More precisely, let us consider a set
of 𝑛 class labels 𝛩 = {𝜃1,… , 𝜃𝑛}, the utility of each subset of candidate
classes 𝐴 ⊆ 𝛩 as the good prediction for 𝒙, having the true class 𝜃𝒙, is
evaluated using the 𝐹𝛽 measure as follows:

𝐹𝛽 (𝐴, 𝜃𝒙) =
(1 + 𝛽2) ⋅ |{𝜃𝒙} ∩ 𝐴|

𝛽2 + |𝐴|
, (2)

where 𝛽 is a positive real number and |𝑋|, for 𝑋 ⊆ 𝛩, denotes
he number of elements in 𝑋. The quantity 𝐹 (𝐴, 𝜃 ) is interpreted
2

𝛽 𝒙 w
as the utility obtained when predicting the subset of class labels 𝐴
when the true class label is 𝜃𝒙. Eq. (2) is analogue to the one in (1)
where the quantities precision and recall are redefined as precision(𝐴) =

|{𝜃𝒙}∩𝐴|
𝑛𝑏 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖𝑛𝐴 and recall(𝐴) = |{𝜃𝒙} ∩ 𝐴|. Note that when the value of 𝛽
s close to 0, 𝐹𝛽 (𝐴, 𝜃𝒙) becomes close to precision(𝐴) thus the size of 𝐴 is
isadvantageous, i.e. the larger size of 𝐴 the smaller the utility. On the
ther hand, when 𝛽 is high, 𝐹𝛽 (𝐴, 𝜃𝒙) becomes close to recall(𝐴) and in
his case the size of 𝐴 is advantageous. Let us suppose that a posterior
robability distribution 𝑝𝛿(.|𝒙) is provided by a point prediction method
for the sample 𝒙, then the non-deterministic classifier ndc predicts

or 𝒙 the subset of candidate classes that maximize the expected utility
unction E(𝐹𝛽 (𝐴, .)|𝒙), i.e. :

(𝐹𝛽 (𝐴, .)|𝒙) =
𝑛
∑

𝑖=1
𝐹𝛽 (𝐴, 𝜃𝑖) ⋅ 𝑝𝛿(𝜃𝑖|𝒙). (3)

inally, the predicted subset 𝑟𝑛𝑑𝑐 (𝒙) for 𝒙 using the classifier ndc is given
s:

𝑛𝑑𝑐 (𝒙) = 𝑎𝑟𝑔 max
𝐴∈2𝛩⧵∅

E(𝐹𝛽 (𝐴, .)|𝒙). (4)

.3. The decision step in eclair classifier

The decision step with eclair consists in providing for a sample 𝒙 a
ubset of classes as prediction, by considering as input the posterior
ass function 𝑚(.|𝒙) and a hyper-parameter 𝛽. The predicted subset

f classes is the one maximizing the expected utility where the utility
ssociated to each subset of classes is defined using a generalization of
q. (2) [9,10]. The main change regarding Eq. (2) is to consider the
eneral case where the available information about the true class of 𝒙
an be partially known, i.e., a subset 𝐵𝒙 of 𝛩. It is the case, for example,
hen data are coarse [15,16]. The new utility function is then defined

or two subsets 𝐴 and 𝐵𝒙 of 𝛩 as follows:

𝛽 (𝐴,𝐵𝒙) =
(1 + 𝛽2) ⋅ |𝐴 ∩ 𝐵𝒙|

𝛽2 ⋅ |𝐵𝒙| + |𝐴|
(5)

he quantity 𝐹𝛽 (𝐴,𝐵𝒙) is interpreted as the utility obtained when
redicting the subset of class labels 𝐴 for the sample 𝒙 when its true
lass label is partially known and represented by a subset of classes 𝐵𝒙.
n this case, the precision and recall quantities become:

recision(𝐴) =
|𝐴 ∩ 𝐵𝒙|

𝑛𝑏 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖𝑛𝐴
,

and

recall(𝐴) =
|𝐴 ∩ 𝐵𝒙|

𝑛𝑏 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖𝑛𝐵𝒙
.

Let us suppose that a posterior mass function 𝑚(.|𝒙) is known for
the sample 𝒙, the eclair classifier predicts for 𝒙 the subset of candidate
classes that maximize the expected utility function E(𝐹𝛽 (𝐴, .)|𝒙), i.e :

E(𝐹𝛽 (𝐴, .)|𝒙) =
∑

𝐵⊆𝛩
𝐹𝛽 (𝐴,𝐵) ⋅ 𝑚(𝐵|𝒙), (6)

here 𝐵 is the variable representing the true class label of 𝒙. Finally,
he predicted subset 𝑟𝑒𝑐𝑙𝑎𝑖𝑟(𝒙) for 𝒙 using the classifier eclair is given as:

𝑒𝑐𝑙𝑎𝑖𝑟(𝒙) = 𝑎𝑟𝑔 max
𝐴∈2𝛩⧵∅

E(𝐹𝛽 (𝐴, .)|𝒙). (7)

.4. Evaluation measures for the set-valued classifiers

When evaluating a set-valued classifier one ensures that the pre-
icted subset of classes (1) includes the ‘‘true’’ class and (2) it is as small
s possible depending on the sample data imperfection. Several works
ave studied this problem and provide some measures to check the two
onditions (1) and (2) [2,7,17]. Between the least drastic one that is
mprecise accuracy which checks if the prediction contains the true class
abel of the sample and the most drastic one that is classical accuracy
hich checks if the prediction is equal to the true class label of the
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sample, one can find intermediate measure as Discounted accuracy [18]
that seems to be an interesting measure as it takes into account the size
of the predicted subset. But in order to increase the cautiousness reward
to the degree to which the decision maker prefers to fix it depending
on his application and the quality of the information obtained for the
samples, a family of measure are constructed from Discounted accuracy
measure that are represented by a function 𝑔 taking its values in [0, 1]
and guaranteeing 𝑔(𝑧) ≥ 𝑧, i.e., the reward with 𝑔 is at least the same as
he one given by the discounted accuracy, 𝑔(0) = 0 and 𝑔(1) = 1 (see [19]

for more details). Let us consider a samples 𝒙 having the true class 𝜃𝒙
and a set-valued classifier 𝛿𝑖𝑐 . The five following measures are proposed
o evaluate the performance of 𝛿𝑖𝑐 regarding its output for 𝒙:

• the classical accuracy denoted acc:

𝑎𝑐𝑐(𝛿𝑖𝑐 , 𝜃𝒙) = 1{𝜃𝒙}(𝛿𝑖𝑐 (𝒙)).

• the imprecise accuracy denoted impr. acc:

𝑖𝑚𝑝𝑟.𝑎𝑐𝑐(𝛿𝑖𝑐 , 𝜃𝒙) = 1𝛿𝑖𝑐 (𝒙)(𝜃𝒙).

• the discounted accuracy (discAcc) corresponds to the function
𝑔(𝑧) = 𝑧 [18]:

𝑑𝑖𝑠𝑐𝐴𝑐𝑐(𝛿𝑖𝑐 , 𝜃𝒙) =
1𝛿𝑖𝑐 (𝒙)(𝜃𝒙)
|𝛿𝑖𝑐 (𝒙)|

,

where |𝐴| denotes the size of the subset 𝐴. This measure is also
denoted 𝑢50.

• The 𝑢65 measure that corresponds to the function 𝑔(𝑧) = −0.6 ⋅
𝑧2 + 1.6 ⋅ 𝑧 [19]:

𝑢65(𝛿𝑖𝑐 , 𝑑𝑠𝑡) = −0.6 ⋅ [𝑑𝑖𝑠𝑐𝐴𝑐𝑐(𝛿𝑖𝑐 , 𝜃𝒙)]2 + 1.6 ⋅ 𝑑𝑖𝑠𝑐𝐴𝑐𝑐(𝛿𝑖𝑐 , 𝜃𝒙).

• The 𝑢80 measure that corresponds to the function 𝑔(𝑧) = −1.2 ⋅
𝑧2 + 2.2 ⋅ 𝑧 [19]:

𝑢80(𝛿𝑖𝑐 , 𝜃𝒙) = −1.2 ⋅ [𝑑𝑖𝑠𝑐𝐴𝑐𝑐(𝛿𝑖𝑐 , 𝜃𝒙)]2 + 2.2 ⋅ 𝑑𝑖𝑠𝑐𝐴𝑐𝑐(𝛿𝑖𝑐 , 𝜃𝒙).

Note that 𝑢65 is the average measure of 𝑢50 and 𝑢80 and it is the
better suited one to quantify the compromise between precision and
cautiousness.

3. The expected utilities related to 𝜷

3.1. The case of ndc classifier

Let us consider that the posterior probability distribution of a sam-
ple 𝒙 is known. We denote this distribution by 𝑝(.|𝒙) ∶ 𝛩 → [0, 1]. We
consider the parameter 𝛽 as a variable and we express the expected
utility function in Section 2.2 for a 𝛽 ∈ [0,+∞[, 𝐴 ⊆ 𝛩 and 𝑝(.|𝒙) as:

𝑢(𝛽, 𝐴) = E(𝐹𝛽 (𝐴, .)|𝒙) =
𝑛
∑

𝑖=1
𝐹𝛽 (𝐴, 𝜃𝑖) ⋅ 𝑝(𝜃𝑖|𝒙). (8)

In addition, let us consider the situation where the class 𝜃𝑘 is the most
likely class of 𝒙 and some times the class 𝜃𝑘 is confused with the class
𝜃𝑘′ , 𝑘 ≠ 𝑘′ due to data imperfection. The Propositions 3.1 and 3.2 give
some results concerning the predicted subset of classes for 𝒙 among the
three options 𝜃𝑘, 𝜃𝑘𝑘′ and 𝛩.

Proposition 3.1. Let suppose that 𝑝(𝜃𝑘|𝒙) > 𝑝(𝜃|𝒙), ∀𝜃 ∈ 𝛩 ⧵ 𝜃𝑘 and
𝜃𝑘′ = 𝑎𝑟𝑔max𝜃∈𝛩⧵𝜃𝑘 𝑝(𝜃|𝒙).

If 𝑝(𝜃𝑘′ |𝒙) > 0 then it exists 𝛽1 ≥ 0 such that:
{

𝑢(𝛽, 𝜃𝑘𝑘′ ) ≤ 𝑢(𝛽, 𝜃𝑘) if 𝛽 ≤ 𝛽1
𝑢(𝛽, 𝜃𝑘𝑘′ ) > 𝑢(𝛽, 𝜃𝑘) if 𝛽 > 𝛽1.

(9)

Elsewhere 𝑢(𝛽, 𝛩) < 𝑢(𝛽, 𝜃𝑘𝑘′ ), ∀𝛽 ≥ 0.

Proof. We have for all 𝛽 ≥ 0,

𝑢(𝛽, 𝜃 ) = 𝑝(𝜃 |𝒙).
3

𝑘 𝑘 𝑝
Table 1
The posterior probability distributions.
𝑥 𝜃1 𝜃2 𝜃3
𝑥1 0.333 0.333 0.333
𝑥2 1 0 0
𝑥3 0.5 0.5 0
𝑥4 0.5 0.4 0.1

and

𝑢(𝛽, 𝜃𝑘𝑘′ ) =
1 + 𝛽2

2 + 𝛽2
⋅ [𝑝(𝜃𝑘|𝒙) + 𝑝(𝜃𝑘′ |𝒙)] =

1 + 𝛽2

2 + 𝛽2
⋅ P(𝜃𝑘𝑘′ |𝒙),

here for all subset 𝐴 of 𝛩, P(𝐴|𝒙) =
∑

𝜃∈𝐴 𝑝(𝜃|𝒙). On one hand, the
unction 𝑢(., 𝜃𝑘𝑘′ ) increases related to 𝛽. Thus 𝑢(𝛽, 𝜃𝑘𝑘′ ) ≥ 𝑢(0, 𝜃𝑘𝑘′ ) =
1
2P(𝜃𝑘𝑘′ |𝒙), for all 𝛽 ≥ 0. On the other hand, 𝑝(𝜃𝑘|𝒙) > 𝑝(𝜃𝑘′ |𝒙) then
(𝜃𝑘|𝒙) >

1
2P(𝜃𝑘𝑘′ |𝒙). So, 𝑢(., 𝜃𝑘𝑘′ ) intersects 𝑢(., 𝜃𝑘) at 𝛽1 ≥ 0 such that:

1 + 𝛽21
2 + 𝛽21

⋅ P(𝜃𝑘𝑘′ |𝒙) = 𝑝(𝜃𝑘|𝒙).

t comes:

1 =

√

𝑝(𝜃𝑘|𝒙) − 𝑝(𝜃𝑘′ |𝒙)
𝑝(𝜃𝑘′ |𝒙)

. □ (10)

Note that the same reasoning for the comparison between the
tilities of 𝜃𝑘 and 𝜃𝑘𝑘′ in Proposition 3.1 can be generalized for the

comparisons between the utilities of 𝜃𝑘 and all the subsets 𝐴 ⊂ 𝛩
ontaining 𝜃𝑘 where

𝑢(𝛽, 𝐴) =
1 + 𝛽2

|𝐴| + 𝛽2
⋅ P(𝐴|𝒙),

n this case, 𝛽1 becomes:

1 =

√

|𝐴| ⋅ 𝑝(𝜃𝑘|𝒙) − P(𝐴|𝒙)
P(𝐴|𝒙) − 𝑝(𝜃𝑘|𝒙)

. (11)

roposition 3.2. Let suppose that 𝑝(𝜃𝑘|𝒙) > 𝑝(𝜃|𝒙), ∀𝜃 ∈ 𝛩 ⧵ 𝜃𝑘.
If P(𝜃𝑘𝑘′ |𝒙) ∈ [

2
3 , 1[ then it exists 𝛽2 > 0 such that:

𝑢(𝛽, 𝛩) ≤ 𝑢(𝛽, 𝜃𝑘𝑘′ ) if 𝛽 ≤ 𝛽2
𝑢(𝛽, 𝛩) > 𝑢(𝛽, 𝜃𝑘𝑘′ ) if 𝛽 > 𝛽2.

(12)

roof. We have for all 𝛽 ≥ 0,

(𝛽, 𝛩) =
1 + 𝛽2

3 + 𝛽2
,

and

𝑢(𝛽, 𝛩) − 𝑢(𝛽, 𝜃𝑘𝑘′ ) =
(1 + 𝛽2) ⋅ (2 − 3 ⋅ P(𝜃𝑘𝑘′ ) + (1 − P(𝜃𝑘𝑘′ ) ⋅ 𝛽2))

(3 + 𝛽2) ⋅ (2 + 𝛽2)
.

f P(𝜃𝑘𝑘′ |𝒙) <
2
3 , then 𝑢(𝛽, 𝛩) > 𝑢(𝛽, 𝜃𝑘𝑘′ ), ∀𝛽 ≥ 0. Else, if P(𝜃𝑘𝑘′ |𝒙) = 1,

hen 𝑢(𝛽, 𝛩) = 1+𝛽2

3+𝛽2 < 1+𝛽2

2+𝛽2 = 𝑢(𝛽, 𝜃𝑘𝑘′ ), ∀𝛽 ≥ 0. Otherwise, let us
consider the following value 𝛽∗ ≥ 0 such that:

∗2 =
3 P(𝜃𝑘𝑘′ |𝒙) − 2
1 − P(𝜃𝑘𝑘′ |𝒙)

, (13)

the 𝛽2 = 𝛽∗ verify the inequalities of Proposition 3.2. □

xample 3.1. Let us consider the case where 𝛩 = {𝜃1, 𝜃2, 𝜃3}. The
posterior probabilities of four samples are given in Table 1 and in Fig. 1.
These distributions express several situations of sharing the probability
masses between the three classes. For the first sample 𝑥1 the mass
s uniformly distributed between the classes; for 𝑥2 the total mass is
iven to the class 𝜃1; for 𝑥3 the mass is uniformly distributed between
1 and 𝜃2; and for 𝑥4 the mass distribution is as follows 𝑝(𝜃3|𝒙4) <

(𝜃1|𝒙4) < 𝑝(𝜃2|𝒙4). As one can see in Fig. 1, for the samples 𝑥1, 𝑥2 and
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3, 𝛩, 𝜃1, and 𝜃1,2 are respectively the predictions as they maximize
he expected utility regardless the value of 𝛽. While in the case of
𝑥4, the prediction depends on the value of the parameter 𝛽. Indeed,

f 𝛽 < 𝛽1 =
√

𝑝(𝜃1|𝒙4)−𝑝(𝜃2|𝒙4)
𝑝(𝜃2|𝒙4)

= 0.5, i.e., the value of 𝛽 where the curves
f 𝑢(., 𝜃1) and 𝑢(., 𝜃1,2) intersect, then 𝜃1 dominates all the other options.

hen 𝛽2 > 𝛽 > 𝛽1 (𝛽2 =
√

3 P(𝜃1,2|𝒙)−2
1−P(𝜃1,2|𝒙)

= 2.65), then 𝜃1,2 dominates all
he other options. When 𝛽 ≥ 𝛽2, it is the turn of 𝛩 to dominate the other
ptions.

.2. The case of eclair classifier

In this subsection, we consider that the posterior mass function of
sample 𝒙 is known. We denote this mass function by 𝑚(.|𝒙) ∶ 2𝛩 →

0, 1]. In this case, the expected utility function used as the criterion to
hoose the subset of classes to associate to 𝒙 is the following:

𝑚(𝛽, 𝐴) = E(𝐹𝛽 (𝐴, .)|𝒙) =
∑

𝐵⊆𝛩
𝐹𝛽 (𝐴,𝐵) ⋅ 𝑚(𝐵|𝒙), (14)

n this section, we treat only the case of two classes. Consequently,
he multi-class case can be treated using one-against-one prediction
echniques and then infer the final prediction by merging all the
ne-against-one predictions.

roposition 3.3. Let us consider the case where 𝛩 = {𝜃1, 𝜃2}. If 𝑚(𝜃1|𝒙) >
(𝜃2|𝒙), then it exists 𝛽3 ≥ 0 such that:

𝑢𝑚(𝛽, 𝜃12) ≤ 𝑢(𝛽, 𝜃1) if 𝛽 ≤ 𝛽3
𝑢𝑚(𝛽, 𝜃12) > 𝑢(𝛽, 𝜃1) if 𝛽 > 𝛽3

(15)

lsewhere, 𝑢𝑚(𝛽, 𝜃12) ≥ 𝑢(𝛽, 𝜃1), ∀𝛽 ≥ 0.

roof. In one hand, we have,
𝑑𝑢𝑚(𝛽, 𝜃1) = −

2 𝛽
𝑚(𝜃12|𝒙)
4

𝑑𝛽 (1 + 2 𝛽2)2 n
consequently 𝑢𝑚(., 𝜃1) decreases ∀𝛽 ≥ 0 with 𝑢𝑚(0, 𝜃1) = 𝑚(𝜃1|𝒙) +
𝑚(𝜃12|𝒙) and lim𝛽→+∞ 𝑢𝑚(𝛽, 𝜃1) = 𝑚(𝜃1|𝒙) +

𝑚(𝜃12|𝒙)
2 . In the other hand,

we have,

𝑑𝑢𝑚(𝛽, 𝜃12)
𝑑𝛽

=
2 𝛽

(2 + 𝛽2)2
[1 − 𝑚(𝜃12|𝒙)]

consequently 𝑢𝑚(., 𝜃12) increases ∀𝛽 ≥ 0 with 𝑢𝑚(0, 𝜃12) =
1
2 +

𝑚(𝜃12|𝒙)
2 and

lim𝛽→+∞ 𝑢𝑚(𝛽, 𝜃12) = 1. Obviously, if 𝑢𝑚(0, 𝜃1) > 𝑢𝑚(0, 𝜃12) then 𝑢𝑚(., 𝜃1)
and 𝑢𝑚(., 𝜃12) intersect, elsewhere 𝑢𝑚(𝛽, 𝜃12) ≥ 𝑢𝑚(𝛽, 𝜃1), ∀𝛽 ≥ 0. The
inequality 𝑢𝑚(0, 𝜃1) > 𝑢𝑚(0, 𝜃12) corresponds to 𝑚(𝜃1|𝒙) + 𝑚(𝜃12|𝒙) >
1
2 + 𝑚(𝜃12|𝒙)

2 which is verified when 𝑚(𝜃1|𝒙) > 𝑚(𝜃2|𝒙). Finally, 𝛽3 is
the solution of 𝑢𝑚(𝛽, 𝜃1) = 𝑢𝑚(𝛽, 𝜃12) which corresponds to the solution
of Eq. (16):

𝑚(𝜃1|𝒙) +
1 + 𝛽2

1 + 2 𝛽2
𝑚(𝜃12|𝒙) =

1 + 𝛽2

2 + 𝛽2
+ 1

2 + 𝛽2
𝑚(𝜃12|𝒙). □ (16)

emark 3.1. Note that when 𝑚 is a Bayesian mass function, i.e.,
(𝜃12|𝒙) = 0, Eq. (16) becomes: 𝑚(𝜃1|𝒙) = 1+𝛽2

2+𝛽2 , which is verified for
the following value of 𝛽3:

𝛽3 = 𝛽1 =

√

𝑚(𝜃1|𝒙) − 𝑚(𝜃2|𝒙)
𝑚(𝜃2|𝒙)

.

xample 3.2. To illustrate different situations, we consider six mass
unctions (see Table 2 and Fig. 2). Fig. 2 shows that when 𝑚(𝜃1|𝑥) =
(𝜃2|𝑥), e.g. 𝑚1 and 𝑚4, regardless the mass of 𝜃12, the option 𝜃12 obtains

he maximal gains for all 𝛽 > 0. In the other cases, the value of 𝛽3
epends on the mass of 𝜃12, i.e, ignorance. Indeed, the higher the mass
f ignorance, the smaller the value of 𝛽3. This means that if the decision-
aker desire to make precise predictions for examples like those, he
eeds to use very small value of 𝛽 lower than the solution of Eq. (16).
3
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Fig. 2. The utility function for some examples of masses.
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Table 2
Mass functions representing several uncertainty situations.

𝜃1 𝜃2 𝜃1,2 𝜃1 𝜃2 𝜃1,2
𝑚1 0.5 0.5 0 𝑚4 0.3 0.3 0.4
𝑚2 0.7 0.2 0.1 𝑚5 0.2 0 0.8
𝑚3 0.5 0.2 0.3 𝑚6 0.7 0.3 0

4. Illustration

In this section we present the illustration of the performances of
the classifiers ndc and eclair using generated data in Section 4.1 and
sing fashion mnist data in Section 4.2. In the two subsections we
ive the comparisons of the classifiers when the hyper-parameter is
uned based on grid search method or based on the proposition of this
aper regarding the set-valued classification metrics and in Section 4.2
e show how to control the number of the predictions using our
ropositions.

.1. Illustration using simulated data

In this first illustration, we consider a simulated data for three class
abels a, b, and c. For each class label 500 training samples of a bivariate
aussian distribution are considered,  (𝜇𝑎 = (0.2, 0.65), 𝛴𝑎 = 0.01𝐼2)

for the class label 𝑎,  (𝜇𝑏 = (0.5, 0.9), 𝛴𝑏 = 0.01𝐼2) for the class label
and  (𝜇𝑐 = (0.8, 0.6), 𝛴𝑐 = 0.01𝐼2) for the class label 𝑐. In addition,
testing dataset of 50 samples for each label are generated using the

ame bivariate Gaussian distributions with a Gaussian noise  (𝜇 =
0, 0), 𝛴 = 0.001𝐼2). In the end, we have a dataset of 1500 training data
nd 150 test data. First, nine point prediction classifiers are trained and
ested on these data. The point prediction classifiers considered are
he naive Bayes (nbc), the k-Nearest Neighbour (knn), the evidential
5

-Nearest Neighbour (eknn), the decision tree (cart), the random forest
rfc), linear discriminant analysis (lda), support vector machine (svm)
nd artificial neural networks (ann), the logistic classifier (logistic). The

obtained accuracies are: logistic, ann: 94.67; svm, eknn: 95.33; and
knn, nbc, rfc, lda, cart: 96. These classifiers are introduced here to
detect the samples that are considered as ‘‘strange samples’’ in this
paper, i.e., most point prediction classifiers fail to predict the true class
of those samples. In the opposite case, the samples are considered as
‘‘usual samples’’. This term will also be used, for a given classifier, to
distinguish the samples for which the predicted class obtains a large
probability, i.e., usual, from the others, i.e., strange.

4.1.1. The case of ndc classifier
The idea here for choosing the ndc hyper-parameter 𝛽 is to avoid

misclassification when the samples are strange and then predict a
subset of classes for those samples. For the samples that are ‘‘usual’’,
the posterior probability of one of the classes is close to 1, thus the
later class obtain the maximum utility regardless the value given to
𝛽 (see Section 3.1). Consequently, it is more interesting to fix the
value of 𝛽 regarding the strange samples in the validation step. Indeed,
the training data of 1500 samples is divided to 1200 samples for
training and 300 (20%) samples for validation. The proposition of this
paper is to consider a fictive probability distribution 𝑝𝑓 where the first
component is the mean of the maximal probabilities 𝑝1 obtained for
strange samples of the validation data set and the second component is
the mean of the second maximal probabilities 𝑝2, and so on. Thus, 𝑝𝑓 =
(𝑝1, 𝑝2,…). To determine the strange samples a probability threshold
is considered and it is fixed at 0.99 in this illustration. The value
of 𝛽 is considered as the threshold behind which if the samples are
considered strange, we should predict the subset of the two first classes
with maximal probabilities. In Proposition 3.1 this theoretical value
corresponds to:

𝛽𝑛𝑑𝑐 =

√

𝑝1 − 𝑝2
2

. (17)

𝑝



Array 19 (2023) 100310A. Imoussaten

2
(
c
(
s

Fig. 3. The predictions obtained with ndc: a large size is given to the point symbols representing predictions that are errors or imprecise.
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In Fig. 3, we present the predictions on the data set when 𝛽𝑛𝑑𝑐 = 2.677
is determined as in Eq. (17) on the validation data. The samples that
are considered strange for the point prediction classifiers are labelled
by their number in the test dataset. Only the sample number 140 is
misclassified in the predictions of 𝑛𝑑𝑐 and only three ‘‘usual’’ samples
have imprecise predictions. In general, among the ten strange samples,
eight samples are predicted as subsets of two classes containing the true
class and one as the whole set.

4.1.2. The case of eclair classifier
For the case of eclair classifier, we consider binary classifications

‘‘a against b’’, ‘‘a against c’’ and ‘‘b against c’’. We apply the same
reasoning as in Section 4.1.1, the training data of is divided to 80%
samples for training and 20% samples for validation. Here, also we
consider only strange samples with the same mass threshold, i.e., 0.99.
From Section 3.2, to avoid misclassification for strange samples 𝛽
should be heigh enough to predict 𝜃12 when ignorance is heigh. Let
us denote 𝑚12 the average of 𝑚(𝜃12|𝑥) obtained for each strange sample
in the validation data set. The proposed value of 𝛽 is 𝛽𝑒𝑐𝑙𝑎𝑖𝑟 that is the
solution of the quadratic Eq. (16) with 𝑚(𝜃12|𝑥) = 𝑚12 and 𝑚(𝜃1|𝑥) =
⋅ (1 − 𝑚12)∕3. In Fig. 4, we can see that, for the case ‘‘a against b’’
𝛽𝑒𝑐𝑙𝑎𝑖𝑟 = 0.519), we have one misclassification and four set-valued
lassification for the strange samples. For the case of ‘‘a against c’’
𝛽𝑒𝑐𝑙𝑎𝑖𝑟 = 0), we have one misclassification and all the other strange
amples are good predictions. While for the case ‘‘b against c’’(𝛽𝑒𝑐𝑙𝑎𝑖𝑟 =
0.581), we have one misclassification and one set-valued classification
for the strange samples.

4.2. Illustration using fashion mnist data

In this section we propose to select the hyper-parameter 𝛽 for the
two classifiers ndc and eclair based on Eq. (10) for the modern version
of mnist dataset [20], i.e. fashion mnist dataset [21]. These data are
more difficult to handle compared to the original ones. Fashion-MNIST,
6

u

a direct drop-in replacement for the original Y. Lecun’ MNIST dataset
for benchmarking machine learning algorithms [20], is a dataset of
Zalando’s article images [21] consisting of a training set of 60,000
examples and a test set of 10,000 examples. Each example is a 28 × 28
gray-scale image, associated with a label from 10 classes. Fig. 5 shows
several images from this dataset where each class takes three-rows. As
one can see in Figs. 6 and 7 (taken from [22]) from the visualization of
datasets that makes comparison between mnist and fashion mnist [21,
22], fashion mnist dataset seems to be more challenging while for mnist
dataset, classes are clearly separated.

Note that this illustration is presented only for the ndc classifier.
First, we apply a grid search optimization to select the hyper-parameter
𝛽 for ndc classifier. The grid search method is based on the objective
function 𝑢65 as it is better suited to quantify the compromise between
precision and cautiousness. Fig. 8 shows the performances obtained
for the selected grid within the interval [0, 3] on the validation data
sets, i.e., 20% of training data, 𝛽 = 0.857 gives the optimal mean
performance at 0.954.

The fashion mnist data set has 10 classes, so it is more difficult
to fix the probability threshold for strange samples compared to the
simulated dated in Section 4.1. Thus, to calculate the different values of
𝛽 in the same way as in Section 4.1.1, we considered several threshold
of probabilities and represent the number of predicted subsets for each
value 𝛽1 calculated as in Eq. (11) on the validation data. Let recall that
the number of data test is 10000. Moreover, the point prediction classi-
fier used regarding the data nature to learn the posterior probabilities
is the artificial neural networks (sequential model). Fig. 9 gives the
parameter details of the employed architecture. Figures from 10 to 17
give the number of times a subset of 2, 3, 4, 5, 6 and 10 are predicted
related of the values of 𝛽 given in the legend. Obviously when changing
the threshold of probabilities for strange examples, the values of 𝛽1
change. In Fig. 10, the value 𝛽1 = 0.511 corresponds to the 𝛽 beyond

hich the utility of predicting a subset of size 2 is higher than the

tility of prediction a single class; the value 𝛽1 = 1.004 corresponds
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Fig. 4. The predictions obtained with eclair : a large size is given to the point symbols representing predictions that are errors or imprecise.
Fig. 5. Fashion-MNIST samples (by Zalando, MIT License).
The classes are: 1=‘T-shirt/top’, 2=‘Trouser’, 3=‘Pullover’, 4=‘Dress’, 5=‘Coat’, 6=‘Sandal’, 7=‘Shirt’, 8=‘Sneaker’, 9=‘Bag’, 10=‘Ankle boot’.
to the 𝛽 beyond which the utility of predicting a subset of size 3 is
higher than the utility of prediction a subset of size 2; and so on.
One can see that only subsets of size 2, 3, 4 and 5 are predicted, the
7

rest of the prediction are single classes. Furthermore, we can observe
a slight increase of the predictions of 2, 3, 4 and 5 classes when the
probability threshold increase. This is due to the mean of probabilities
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Fig. 6. mnist data clustering.

Fig. 7. Fashion mnist data clustering.

Fig. 8. 𝛽 hyper-parameter grid search optimization for ndc.
8

Fig. 9. The neural networks architecture.

Fig. 10. Threshold fixed at 𝑝 = 0.55.

Table 3
𝑢65 performances for difference values of 𝛽 and 𝑝 on the test data of fashion mnist.

𝑝 = 0.55 𝑝 = 0.6 𝑝 = 0.65 𝑝 = 0.7 𝑝 = 0.75 Grid search

𝑢65 0.9241 0.9245 0.9249 0.9245 0.9244 0.9244
𝛽1 1.379 1.118 1.224 1.339 0.803 0.857

that are influenced by the values of large probabilities of ‘‘usual’’
samples.

Table 3 shows the best 𝑢65 performance measure for each probability
threshold. One can see also, in the last column, the 𝑢65 performance
measure obtained using the optimal hyper-parameters tuned with grid
search method. As we can except for 𝑝 = 0.55, the results obtained with
our proposition are better than grid search one.

5. Related works

The closest work, in principle, to that of the proposal of this article,
is the one of conformal prediction. Conformal prediction is designed to
perform label predictions successively, each one begin revealed before
the next is predicted [11–13], but it is also adapted to classical predic-
tion task as for regression [14]. The general principal is the following:
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Fig. 11. Threshold fixed at 𝑝 = 0.6.

Fig. 12. Threshold fixed at 𝑝 = 0.65.

Fig. 13. Threshold fixed at 𝑝 = 0.7.

(1) training data are divided to training part and calibration/validation
part; (2) a classifier/regressor 𝛿 is learnt using the training part; (3)
non-conformity (strangeness) score is computed on the calibration part
by comparing the predictions of 𝛿 to the true labels; (4) in the same
way as in 3-, each potential class 𝑦 of a sample 𝑥 in the test data is
associated a non-conformity score 𝛼𝑦 related the prediction of 𝛿; (5)
then the 𝑝-value is defined for the potential class 𝑦 of 𝑥 as the portion
of the calibration data and 𝑥 that have a non-conformity scores greater
than 𝛼𝑦; (6) for a given small positive value 𝜖 (1% or 5%), the predictive
region output (or the set-valued prediction) is the subset: {𝑦 ∶ 𝑝(𝑦) > 𝜖}.
The common point between the two classifiers is the fact of building
the predictions for the new samples on the basis of the non-conformity
or the strangeness of some (or all) the samples of the calibration data
9

Fig. 14. Threshold fixed at 𝑝 = 0.75.

Fig. 15. Threshold fixed at 𝑝 = 0.8.

Fig. 16. Threshold fixed at 𝑝 = 0.85.

compared to what was learned by the classifiers. While the difference
lies in how the non-conformity scores are calculated on the one hand,
and how the predictions are performed on the other hand. Indeed, in
our proposal, non-conformity score is calculated with respect to the
certainty of the prediction, i.e., how closely the sample resembles other
training samples regardless the true class of the calibration samples.
Concerning the set-valued predictions conformal prediction is based
on the concept of confidence level which well established in statistics,
while in our proposal predictions are based on a compromise through
a subjective utility which compares the subsets of classes. Moreover,
Table 4 shows the results obtained by the conformal predictions for
two different confidence levels (0.95% and 0.99%) for the fashion mnist
data. As one can see in the comparison with the result shown in Table 3,
our proposition obtained better 𝑢65 scores. But with a high confidence
level, conformal prediction shows a very high score for ‘‘impr. acc’’ at
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Fig. 17. Threshold fixed at 𝑝 = 0.9.

Table 4
Conformal predictions for the test data of fashion mnist.

𝑎𝑐𝑐 𝑢50 𝑢65 𝑢80 Impr. acc

𝜖 = 0.05 0.6785 0.792 0.83 0.868 0.947
𝜖 = 0.01 0.4817 0.6642 0.729 0.7945 0.9888

the expense of a very low accuracy score. The decision rule strategies
have different complexity and it is challenging as the set of alternatives
size is 2𝑛, 𝑛 = |𝛩|. The ndc classifier has the lowest optimized computa-
tional complexity, i.e., at worst 𝑂(𝑛) [5]. However, the computational
complexity is challenging for conformal prediction (see [14] for more
details) and for eclair classifiers (see [10] for more details). Indeed, for
conformal predictions, the non-conformity scores are calculated using
the nearest neighbours of the calibration or test samples in the training
data [11]. Regarding eclair classifier, as for any approach representing
imprecision in the data, the computational complexity can be very high.
Indeed, the computational complexity of the reasoning step of the eclair
classifiers becomes very high, i.e., 𝑂(22𝑛), at worst. One can find in [10]
some optimizations to overcame the problem. For example, by selecting
the relevant candidate subsets for prediction to a subset of 2𝛩.

6. Conclusion

In this paper we are interested in the set-valued classification. Espe-
cially, we focus on the study of the parameter 𝛽 involved in the utility
function used in the decision step of two set-valued classifiers. More
precisely, we studied the predicted subsets depending on this hyper-
parameter. In addition to theoretical propositions, we give practical
method to control the size of the predicted subset in machine learning
applications. While trying to remain very efficient on point prediction
task, set-valued classifiers have the challenge of making machine learn-
ing methods more trustworthy, especially in the presence of imperfect
data. The decision-maker who knows well his data could better control,
using the proposal of this article, the size of the predictions by fixing
the suited value for 𝛽. As a perspective, we intend in our next work
to provide a demonstration that relies on theoretical foundations and
statistical hypotheses to support the choices of the different thresholds
that are experimentally set in our illustrations. We will also try to
handle the merging part of the ‘‘one against all’’ solution suggested
in the eclair part. Indeed, we obtain different values of 𝛽3 for each
pair comparisons which make the merging part of the pair comparisons
difficult to handle.
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