N

N

Pull Requests Integration Process Optimization: An
Empirical Study
Agustin Olmedo, Gabriela Arévalo, Ignacio Cassol, Quentin Perez, Christelle

Urtado, Sylvain Vauttier

» To cite this version:

Agustin Olmedo, Gabriela Arévalo, Ignacio Cassol, Quentin Perez, Christelle Urtado, et al.. Pull
Requests Integration Process Optimization: An Empirical Study. Hermann Kaindl, Mike Mannion and
Leszek A. Maciaszek. Evaluation of Novel Approaches to Software Engineering, 1829, Springer, pp.155-
178, 2023, Communications in Computer and Information Science, 978-3-031-36596-6. 10.1007/978-
3-031-36597-3_8 . hal-04157804

HAL Id: hal-04157804
https://imt-mines-ales.hal.science/hal-04157804
Submitted on 11 Jul 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://imt-mines-ales.hal.science/hal-04157804
https://hal.archives-ouvertes.fr

Pull Requests Integration Process Optimization:
An Empirical Study

Agustin Olmedo![0000—0003—2844-6816] ‘G abriela Arévalo?, Ignacio
Cassol110000-0002-6309-7503] ' ()yentin Perez3[0000-0002-1534-4521] " Christelle
Urtado?10000-0002-6711-8155] 114 Sylvain Vauttier?[0000-0002—5812-1230)

! LIDTUA (CIC), Facultad de Ingenieria, Universidad Austral, Buenos Aires,
Argentina
2 DCyT (UNQ), CAETI (UAI), CONICET, Buenos Aires, Argentina
3 EuroMov Digital Health in Motion, Univ. Montpellier & IMT Mines Ales, Ales,
France

Abstract. Pull-based Development (PbD) is widely used in collabora-
tive development to integrate changes into a project codebase. In this
model, contributions are notified through Pull Request (PR) submis-
sions. Project administrators are responsible for reviewing and integrat-
ing PRs. In the integration process, conflicts occur when PRs are concur-
rently opened on a given target branch and propose different modifica-
tions for a same code part. In a previous work, we proposed an approach,
called IP Optimizer, to improve the Integration Process Efficiency (IPE)
by prioritizing PRs. In this work, we conduct an empirical study on 260
open-source projects hosted by GitHub that use PRs intensively in order
to quantify the frequency of conflicts in software projects and analyze
how much the integration process can be improved. Our results indicate
that regarding the frequency of conflicts in software projects, half of the
projects have a moderate and high number of pairwise conflicts and half
have a low number of pairwise conflicts or none. Futhermore, on average
18.82% of the time windows have conflicts. On the other hand, regard-
ing how much the integration process can be improved, IP Optimizer
improves the IPE in 94.16% of the time windows and the average im-
provement percentage is 146.15%. In addition, it improves the number
of conflict resolutions in 67.16% of the time windows and the average
improvement percentage is 134.28%.

Keywords: Collaborative Software Development - Distributed Version
Control System - Pull-based Development - Pull Request - Integration
Process Efficiency - Software Merging - Merge Conflicts.

1 Introduction

Distributed Version Control Systems (DVCSs) have transformed collaborative
software development [26]. Each developer has a personal local copy of the en-
tire project history. Changes are first applied by developers to their local copy

2 A. Olmedo et al.

and then integrated into a new shared version. If they exists, conflicts between
concurrent changes must be solved during this integration process [23].

The Pull-based Development (PbD) model is widely used in collaborative soft-
ware development [15,17]. In this model, developments are performed on new
branches, forked from the latest version currently available on the main develop-
ment branch [7]. Contributors work separately using individual copies of project
files. When the development is finished, they submit a Pull Request (PR) so that
the core team members (aka project administrators) integrate it into the main
development branch.

Project administrators must review and integrate opened PRs in the project.
While trying to integrate different PRs, project administrators might have to
deal with conflicting changes between them. Conflicting changes are changes that
modify the same part of the code (i.e., same lines of the same file) in the versions
to be integrated. When two PRs are concurrently opened on a given target
branch, proposing different modifications for identical code parts, a pairwise
conflict exists. In such case, only one PR can be integrated automatically, while
the other requires conflict resolution (CR).

The integration process is defined as the PR integration sequence according
to the chronological order. In a previous work, we proposed an approach to
improve the Integration Process Efficiency (IPE) by automatically prioritizing
Pull Request integration [24], considering integration process efficiency as the
fact that for a given integration cost (i.e., number of pairwise conflicts to be
solved) the highest possible gain is reached (i.e., the largest number of PRs are
integrated) and taking as an hypothesis that all pairwise conflict resolutions have
the same mean cost. In this paper, we refer to this work as Integration Process
Optimizer (IP Optimizer).

In this paper, we present an empirical study conducted on 260 open-source
projects hosted by GitHub? that use PRs intensively with the aim of quanti-
fying the frequency of conflicts in software projects and analyzing how much
the integration process can be improved in software projects. We perform this
analysis with a sliding time window approach. For each time window, we extract
the historical integration sequence corresponding to the integrated PRs in the
window ordered chronologically by integration date and apply IP Optimizer to
that set of PRs.

Our results indicate that, regarding the frequency of conflicts in software projects,
half of the projects have a moderate to high number of pairwise conflicts and
the other half have a low number of pairwise conflicts or none. Futhermore, on
average 18.82% of the time windows have conflicts. On the other hand, regard-
ing how much the integration process can be improved, IP Optimizer improves
the integration process compared to the historical one by 94.16% of the time
windows and the average improvement percentage is 146.15%. In addition, it
improves the number of conflict resolutions in 67.16% of the time windows and
the average improvement percentage is 134.28%.

* https://github.com/

Pull Requests Integration Process Optimization: An Empirical Study 3

We also perform the analysis for time windows of different sizes and confirm our
intuition that the larger the size of the window, the greater the percentage of
time windows with conflicts but also found that the larger the size of the time
window the better IP Optimizer improves the integration process as compared
to the historical one. This verifies what the practice of continuous integration
indicates [6]: integrating the PRs quickly is the best way to avoid conflicts and
this make the integration process more efficient.

The remainder of this article is structured as follows. Section 2 includes back-
ground knowledge and definitions. Section 3 introduces the research questions.
Section 4 explains the design of the empirical study. Section 5 reports the re-
sults. Section 6 discusses the results and answers the research questions. Section 7
contains the threats to validity. Related works are included in Section 8 before
providing our conclusions and perspectives for this work.

2 Background

In collaborative software development, contributors choose or are provided a
ticket to deal with. Tickets are stored in an issue tracking system (IST) such
as Jira® and define a task to correct, maintain or improve the software. To take
the ticket into account, a contributor creates a dedicated development branch in
his/her local repository from the latest software version (fetched from the main
development branch in the shared project repository), check-out this version
to get a working copy and make the needed changes. These changes can then
be committed on the dedicated development branch in the local repository to
enact them. When the development is finished, the versions locally commited on
the dedicated development branch are checked-in (pushed) to the remote shared
repository. A last step is to submit a PR to ask the project administrators to
merge the changes into the project’s main development branch.

A PR is a request to the project administrators to pull versions from a branch to
another one. Therefore, a PR contains a source branch from which versions are
pulled from and a target branch to which versions are pushed. Project adminis-
trators must review the opened PRs. As a result of the review process, PRs can
be closed as accepted or rejected.

The accepted PRs are integrated, that is, the changes commited on the source
branch since it was forked from the target branch, i.e., the changes in the last
version on the source branch, are merged into the target branch. If versions have
been commited on the target branch since the source branch of the PR was
forked, there may be merge conflicts since the head version of the source branch
do not derive anymore from the head version of the target branch. We consider
changes to be text file modifications like Git does [8]. So, merge conflicts between
changes are due to the fact that the same line(s) of the same file are modified in
both branches.

When there are merge conflicts between the changes of the source branch and
the changes of the target branch of a PR, the PR is considered as a conflicting

® https://www.atlassian.com/en /software/jira

4 A. Olmedo et al.

PR. Conflicting PRs require a conflict resolution to integrate their changes into
the target branch whereas for unconflicting PRs, the changes are automatically
integrated. In the PbD model, a pairwise conflict exists between two PRs when
the integration of a PR would entail a future conflict when integrating the other
one to their shared target branch (and reciprocally). Figure 1 shows a simple
pairwise conflict scenario where two PRs conflict with each other.

Conflicting Requires a
changes conflict resolution

Fig. 1. Pairwsie conflict scenario where two PRs conflict with each other.

3 Research Questions

The goal of this work is to quantify the frequency of conflicts in software devel-
opments based on DVCSs and to analyze to what extent the integration process
can be optimized in these projects. To achieve this goal, we aim to answer the
following research questions.

Research Question 1 (RQ1): To what extent do conflicts occur in
software projects managed with DVCS?

In order to answer this question, we obtain the pairwise conflicts from the his-
tory of projects that use PRs intensively and analyze how many pairwise conflicts
there are in the history of each project and how they are distributed over time
considering integration time windows of different sizes.

Research Question 2 (RQ2): How much can the integration process of
software projects be optimized?

To answer this question, we perform a sliding window analysis. Specifically, we
obtain the number of time windows in which IP Optimizer improves the IPE
and the number of conflict resolutions compared to the historical integration se-
quence and in what proportion this improvement occurs. For this, we obtain for

Pull Requests Integration Process Optimization: An Empirical Study 5

each time window the historical integration sequence and the PR group integra-
tion sequence obtained by IP Optimizer for the set of PRs in the time window.
Afterwards, we calculate the IPE and the number of conflict resolutions corre-
sponding to the historical integration sequence and the PR group integration
sequence obtained by IP Optimizer. Based on this information, we obtain the
number of time windows in which IP Optimizer improves the IPE and the num-
ber of conflict resolutions with respect to the history of each project. We also
calculate the IPE improvement percentage and the improvement percentage of
the number of conflict resolutions that IP Optimizer achieves with respect to
the historical one.

4 Empirical Study Setup

We set up an empirical study on projects hosted in GitHub that use PRs inten-
sively. We extracted the information on projects and their PRs from the GHTor-
rent ¢ dataset [14]. All the scripts and data used in this study are available in
our online appendix [1].

1- Filtering 2- Collecting 3- Integration
GHTorrent projects from pairwise process
S GHTorrent conflicts analysis
.
- v
Run)
‘. IP Optimizer .~
:roject Data ' ' Time window
ugmentation ; :
Manual project 9 information
filtering
v)
Pull Requests and (S| Pairwise Conflicts Project time
commits extraction “’:] Collection windows statistics
Projects

Fig. 2. Study design.

Figure 2 illustrates the study design consisting of three stages. The first stage
filters and extracts the project data from the GHTorrent dataset according to
four selection criteria. The second stage obtains all the pairwise conflicts of each
of the projects. The third stage performs an integration process analysis that

% https://ghtorrent.org/

6 A. Olmedo et al.

consists of extracting N-days time windows and comparing the related historical
integration sequence data with the PR group integration sequence data for the
time window obtained using IP Optimizer. Then, from the time windows data,
we calculate statistical data for each project.

We conduct the reproducibility assessment for our empirical study according
to the methodological framework of Gonzélez-Barahona and Robles [13]. For
reasons of space we include it in the online appendix [1].

4.1 Stage 1: Project Filtering & Project Data Extraction

Project selection criteria. We defined four selection criteria that are de-
scribed below. Figure 3 shows the filter funnel applied to the GHTorrent dataset.

125.486.232 \

P All GHTorrent projects
—> Official projects
77.934.458 J/ pro)
16.721.369 #b Active projects
\ 5.308.392 > > Software projects
24.360 | Projects that use PRs
. intensively T

Random selection of
Number of merged | &~ 291(100 A) !
PR >= 1000 projects with number

of merged PR < 1000

260 after applying il
manual project filtering

Fig. 3. GHTorrent filter funnel and filtering criteria.

Official projects. Consider only the official / original projects, that is, not the
forked projects. The reason of this filter is that forked projects are not project
by themselves; they are usually only used to contribute to the official projects.

Active projects. Consider only active projects. Many inactive projects are tempo-
rary or discontinued projects. Moreover, most of these are deleted after a period
of time and deleted projects are not accessible. Thus, we filter deleted projects
or projects that have not had a commit in the last year”.

" Since the GHTorrent dataset has data up to 2019-06-01, last year corresponds to
2018-06-01 and after.

Pull Requests Integration Process Optimization: An Empirical Study 7

Software projects. Consider only software projects. Software projects involve a
software development process and thus are of interest to evaluate the integration
process. So, we filter projects by their main programming language. We select the
projects that are implemented in the 25 most popular programming languages
according to the PYPL ranking [2]: Python, Java, JavaScript, C#, C/C++,
PHP, R, TypeScript, Objective-C, Swift, Matlab, Kotlin, Go, Rust, Ruby, VBA,
Ada, Scala, Visual Basic, Dart, Abap, Lua, Groovy, Perl, Julia.

Projects that use PRs intensively. Consider only the projects that use PRs inten-
sively, that is, projects that have at least 100 PRs. Therefore, we filter projects
that have less than 100 PRs.

We are interested in projects that use PRs. On GHTorrent there are 704711
projects that have at least one PR, of which there are 208949 projects (29.65%)
that have only one PR. In addition, most of the projects (96.54%) have less
than 100 PRs. The projects that have few PRs do not provide much relevant
information for our analysis since, in many cases, they do not have pairwise
conflicts or they have very few. That is why we decided to take projects that
have at least 100 PRs to avoid data disturbances.

Since getting pairwise conflicts for a project requires a lot of resources and time,
we consider to study projects that have more than or equal 1000 merged PRs
because that is a large enough number of PRs that will allow us to find all
kinds of scenarios and the number of projects is significant for evaluating the
integration process. In addition, these merged PRs correspond to PRs where the
source branch and the target branch are in the same repository because it is
not possible to obtain the historical pairwise conflicts of merged PRs from the
project repository where the source branch is in a different repository.

To avoid any kind of bias by only analyzing in detail the projects that have more
than 1000 merged PRs, we made a random selection of 100 projects that have
less than 1000 merged PRs. In this way we verify that the results remain the
same even if we take a larger set of projects.

Manual project filtering. After applying the filters described above auto-
matically, we obtain 291 projects with at least 1000 PRs. Some of these projects
do not meet the proposed criteria because the GHTorrent dataset has outdated
data or because the main programming language defined on GitHub is not cor-
rect. Specifically, we find that there are projects that have defined one of the
programming languages that interest us as the main programming language, but
the project is not a software project. On the other hand, there are projects that
are no longer on GitHub and the project history cannot be accessed. This is why
we had to manually apply the software projects and active projects filters on the
291 projects obtained with the automatic filtering. As a result of the manual
filtering, there are 260 projects that meet the defined criteria.

8 A. Olmedo et al.

Pull Requests and commit extraction. We extract the PRs and commits
of the selected projects from the GHTorrent database to be able to obtain the
pairwise conflicts in stage 2.

4.2 Stage 2: Collecting Pairwise Conflicts

Project Data Augmentation. GHTorrent is missing information needed to
obtain pairwise conflicts. In particular, we need the default branch of the project
and the target branch of the PRs. So we use the GitHub API to do so.

Pairwise conflicts collection. We obtain the pairwise conflicts for merged
PRs of each project. The conditions for the existence of a pairwise conflict are:

1. The target branch of the involved PRs must be the same.

2. PRs must be open simultaneously for a period of time.

3. The changes applied in the versions of the source branches of the involved
PRs must conflict.

Therefore, to obtain the pairwise conflicts of a given PR, we search for PRs
that have the same target branch defined (first condition) and that have been
opened or closed while the PR is open (second condition). Figure 4 shows the
PRs that are candidates to have a pairwise conflict with a given PR according to
the second condition. Then, we check if there are conflicts between the given PR
and each candidate PRs (third condition) by performing an in-memory merge 8
of the head version ? of the source branch of each PR.

Opened at Closed at

= 4

Closed at

> Time
Fig. 4. Candidate PRs (dashed lines) to have a pairwise conflict with a given PR (solid

line) according to the second condition.

& https://git-scm.com/docs/git-merge
9 Version in which the PR was created

Pull Requests Integration Process Optimization: An Empirical Study 9

4.3 Stage 3: Integration Process Analysis

Based on project data extracted from GHTorrent and the pairwise conflicts, we
conduct a similar analysis to the one we performed on the Antlr4 project in our
previous work [24]. We extract historical integration sequences from N-days time
windows. An historical integration sequence corresponds to the merged PRs in
a given time window sorted by the chronological order in which the PRs were
merged. We also calculate the PR group integration sequence related to the time
window using IP Optimizer. IP Optimizer receives as input a set of PRs and
returns a sequence of groups of PRs where the PRs of each group do not conflict
with each other and the number of groups is minimal.

Given an integration sequence, we obtain the cumulative gain Gy, and the cumu-
lative cost C, for each integration step k as shown in (1) where g; is the number
of PRs integrated in the integration step i and ¢; is the number of pairwise
conflicts solved in the integration step 1.

Ge=F 9 k=1,..,#PRs
(1)
Ch=Y"t,¢; k=1,.,#PRs

Next, we map the integration steps onto a cumulative gain / cumulative cost
plot. Each coordinate (x,y) is an integration step and the line between points
corresponds to the cost of the integration step. The trajectory obtained models
the integration sequence. The area under the trajectory represents the IPE be-
cause a larger area means that a higher gain is achieved at a lower cost. Figure 5
shows an example of an integration trajectory.

18

Cumulative Gain

0 5 10 15 20 25 30 35 40 45 50

Cumulative Cost

Fig. 5. Example of an integration sequence mapped onto a cost/gain trajectory. The
area under the trajectory represents the IPE.

10 A. Olmedo et al.

As the popularity of PRs grew over time [39,15], projects incorporated their
use at a certain point in their lives. That is why we start calculating the time
windows of a project from the merge date of the first PR and we calculate
them until the date we have data. Figure 6 shows how we extract the historical
integration sequences of a given project.

First PR
merge date 2019-06-01

1+ —1
;Y_/
N-days

Fig. 6. Historical integration sequences extraction

Time window information. For each project, we extract 7-days, 14-days, 28-
days, 60-days and 90-days time windows. From each time window we calculate
the following information.

Number of PRs (#PRs). It is the number of PRs merged between the start and
end dates of the time window.

Number of pairwise conflicts (#PC). It is the number of pairwise conflicts that
involve PRs merged in the time window. In (2) it is shown how the number of
pairwise conflicts is calculated, where n is the number of merged PRs in the time
window.

#PC =" Ezxists_ PC(PR;,PR;) i=1,..,n—1

j=i+1

(2)

1 if exists pairwise conflict between PR P and PR Q
0 otherwise

Ezists PC(P,Q) = {

Number of historical CRs (Historical CR). It is the number of conflict resolutions
that actually occurred in the history of the project for the time window. In (3) it is
shown how we calculate the number of conflict resolutions where n is the number of
integration steps and cj is the cost for the integration step k.

CR =3k fler)

3)
f(C)I{(l) e

otherwise

Pull Requests Integration Process Optimization: An Empirical Study 11

Number of optimized CRs (Optimized CR). 1t is the resulting number of conflict
resolutions in the PR group integration sequence, obtained by IP Optimizer, for the
time window. Formula (3) is also used to calculate this value.

CRs improvement percentage (CR_ IP). 1t is the percentage of improvement in the
number of conflict resolutions between the PR group integration sequence obtained by
IP Optimizer and the historical one. It is calculated using formula (4).

(4)

CR_IP = <sttomcal_CR 1> « 100

Optimized_CR

Historical IPE. 1t is the Integration Process Efficiency of the historical integration
sequence for the time window. In (5) it is shown how we calculate the IPE, where n
is the number of integration steps, Gy is the cumulative gain for the integration step
k and Cy is the cumulative cost for the integration step k. Note that this formula
calculate the area under the cost/gain trajectory by adding the area of the rectangles
where the base is the integration step cost and the height is the cumulative gain of the
step.

n—1

IPE = Z Gi* (Ciy1 — Cy) (3)

=0

Optimized IPE. 1t is the Integration Process Efficiency of the PR group integration
sequence, obtained by IP Optimizer, for the time window. This value is also calculated
using formula (5).

IPE improvement percentage (IPE_IP). It is the improvement percentage of the
IPE between the PR group integration sequence obtained by IP Optimizer and the
historical one for the time window. It is calculated using formula (6).

(6)

IPE_IP = <Optzmzzed_IPE 1) « 100

Historical IPE

Project time windows statistics. Once the information of the time windows of
the projects has been calculated, we calculate the following statistical information of
each project by time window size (7-days, 14-days, 28-days, 60-days and 90-days).

Number of time windows. It is the number of time windows between the merge date
of the first merged PR to the date we have data.

Number and percentage of time windows without conflicts. Corresponds to the
number and the percentage of time windows in which there is no pairwise conflict.

Number and percentage of time windows with conflicts. Corresponds to the num-
ber and the percentage of time windows in which there is at least one pairwise conflict.

The following statistical information is calculated considering only the time windows
that have pairwise conflicts.

12 A. Olmedo et al.

Mean number of pairwise conflicts. 1t is the mean number of pairwise conflict for a
time window.

Number and percentage of time windows that improve the historical number of
CRs. Tt is the number and percentage of time windows in which the number of conflict
resolutions obtained by IP Optimizer is better than the historical one.

Number and percentage of time windows that maintain the historical number of
CRs. Tt is the number and the percentage of time windows in which the number of
conflict resolutions obtained by IP Optimizer is equal to the historical one.

It should be noted that since IP Optimizer obtains groups of PRs that do not conflict
with each other, there will only be conflict resolutions for each group that is integrated
except the first one that is integrated without conflicts. Since the number of groups
calculated by IP Optimizer is minimal, then the number of conflict resolutions of
the integration process obtained by IP Optimizer is minimal. This is why we do not
calculate a measure where IP Optimizer worsens the number of conflict resolutions
compared to the historical integration process.

Number and percentage of time windows that improve the historical IPE. 1t is the
number and percentage of time windows in which the IPE obtained by IP Optimizer
is better than the historical IPE.

Number and percentage of time windows that worsen the historical IPE. 1t is
the number and the percentage of time windows in which the IPE obtained by IP
Optimizer is worse than the historical IPE.

Number and percentage of time windows that maintain the historical IPE. Tt
is the number and the percentage of time windows in which the IPE obtained by IP
Optimizer is equal to the historical IPE.

Mean percentage of improvement in the number of CRs. It is the mean percentage
of improvement in the number of conflict resolutions between the integration sequence
obtained by IP Optimizer and the historical one.

Mean percentage of IPE improvement. It is the mean percentage of IPE improve-
ment between the integration sequence obtained by IP Optimizer and the historical
one.

5 Results

In this section, we report the main results achieved in our work. We first analyze the
distribution of pairwise conflicts in the projects and the proportion of time windows
with and without pairwise conflicts for each project. Next, we make a comparative
analysis of the historical integration process and the one obtained by IP Optimizer
on the time windows with pairwise conflicts. The results are shown in detail for time
windows of 14 days because it is both the usual sprint length in agile methodologies
such as Scrum [9] and the size of the merge window used in the Linux kernel project
[11]. In addition, in section 5.3 we make a comparative analysis of the results obtained
using time windows of different sizes.

Pull Requests Integration Process Optimization: An Empirical Study 13

Category Projects (%) # Projects
no conflict 20.00% 52
low amount of conflicts 30.00% 78
moderate amount of conflicts 28.85% 75
high amount of conflicts 21.15% 55

Table 1. Percentage and number of projects by pairwise conflict quantity

5.1 Projects time windows: Pairwise conflicts

Figure 7 shows a histogram of pairwise conflicts. We can see 52 projects without pair-
wise conflicts (20%), 78 projects (30%) with less than 50 pairwise conflicts in their
entire history, 75 projects (28.85%) with a moderate number of conflicts (between 51
and 530 pairwise conflicts) and finally 55 projects (21.15%) with a large number of
pairwise conflicts. Therefore, we classify projects as no conflict, low amount of
conflicts, moderate amount of conflicts and high amount of conflicts. Table 1
shows the percentage and number of projects for each category.

Number of projects

O A [38 &Q\- ,&c_,\- "!9\' ’LC’\' B T L %Q‘& 6%01‘; K 6”‘19

Number of pairwise conflicts

Fig. 7. Pairwise conflicts histogram

For the rest of the analysis we do not take into account the projects that do not
have any pairwise conflicts since they do not provide relevant information for the
analysis. Considering the remaining projects, on average 18.82% of the time windows
have pairwise conflicts while the remaining 81.18% are time windows without conflicts.
Figure 8 shows the percentage of time windows with and without pairwise conflicts
per project ordered by the highest percentage of time windows with pairwise conflicts.
So on the right we have the projects (3.85%) that have no time window with pairwise

14 A. Olmedo et al.

Category Projects (%) | # Projects
no conflicting time windows 3.85% 8
low amount of conflicting time windows 48.56% 101
moderate amount of conflicting time windows 38.46% 80
high amount of conflicting time windows 9.13% 19

Table 2. Percentage and number of projects by amount of conflicting time windows
category

conflicts. Then, on the left, we can see the projects that have the highest proportion
of time windows with pairwise conflicts: 9.13% of the projects have more than 50% of
the time windows with conflicts; 17.31% have between 25% and 50% of time windows
with conflict. It is followed by 21.15% of projects that have between 10% and 25%
conflicting time windows. And finally, 48.56% of projects that have less than 10% of
time windows with conflicts. Therefore, we classify projects as no conflicting time
windows, low amount of conflicting time windows, moderate amount of con-
flicting time windows and high amount of conflicting time windows. Table 2
shows the percentage and number of projects for each category.

100

75

50

% Time windows

25

Projects ordered by percentage of time windows with conflicts

Fig. 8. Percentage of time windows with and without pairwise conflicts by project

5.2 Time windows with pairwise conflicts

In this section, we analyze in detail the time windows with pairwise conflicts since for
the time windows without pairwise conflicts the historical integration sequence and the
PR group integration sequence obtained by IP Optimizer both give the same IPE and
the same number of CRs and do not provide any relevant information.

Pull Requests Integration Process Optimization: An Empirical Study 15

IPE. Considering the time windows of all the remaining projects, IP Optimizer im-
proves the historical IPE for 94.16% of the time windows; for the 3.83% of the time
windows IP Optimizer achives the same IPE compared to the historical one and only
for 2.01% IP Optimizer worsens the historical IPE.

Figure 9 shows the percentage of time windows where IP Optimizer improves, wors-
ens or mantains the same IPE compared to the historical one per project ordered by
the percentage of time windows that improve the historical IPE. Table 3 shows the
percentage and number of projects in which the IPE is improved. We can see that IP
Optimizer improves all the time windows for 52% of the projects. 25% of the projects
improves more than 90% of the time windows and 18% improves between 75% and
90% of the time windows. 4.50% improves between 50% and 75% of the time windows.
Only one project (0.50%) mantains the same IPE for all the time windows, but this
project only has one time window with pairwise conflicts.

% TWs worsen IPE Ml % TWsequal IPE W % TWs improve IPE

% Time Winodws

Projects ordered by percentage of time windows that improves the historical IPE

Fig. 9. Percentage of time windows that improves, maintains and worse the historical
IPE by project

Regarding the magnitude of the improvement of the historical IPE achieved by IP
Optimizer, the average of the mean improvement of the historical IPE of all the projects
is 146.15%. That is, on average, the IPE obtained by IP Optimizer is 146.15% higher
than the historical IPE.

Figure 10 shows the mean IPE improvement achieved by IP Optimizer compared to
the historical one per project ordered by the highest mean number of pairwise conflicts.
Table 4 shows the percentage and number of projects by range of mean improvement
of the IPE. For 37.50% of the projects, the mean IPE improvement is less than 1. This
means that the mean improvement percentage is between 0% and 100%. In 42% of the
projects, IP Optimizer improves on average the historical IPE between 1 and 2 times,
that is, the mean IPE improvement percentage is between 100% and 200%. Then 14%

16 A. Olmedo et al.

Percentage range of time windows in Percentage | Number of
which the IPE is improved of projects projects
= 100% 52.00% 104
>= 90%, < 100% 25.00% 50
>= 75%, < 90% 18.00% 36
>=50%, < 75% 4.50% 9
= 0% 0.50% 1

Table 3. Percentage and number of projects by percentage range of time windows in
which the IPE is improved

of the projects have a mean IPE improvement between 2 and 3 times and 6.50% of the
projects have a mean IPE improvement higher than 3 times. There is a project where
IP Optimizer improves on average the historical IPE more than 7 times and another
project that IP Optimizer improves on average the historical IPE more than 10 times.
It should be noted that when the number of pairwise conflicts is larger, the IPE tends
to improve less than when the number of pairwise conflicts is smaller. The green line
shows this trend.

=
o

Mean IPE improvement

o B N W A~ OO N 0 O

Projects ordered by highest mean number of pairwise conflict

Fig. 10. Mean IPE improvement by project

Number of CRs. Considering the time windows of all the projects, IP Optimizer
improves the historical number of CRs for 67.16% of the time windows and achieved
the same number of CR for 32.84% of the time windows.

Figure 11 shows the percentage of time windows where IP Optimizer improves or
mantains the number of CRs with respect to the historical one per project, ordered
by the percentage of time windows that improves the CRs number. Table 5 shows
the percentage and number of projects in which the number of CRs is improved. The

Pull Requests Integration Process Optimization: An Empirical Study 17

Mean IPE improvement range Projects (%) | # Projects
<1 37.50% 75
>=1,<2 42.00% 84
>=2,<3 14.00% 28
>3 6.50% 13

Table 4. Percentage and number of projects by range of mean improvement of the
IPE

projects in which IP Optimizer improves the number of CRs for all time windows
(5.50%) and those in which the same number of CRs is maintained compared to the
historical one for all time windows (16%) have few time windows with pairwise conflicts.
There is 18.50% of projects in which the number of CRs is improved for more than
75% of the time windows and 31% that improve between 50% and 75% of the time
windows. Finally, for 29% of the projects, the number of CRs is improved in less than
50% of the time windows.

100

75

50

% Time windows

25

Projects ordered by percentage of time windows that improve the conflict resolution number

Fig.11. Percentage of time windows that improves and maintains the number of CRs
by project

Regarding the magnitude of the improvement of the historical number of CRs achieved
by IP Optimizer, the average of the mean improvement of the historical number of CRs
of all the projects is 134.28%. That is, on average, the number of CRs obtained by IP
Optimizer is 134.28% lower than the historical one.

Figure 12 shows the mean number of CRs improvement achieved by IP Optimizer
compared to the historical one per project ordered by the highest mean number of
pairwise conflicts. Table 6 shows the percentage and number of projects by range of
mean improvement of the number of CRs. For 48.50% of the projects, the mean number
of CRs improvement is less than 1. This means that the mean improvement percentage

18 A. Olmedo et al.

Percentage range of time windows in which the| Percentage | Number of
number of CRs is improved of projects projects
= 100% 5.50% 11
>= 75%, < 100% 18.50% 37
>=50%, < 75% 31.00% 62
>0 %, < 50% 29.00% 58
= 0% 16.00% 32

Table 5. Percentage and number of projects by percentage range of time windows in
which the number of CRs is improved

is between 0% and 100%. In 29.50% of the projects, IP Optimizer improves on average
the historical number of CRs between 1 and 2 times, that is, the mean number of CRs
improvement percentage is between 100% and 200%. Then, 12.50% of the projects have
a mean number of CRs improvement between 2 and 3 times and 9.50% of the projects
have a mean number of CR improvement higher than 3 times. There is a project where
IP Optimizer improves on average the historical number of CRs more than 10 times.
It should be noted that when the number of pairwise conflicts is larger, the number of
CRs tends to improve more than when the number of pairwise conflicts is smaller. The
green line shows this trend.

11

10

Mean number of Conflict Resolution improvement

Projects ordered by highest mean number of pairwise conflicts

Fig.12. Mean number of CR improvement by project

5.3 Comparison of time windows of different sizes

In this section, we make a comparison of the main results obtained using different
time window sizes. Table 7 shows the results for 7-days, 14-days, 28-days, 60-days and

Pull Requests Integration Process Optimization: An Empirical Study 19

Mean number of CR improvement range | Projects (%) | # Projects
<1 48.50% 97
>=1,<2 29.50% 59
>=2,<3 12.50% 25
>3 9.50% 19

Table 6. Percentage and number of projects by range of mean improvement of the
number of CRs

Time window size 7-days |14-days|28-days|60-days|90-days
Time windows (avg) 226.61 | 113.88 | 57.22 27.06 18.04
% Time windows with conflicts | 12.57% | 18.82% | 26.79% | 35.35% | 41.63%
7 Time windows without | o 450/ | g1 1907 | 73.21% | 64.65% | 58.37%
conflicts
% Time windows that improve
historical IPE
% Time windows that do not
change historical IPE
% Time windows that worsen
historical IPE
% Time windows that improve
historical number of CR
% Time windows that do not
change historical number of CR
Mean IPE improvement
128.69% |146.15% | 178.25% | 186.40% | 211.69%
percentage
Mean number of CR
improvement percentage
Table 7. Comparison of the main results obtained for different time window sizes

89.83% | 94.16% | 96.88% | 98.28% | 98.58%

7.39% | 3.83% | 2.12% | 0.95% | 0.90%

2.78% | 2.01 % | 1.00% | 0.77% | 0.52%

59.55% | 67.16% | 72.76% | 76.65% | 77.30%

40.45% | 32.84% | 27.24% | 23.35% | 22.70%

95.21% |134.28% |198.10% | 306.84% | 385.08%

90-days time windows. These results correspond to the average of all the projects that
have at least one time window with conflicts.

We can see that, not surprisingly, as the window size is greater, the percentage of time
windows with pairwise conflicts is also greater. The same happens with the percentage
of time windows that improve the historical IPE and the number of historical CRs.
Moreover, the magnitude of that improvement is also greater when the time window
size is greater.

6 Discussion

In this section, we disccuss the results and we answer the research questions.

6.1 RQ1. To what extent do conflicts occur in software projects
managed with DVCS?

To answer this question, we focus on Figure 7 and 8. From Figure 7, we can extract
the number of pairwise conflicts that the projects have throughout their history and

20 A. Olmedo et al.

in Figure 8 we can see how they are distributed over time by analyzing how many
integration time windows are affected by conflicts.

We see that half of the projects have a moderate and high number of pairwise conflicts
and the other half have a low number of pairwise conflicts or no conflict. We also see
that, on average, 18.82% of project time windows have conflicts of which 47.59% of
projects have a moderate to high number of conflicting integration time windows and
the rest of the projects (52.41%) have a low number of integration time windows with
pairwise conflicts or no conflict.

Therefore, in 50% of the projects, conflicts are very frequent while in the other half
they occur infrequently. This can depend on many factors such as the way the projects
are managed, the size of the projects or the number of contributors that deserve a
study exclusively dedicated to this topic.

On the other hand, Table 7 shows how the percentage of time windows with pairwise
conflicts increases when the size of the window is larger. This means that if the integra-
tion process is prolonged, that is, if it takes a long time to integrate the PRs, there is
possibly more conflicts. This information verifies what continuous integration practice
proposes, which suggests integrating changes as soon as possible, even several times a
day. In this way, it is avoided that the code where the programmer is working is very
outdated and therefore conflicts are avoided.

6.2 RQ2. How much can the integration process of software
projects be optimized?

We answer this question by considering two factors of the integration process: the
efficiency and the number of CRs. So we compare the integration process efficiency
and the number of CRs obtained by IP Optimizer with the historical ones.

In previous section, we mentioned that IP Optimizer improves the integration process
efficiency (IPE) by an average of 146.15% and reduces the number of CRs by an average
of 134.28%.

In addition, IP Optimizer improves the efficiency of the historical integration process
for most (94.16%) of the time windows. This indicates the level of usefulness of the
proposal since it not only improves efficiency but also achieves it most of the time.
Something similar, but to a lesser extent, occurs with the number of CRs. For 67.16%
of the time windows, IP Optimizer reduces the number of CRs while it remains the
same for the remaining time windows.

For 64.50% of the projects, IP Optimizer improves the integration process efficiency
by more than double, and for 51.50% of the projects, it reduces the number of CRs by
half or more.

Something interesting to note about Figure 10 and Figure 12 is that, while the IPE
improvement is greater when there are fewer pairwise conflicts, the reduction in the
number of CRs is greater when there are more pairwsie conflicts. The IPE trend ac-
cording to the number of pairwise conflicts has little slope, that is to say that the
difference between there being many pairwise conflicts or few does not modify the IPE
improvement to a great extent. On the other hand, in the case of the number of CRs,
the trend is very steep, so there is a great difference in the reduction of the number of
CRs according to the number of pairwise conflicts.

Table 7 shows how IP Optimizer further improves the historical IPE and the number of
historical CRs when the size of the windows increases. This makes a lot of sense since
there are more conflicts and the project administrator does not have the information

Pull Requests Integration Process Optimization: An Empirical Study 21

on the existence of conflicts between the PRs to be integrated, so the decisions made
about the integration order of the PRs do not take into account the efficiency of the
integration process.

7 Threats To Validity

We carefully analyzed the threats to validity based on the work of Feldt and Magazinius
[10] and did our best to mitigate them.

7.1 Threats to construct validity

To obtain the pairwise conflicts from the project history, we use the version from which
the branch to be integrated was forked and the version in which the PR was created. In
many cases, it happened that when looking for one of these versions they were not in
the repository. This may be because the versions to be integrated have been squashed
when integrating'®. In these cases, if there was a conflict, we could not find it. This
issue was mitigated by the number of projects we used to validate the proposal since
the number of conflicts we found is large enough to have relevant data.

7.2 Threats to internal validity

It would be argued that the analysis was not performed on all software projects that
have more than 100 PRs. We prioritize projects with the most number of merged PRs
(those with more than 1000) because they include all relevant cases. To mitigate this
risk, we performed the analysis on 100 randomly selected projects that have less than
1000 merged PRs and verified that the results do not provide relevant information.

7.3 Threats to conclusion validity

We are validating IP Optimizer in static scenarios. We take the merged PRs in a time
window of the project’s history and apply IP Optimizer on that set of PRs, comparing
the efficiency of the historical integration sequences and that obtained by IP Optimizer.
However, further studies are needed in a dynamic environment. That is, to implement
a tool integrated with the code repositories and evaluate it in real time considering all
the open PRs and offering the information to the project administrator so that she/he
can carry out the integration process efficiently.

7.4 Threats to external validity

Due to the fact of having to take the merged PRs where the source branch and the
target branch are in the same repository, we were not able to evaluate projects that use
the Forking workflow'®, which are very popular in open source software development.
Likewise, we consider that we were able to evaluate the proposal in a sufficiently large
number of projects which allows us to generalize the results to apply them to projects
that use this workflow as well.

10 https://git-scm.com/docs/ git-merge#Documentation/git-merge. txt—squash
" https://www.atlassian.com/git /tutorials /comparing-workflows/forking-workflow

22 A. Olmedo et al.

8 Related Work

In a previous work [24], we proposed an approach to optimize the efficiency of the
integration process through the prioritization of PRs and we validated it by analyzing
7 representative historical integration sequences of the Antlr4 project'?. In the present
work, we conduct an empirical study that seeks to understand how frequent conflicts
are in software projects managed with DVCS and analyze how much the integration
process carried out in the history of software projects can be improved establishing as
baseline the results obtained by IP Optimizer.

In recent years, several empirical studies have been conducted to understand how con-
tributors and project administrators work with the PbD model from a general perspec-
tive, or from the perspective of contributors, project aministrators or contributions [29,
30,15,17,16]. The results obtained in our work have a direct implication for project
administrators, although they also provide information about the development process
in general and thus increase the body of knowledge on software engineering practices.

Some works study latency factors [15, 38, 33, 35, 20| proposing different quantitative /
qualitative analyzes to identify latency factors in the PR review process. In our work, we
find that the latency in the integration of the PRs can cause more conflicts. There are
works that seek to reduce latency by recommending the most suitable project adminis-
trator for reviewing a given PR [28, 32, 34,19, 18]. Other works seek to lower the latency
of the most important PRs, prioritizing them by response and acceptance likelihood
[31,4,5]. Zhao et al. [40] also propose a learning-to-rank approach to prioritize PRs
that can be quickly reviewed by project administrators in order to review more PRs in
a period of time or be able to review any PR when they have a few minutes. Recently,
Saini and Britto [27] use a Bayesian Network to prioritize PRs based on acceptance
probability, change type (i.e., bug fixing, new feature, refactoring) and presence or
absence of merge conflicts. Their main goal is to decrease the overall lead time of code
review process along with helping to reduce the workload of project administrators.

Other works study the PR acceptance factors [29,25,17,36,21] identifying and ana-
lyzing the social and technical factors behind PR acceptance or rejection. Gousios et
al. [15] indicate that 27% of rejected PRs are conflicting PRs. Our work indicates that
there are integration processes that reduce the number of conflict resolutions, so the
acceptance rate can also be improved according the integration process.

Finally, there are works that study conflicts in software projects. Some works [22, 37]
analyze the frequency and the difficulty of resolution. Accioly et al. [3] conduct an
empirical study that analyze the effectiveness of two types of code changes as conflict
predictors in open-source Java projects. Ghiotto et al. [12] study the merge conflicts
found in the histories of 2731 open-source Java projects. They characterize merge
conflicts in terms of number of chunks, size, and programming language constructs
involved, classify the manual resolution strategies that developers use to address these
merge conflicts, and analyze the relationships between various characteristics of merge
conflicts and chosen resolution strategies. Our work also performs an analysis of merge
conflicts but between PRs. Furthermore, our analysis is independent of the code struc-
tures, so we are not limited to evaluating a single programming language.

' https://www.antlr.org/

Pull Requests Integration Process Optimization: An Empirical Study 23

9 Conclusions

In this paper, we conduct an empirical study on 260 open-source projects hosted in
GitHub that use PRs intensively to understand how frequent pairwise conflicts are in
the Pull-based Development model and evaluate our integration process optimization
proposal.

We find that half of the projects have a moderate and high number of pairwise conflicts
and the other half have a low or none number of pairwise conflicts. Futhermore, on
average, there is a 18.82% of the time windows that have conflicts.

Regarding how much the integration process can be improved, IP Optimizer improves
the historical integration process for 94.16% of the time windows and does so on average
by 146.15%. In addition, it reduces the number of CRs for 67.16% of the time windows
and does so on average by 134.28%. Therefore, we can conclude that the integration
process can be greatly improved.

It should be noted that the analysis performed is in a static environment and the
real environment is dynamic. In addition, the application of the proposal in a real
environment could have side effects on work habits of the involved people in the project.
Therefore, we plan to develop a tool integrated into platforms that support PbD (e.g.,
GitHub, Bitbucket), in order to evaluate IP Optimizer in a real environment and study
the side effects on work habits when using our approach.

We also plan to further study the occurrence of conflicts in projects that use PbD,
in order to discover the factors for some projects to be more conflictive than others.
Finally, it is also a perspective for our work to study accurate models for the evaluation
of the cost and gain of PR merges.

References

1. Online appendix homepage, https://anonymous.4open.science/r/pull-request-
conflicts-7884/docs/index.md

2. Pypl popularity of programming language homepage,
https://pypl.github.io/PYPL.html

3. Accioly, P., Borba, P., Silva, L., Cavalcanti, G.: Analyzing conflict predictors in
open-source java projects. In: Proceedings of the 15th International Conference on
Mining Software Repositories. pp. 576-586 (2018)

4. Azeem, M.I., Panichella, S.; Di Sorbo, A., Serebrenik, A., Wang, Q.: Action-based
recommendation in pull-request development. In: Proceedings of the International
Conference on Software and System Processes. pp. 115-124 (2020)

5. Azeem, M.IL., Peng, Q., Wang, Q.: Pull request prioritization algorithm based on
acceptance and response probability. In: 2020 IEEE 20th International Conference
on Software Quality, Reliability and Security (QRS). pp. 231-242. IEEE (2020)

6. Beck, K.: Extreme programming explained: embrace change. Addison-Wesley
(2000)

7. Bird, C., Zimmermann, T.: Assessing the value of branches with what-if analy-
sis. In: Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. pp. 1-11 (2012)

8. Chacon, S., Straub, B.: Pro git. Springer Nature (2014)

9. Diebold, P., Ostberg, J.P., Wagner, S., Zendler, U.: What do practitioners vary
in using scrum? In: International Conference on Agile Software Development. pp.
40-51. Springer (2015)

24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Olmedo et al.

Feldt, R., Magazinius, A.: Validity threats in empirical software engineering
research-an initial survey. In: Seke. pp. 374-379 (2010)

German, D.M., Adams, B., Hassan, A.E.: Continuously mining distributed ver-
sion control systems: an empirical study of how linux uses git. Empirical Software
Engineering 21(1), 260-299 (2016)

Ghiotto, G., Murta, L., Barros, M., Van Der Hoek, A.: On the nature of merge
conflicts: A study of 2,731 open source java projects hosted by github. IEEE Trans-
actions on Software Engineering 46(8), 892-915 (2018)

Gonzalez-Barahona, J.M., Robles, G.: On the reproducibility of empirical software
engineering studies based on data retrieved from development repositories. Empir-
ical Software Engineering 17(1-2), 75-89 (2012)

Gousios, G.: The ghtorrent dataset and tool suite. In: Proceedings
of the 10th Working Conference on Mining Software Repositories.
pp- 233-236. MSR ’13, IEEE Press, Piscataway, NJ, USA (2013),
http://dl.acm.org/citation.cfm?id=2487085.2487132

Gousios, G., Pinzger, M., Deursen, A.v.: An exploratory study of the pull-based
software development model. In: Proceedings of the 36th International Conference
on Software Engineering. pp. 345-355 (2014)

Gousios, G., Storey, M.A., Bacchelli, A.: Work practices and challenges in pull-
based development: the contributor’s perspective. In: 2016 IEEE/ACM 38th Inter-
national Conference on Software Engineering (ICSE). pp. 285-296. IEEE (2016)
Gousios, G., Zaidman, A., Storey, M.A., Van Deursen, A.: Work practices and
challenges in pull-based development: The integrator’s perspective. In: 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering. vol. 1,
pp. 358-368. IEEE (2015)

Jiang, J., Lo, D., Zheng, J., Xia, X., Yang, Y., Zhang, L.: Who should make decision
on this pull request? analyzing time-decaying relationships and file similarities for
integrator prediction. Journal of Systems and Software 154, 196-210 (2019)
Jiang, J., Yang, Y., He, J., Blanc, X., Zhang, L.: Who should comment on this
pull request? analyzing attributes for more accurate commenter recommendation
in pull-based development. Information and Software Technology 84, 48-62 (2017)
Kononenko, O., Rose, T.; Baysal, O., Godfrey, M., Theisen, D., De Water, B.:
Studying pull request merges: a case study of shopify’s active merchant. In: Pro-
ceedings of the 40th International Conference on Software Engineering: Software
Engineering in Practice. pp. 124-133 (2018)

Legay, D., Decan, A., Mens, T.: On the impact of pull request decisions on future
contributions. arXiv preprint arXiv:1812.06269 (2018)

Ma, P., Xu, D., Zhang, X., Xuan, J.: Changes are similar: Measuring similarity of
pull requests that change the same code in github. In: Software Engineering and
Methodology for Emerging Domains, pp. 115-128. Springer (2017)

Mens, T.: A state-of-the-art survey on software merging. IEEE transactions on
software engineering 28(5), 449-462 (2002)

Olmedo, A., Arévalo, G., Cassol, I., Urtado, C., Vauttier, S.: Improving integration
process efficiency through pull request prioritization. In: ENASE 2022-17th Inter-
national Conference on Evaluation of Novel Approaches to Software Engineering.
pp. 62-72. SCITEPRESS-Science and Technology Publications (2022)

Rahman, M.M., Roy, C.K.: An insight into the pull requests of github. In: Proceed-
ings of the 11th Working Conference on Mining Software Repositories. pp. 364-367
(2014)

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Pull Requests Integration Process Optimization: An Empirical Study 25

Rodriguez-Bustos, C., Aponte, J.: How distributed version control systems impact
open source software projects. In: 2012 9th IEEE Working Conference on Mining
Software Repositories (MSR). pp. 36-39. IEEE (2012)

Saini, N., Britto, R.: Using machine intelligence to prioritise code review requests.
In: 2021 IEEE/ACM 43rd International Conference on Software Engineering: Soft-
ware Engineering in Practice (ICSE-SEIP). pp. 11-20. IEEE (2021)
Thongtanunam, P., Kula, R.G., Cruz, A.E.C., Yoshida, N., Iida, H.: Improving
code review effectiveness through reviewer recommendations. In: Proceedings of
the 7th International Workshop on Cooperative and Human Aspects of Software
Engineering. pp. 119-122 (2014)

Tsay, J., Dabbish, L., Herbsleb, J.: Influence of social and technical factors for eval-
uating contribution in github. In: Proceedings of the 36th international conference
on Software engineering. pp. 356-366 (2014)

Tsay, J., Dabbish, L., Herbsleb, J.: Let’s talk about it: evaluating contributions
through discussion in github. In: Proceedings of the 22nd ACM SIGSOFT inter-
national symposium on foundations of software engineering. pp. 144-154 (2014)
Van Der Veen, E., Gousios, G., Zaidman, A.: Automatically prioritizing pull re-
quests. In: 2015 IEEE/ACM 12th Working Conference on Mining Software Repos-
itories. pp. 357-361. IEEE (2015)

Ying, H., Chen, L., Liang, T., Wu, J.: Earec: leveraging expertise and authority
for pull-request reviewer recommendation in github. In: 2016 IEEE/ACM 3rd In-
ternational Workshop on CrowdSourcing in Software Engineering (CSI-SE). pp.
29-35. IEEE (2016)

Yu, Y., Wang, H., Filkov, V., Devanbu, P., Vasilescu, B.: Wait for it: Determinants
of pull request evaluation latency on github. In: 2015 IEEE/ACM 12th working
conference on mining software repositories. pp. 367-371. IEEE (2015)

Yu, Y., Wang, H., Yin, G., Wang, T.: Reviewer recommendation for pull-requests
in github: What can we learn from code review and bug assignment? Information
and Software Technology 74, 204-218 (2016)

Yu, Y., Yin, G., Wang, T., Yang, C., Wang, H.: Determinants of pull-based de-
velopment in the context of continuous integration. Science China Information
Sciences 59(8), 1-14 (2016)

Zampetti, F., Bavota, G., Canfora, G., Di Penta, M.: A study on the interplay
between pull request review and continuous integration builds. In: 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER). pp. 38-48. IEEE (2019)

Zhang, X., Chen, Y., Gu, Y., Zou, W., Xie, X., Jia, X., Xuan, J.: How do multiple
pull requests change the same code: A study of competing pull requests in github.
In: 2018 IEEE International Conference on Software Maintenance and Evolution
(ICSME). pp. 228-239. IEEE (2018)

Zhang, Y., Yin, G., Yu, Y., Wang, H.: A exploratory study of@-mention in github’s
pull-requests. In: 2014 21st Asia-Pacific Software Engineering Conference. vol. 1,
pp- 343-350. IEEE (2014)

Zhang, Y., Yin, G., Yu, Y., Wang, H.: Investigating social media in github’s pull-
requests: a case study on ruby on rails. In: Proceedings of the 1st International
Workshop on Crowd-based Software Development Methods and Technologies. pp.
37-41 (2014)

Zhao, G., da Costa, D.A., Zou, Y.: Improving the pull requests review process
using learning-to-rank algorithms. Empirical Software Engineering 24(4), 2140-
2170 (2019)

