
HAL Id: hal-04143178
https://imt-mines-ales.hal.science/hal-04143178v1

Submitted on 27 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boosting GUI Prototyping with Diffusion Models
Jialiang Wei, Anne-Lise Courbis, Thomas Lambolais, Binbin Xu, Pierre Louis

Bernard, Gérard Dray

To cite this version:
Jialiang Wei, Anne-Lise Courbis, Thomas Lambolais, Binbin Xu, Pierre Louis Bernard, et al.. Boost-
ing GUI Prototyping with Diffusion Models. RE@Next! - 31st IEEE International Requirements
Engineering 2023 conference (Re’23), Sep 2023, Hannover, Germany. �10.1109/RE57278.2023.00035�.
�hal-04143178�

https://imt-mines-ales.hal.science/hal-04143178v1
https://hal.archives-ouvertes.fr


Boosting GUI Prototyping with Diffusion Models
Jialiang Wei∗, Anne-Lise Courbis∗, Thomas Lambolais∗,
Binbin Xu∗, Pierre Louis Bernard∗∗ and Gérard Dray∗

∗: EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
∗∗: EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France

∗: firstname.lastname@mines-ales.fr ∗∗: firstname.lastname@umontpellier.fr

Abstract—GUI (graphical user interface) prototyping is a
widely-used technique in requirements engineering for gather-
ing and refining requirements, reducing development risks and
increasing stakeholder engagement. However, GUI prototyping
can be a time-consuming and costly process. In recent years,
deep learning models such as Stable Diffusion have emerged as a
powerful text-to-image tool capable of generating detailed images
based on text prompts. In this paper, we propose UI-Diffuser, an
approach that leverages Stable Diffusion to generate mobile UIs
through simple textual descriptions and UI components. Pre-
liminary results show that UI-Diffuser provides an efficient and
cost-effective way to generate mobile GUI designs while reducing
the need for extensive prototyping efforts. This approach has the
potential to significantly improve the speed and efficiency of GUI
prototyping in requirements engineering.

I. INTRODUCTION

The exponential growth of mobile technology and the
increasing dependence on mobile devices for various daily
activities have significantly influenced the design and develop-
ment of mobile applications. The mobile GUI (graphical user
interface) plays a critical role in mobile applications since it
is the primary means of interaction between users and their
devices. A well-designed mobile UI can significantly enhance
the user experience, making it simpler for users to navigate
and achieve their desired tasks, resulting in increased user
engagement and retention [1, 2]. Additionally, an engaging
and user-friendly GUI can set an application apart from its
competitors and increase its chances of success in the highly
competitive mobile app market [3]. As the competition among
mobile apps intensifies, it’s critical for developers to create
innovative and user-friendly GUI to meet users’ evolving
expectations.

GUI prototyping is a crucial technique that allows devel-
opers to create an initial version of a GUI design, assess
its effectiveness, and refine it based on feedback from stake-
holders. This technique is highly valuable in the context of
requirements engineering, as it can help refine requirements,
reduce development risks, and promote stakeholders’ engage-
ment [4]. Despite the benefits of GUI prototying, it can be a
time-consuming and costly process [5].

To enhance the GUI prototyping process, various ap-
proaches have been proposed, including the use of established
tools that provide basic components and templates for creating
GUIs. The industry has widely embraced commercial tools
like Figma [6], InVision Studio [7], Adobe XD [8], Moqups

[9], Sketch [10], as well as open source tools like Pencil
Project [11] to streamline the prototyping process. In recent
literature, several GUI search and retrieval approaches have
been proposed [12–19]. These approaches aim to provide users
with the ability to search for inspiration from existing designs
and reuse them to streamline the GUI prototyping process,
which can reduce the time and effort spent on creating new
designs.

Recently, deep learning-based text-to-image models have
emerged as a promising approach to generate highly detailed
and structured images based on text descriptions [20–23].
Among these models, Stable Diffusion [21] has shown im-
pressive results in generating high-quality images from textual
input. In this study, we propose a novel approach called UI-
Diffuser that leverages the Stable Diffusion model to gener-
ate mobile UI designs through simple text prompts and UI
components, as illustrated in Figure 1. The preliminary results
of UI-Diffuser show its potential to enhance the effectiveness
of mobile UI design and to decrease time consumption for
prototyping, leading to cost reductions for this phase.

UI

UI-Diffuser

A search engine in an app

Fig. 1. UI image generation with UI-Diffuser

The rest of the paper is organized as follows: Section II
presents the background of this research. Section III details
the framework of UI-Diffuser. Section IV shows the samples
of generated UI images and discusses their limitations. Section
V concludes the paper and outlines the future directions.

II. BACKGROUND

A. GUI Prototyping
To streamline and enhance the process of GUI prototyping,

numerous strategies have been previously introduced.
Prototyping tools that provides basic components and tem-

plates are widely used in practice, such as Figma [6], InVision



Studio [7], Adobe XD [8], Moqups [9], Sketch [10], and Pencil
Project [11]. However, utilizing these tools effectively requires
users to possess design experience.

Some researchers introduced GUI retrieval approaches that
take the sketch (GUIfetch [12], SWiRE [13], Wireframe-Based
UI Design Search of Chen et al. [14]) or the screenshot
(Screen2vec [15], VINS [16]) as input and find designs that are
similar to the input. Although useful, these methods require
an initial rudimentary GUI prototype. Moreover, while these
strategies primarily aim to support the GUI design’s prototyp-
ing by presenting alternative designs, they are not ideal for
interactive GUI prototyping during requirements elicitation.

GUI search engines, such as Guigle [17], Gallery D.C. [18],
and RaWi [19], allow users to search for existing GUI designs
and components using textual queries. Wei et al. [24] have put
forth an proposition of combining app features with app UIs.
While these approaches can serve as a source of inspiration
and guidance, blindly copying existing designs without proper
attribution or permission can result in legal issues such as
copyright infringement.

GUIGAN, as introduced by Zhao et al. [25], leverages
previously collected GUI components from existing mobile
app to compose new designs. These new composite designs not
only comply with accepted standards of GUI structure, but also
cater to consumer aesthetics. However, it is important to note
that this approach offers limited control over the generation
process.

In summary, these existing approaches fall short in pro-
viding support to analysts during the requirements elicitation
phase through GUI prototyping.

B. Image synthesis

Image synthesis is a process of creating new images from
diverse forms of image descriptions, including textual descrip-
tions, sketch images, noise, and others.

In 2014, Goodfellow et al. [26] introduced Generative
Adversarial Network (GAN) as a means of generating realistic
image. GANs consist of two deep neural networks: a generator
and a discriminator. The generator creates new images to
deceive the discriminator, which aims to distinguish real from
fake images. Both networks are trained simultaneously and
this process continues until the generator produces images that
are indistinguishable from real images. However, the lack of
diversity and the challenges associated with training GANs
limit their scalability and hinder their applicability to novel
domains [27].

Diffusion models (DMs) [28] are neural networks trained
to denoise images blurred with Gaussian noise by learning
to reverse the diffusion process. Recent studies [28] have
demonstrated that DMs are capable of generating high-quality
images, and possess desirable attributes such as distribution
coverage, a stable training objective, and scalability. Several
companies recently released their image synthesis tools based
on DMs like DALL·E 2 [20], Midjourney [29], Stable Diffu-
sion [21], and DreamBooth [30]. Despite their usefulness in
generating images, existing tools for image synthesis generally

lack efficacy in generating UIs. Since 2023, some researchers
utilize DMs for the generation of UI layout [31–34]. However,
to the best of our knowledge, no DM-based models have been
developed specifically for generating UIs.

III. UI-DIFFUSER

UI-Diffuser is a novel approach that facilites requirements
engineers in rapidly prototyping mobile app UIs through a
two-step process (cf. Figure 2). In the first step, UI-Diffuser
takes input UI components, such as text, buttons, and images,
and generates a layout that considers the arrangement of
these components (see Section III-A). In the second step, the
generated layout is used to complete a mobile UI image based
on the textual description provided by the user (see Section
III-B). In the subsequent subsections, we will describe each
step of UI-Diffuser in detail.

LayoutDM

Stable 
Diffusion

A search engine 
in an app

Fig. 2. Overview of UI-Diffuser

A. Layout Generation

The objective of layout generation is to create realistic
graphic scenes that consist of diverse components with vary-
ing attributes, such as category, size, position, and between-
component relationships [31]. This task is critical for simplify-
ing graphic design tasks, especially for structured scenes like
documents and user interfaces.

To achieve this goal, we employ LayoutDM [34] in this
study. LayoutDM builds on the discrete-state space diffusion
models [35, 36] and has been trained on the Rico dataset [37]
– a dataset of user interface designs for mobile applications
containing 25 categories of UI components, such as text
button, toolbar, and icon. We will detail the Rico dataset in
Section III-B2. LayoutDM allows the generation of UI layout
with given conditions, such as a list of components. Figure
2 illustrates the generation of layout with a given component
list.



B. UI Generation

Given the generated layout and a textual description, UI-
Diffuser is able to generate UI images fitting the layout and
the description.

1) Architecture: To generate UI images from layout and
description, we utilized Stable Diffusion [21] augmented with
ControlNet [38]. The proposed model workflow is illustrated
in Figure 3. It contains four components: Text Encoder, Image
Information Creator, Image Decoder, and ControlNet.

Text Encoder
(CLIP)

Image 
Information 

Creator
(UNet)

Image 
Decoder

(VAE)

ControlNet

Textual
Description UI

Layout

Fig. 3. Overview of UI generation model

The Text Encoder transforms raw text inputs into numerical
vectors called token embeddings. CLIP [39] is a pre-trained
model that has been trained on a large-scale corpus of text
and images using a contrastive learning approach. CLIP is
employed as text encoder due to its remarkable performance
in encoding both text and images into a shared latent space.

The Image Information Creator is responsible for generating
image embeddings based on the given token embeddings,
which are then used by the Image Decoder to produce the final
image. The diffusion process occurs inside this component, in
a step-by-step fashion. Starting from a noisy image, each step
of the diffusion process adds more relevant information that
aligns with the input text. UNet [40] is used in this component.
During the pre-training, a large number of images are blurred
with Gaussian noise and the UNet is trained by denoising the
image.

To support additional input conditions, such as the layout
image in our case, ControlNet [38] is integrated with UNet.
ControlNet is an end-to-end neural network architecture that
enables the control of large image diffusion models, like Stable
Diffusion, to learn task-specific input conditions. ControlNet
clones the weights of the Image Information Creator into
a “trainable copy”. The original Image Information Creator
preserves the network capability learned from billions of
images during the pre-training, while the “trainable copy” is
trained on the Rico datasets to learn the conditional control.
The “trainable copy” and the Image Information Creator are
connected with a unique type of convolution layer called “zero
convolution”. We will train the ControlNet during the fine-
tuning.

Finally, the Image Decoder generates images using the
image embeddings. Variational Autoencoder (VAE) [41] is a
type of generative model consisting of an encoder network,
which maps input images into a lower-dimensional latent
space, and a decoder network, which maps the latent space

back to the original images space. The VAE encoder-decoder
pair have been pre-trained on a large number of images to
accurately reconstruct input images. The decoder network of
VAE is used as the Image Decoder.

2) Dataset for fine-tuning: The fine-tuning of ControlNet
[38] requires a dataset including input images, conditioning
images and text prompts. In the context of UI generation,
this dataset should consist of UI screenshots, wireframes
that depict the page layout, and textual descriptions of the
screenshots. To this end, we leveraged the Rico dataset [37],
which provides the first two elements: the screenshots and
wireframes. And we generated the textual descriptions of these
screenshots using XUI [42].

The Rico dataset [37] is one of the largest mobile app design
datasets to date, encompassing design data from more than
9.3k Android applications across 27 categories. This dataset
provides access to the visual, textual, structural, and interactive
design properties of more than 66k distinct UI screens. In this
work, we utilized the screenshots, wireframes, and hierarchies
of the Rico dataset.

Fig. 4. Example of a screenshot and its wireframe from Rico dataset

To prepare the Rico dataset for fine-tuning the Stable
Diffusion model, a preprocessing pipeline was applied to
its screenshots and wireframes. The pipeline includes the
following steps:

• remove the screenshots and wireframes on landscape. For
this preliminary work, we focus on portrait UI design.

• resize the screenshots and wireframes to 288x512. The
original size of the images is 1080x1920 or 540x960.
However, the Stable Diffusion model we use accept only
images with height/width less than 512 as its input during
the training process.

The Rico dataset does not provide the textual description
of the screenshots. For this reason, we used XUI [42] model
to generate the descriptions. XUI is a tool to generate au-
tomatically informative description of a given UI screenshot.
It takes the screenshots, wireframes, and hierarchies of the
UIs as input, and generate their natural language descriptions.
For instance, the generated description of Figure 4 is “That
screen maybe is a list screen. You may see a list of elements,
typically arranged in rows. You may notice a text ubicated at
the center area.”. During the training, we randomly replace
50% text prompts with a default prompt (“A nice screenshot



TABLE I
SAMPLES OF GENERATED UI IMAGES

Components
and

Descriptions
Generated Layouts Generated UIs

A login page
with input fields.

A tutorial app
having text
components.

A gallery page of
an app.

A maps app.

A mediaplayer
app.

A profile app
with a big image.



of a mobile app”). This facilitates ControlNet’s capability to
better recognize semantic contents from the wireframes. This
is primarily because, in cases where the prompt lacks sufficient
information for the Stable Diffusion model, the model may
rely more heavily on the semantics of the input wireframes
to compensate for the lack of meaningful guidance from the
prompt.

The processed screenshots and wireframes from Rico
dataset and the generated textual descriptions of XUI are then
used for the subsequent fine-tuning.

3) Fine-tuning procedures: During the fine-tuning proce-
dures, the parameters of Text Encoder, the Image Information
Creator, and the Image Decoder are all locked. The update is
only applied to the parameters of ControlNet.

Our model are implemented with the Diffusers library1. We
employed the “runwayml/stable-diffusion-v1-5” checkpoint2

and the “lllyasviel/sd-controlnet-seg” checkpoint3 from Hug-
gingFace. We trained the model for 1 epoch on the processed
Rico dataset with a batch size of 4, equivalent to about 16,000
steps. We use AdamW for optimization with a learning rate
of 1e−5. The training was performed using Nvidia Tesla T4
with 16GB VRAM.

IV. DEMO AND DISCUSSION

Table I illustrates some samples of UI images generated by
UI-diffuser. Given UI components and a brief description, UI-
Diffuser generates UIs with various designs that roughly meet
the requirements. UI-Diffuser can produce a UI image within
a matter of seconds. Compared to traditional prototyping, UI-
Diffuser can generate GUI prototypes at a much quicker rate.

At first glance, the UI images generated by UI-diffuser
appear to be of high quality. However, upon closer exami-
nation, some details are missing. It’s important to note that
the generated UIs may not always conform to the components
category, as illustrated by the five UIs in the fifth row of Table
I, where the ”advertisement” component at the bottom of the
layout is disregarded. Additionally, certain generated UIs may
not meet aesthetic standards.

Consequently, the current UIs produced by UI-Diffuser may
be more suitable for inspiring UI designers than serving as
fully functional UI prototypes.

V. CONCLUSION AND ROADMAP

This paper presents UI-Diffuser, a GUI prototyping tool
that utilizes layout components and simple text prompts to
produce mobile UI designs. Through a demo, we demonstrate
that UI-Diffuser can generate UI images that align the given
components and textual descriptions, highlighting the potential
advantages of UI-Diffuser in GUI prototyping.

To advance this research, we intend to perform a compre-
hensive evaluation of the UI-Diffuser by investigating three
critical factors: the aesthetics of the generated UIs, their
compatibility with UI components, and their compatibility

1https://github.com/huggingface/diffusers
2https://huggingface.co/runwayml/stable-diffusion-v1-5
3https://huggingface.co/lllyasviel/sd-controlnet-seg

with textual descriptions. The aesthetics evaluation will be
carried out manually. We shall rate the aesthetics based on a
predetermined set of criteria. As for the compatibility with UI
components, we will manually assess the number of correctly
generated UI components. Finally, we will use CLIPScore
[43] to calculate the compatibility of the descriptions and their
generated UIs.

Moreover, we propose enhancing UI-Diffuser from three
aspects:

Developping a dataset with high-quality screenshot de-
scriptions: the quality of the image descriptions within a
training dataset has a significant impact on the performance of
Stable Diffusion. In this work, we used XUI [42] to generate
screenshots’ descriptions. Although XUI is a valuable tool
for generating descriptions of screenshots, it only categorizes
screenshots into roughly 20 categories, which is insufficient
in depicting the numerous functions of modern mobile apps.
Moreover, the descriptions generated by XUI lack sufficient
detail in describing the UI components. To address these limi-
tations, we plan to investigate alternative UI image captioning
tools that can generate more comprehensive UI descriptions.

Cropping components from generated UIs: while generated
UI images can inspire requirements engineers in GUI proto-
typing, they are usually not editable or directly reusable. To
overcome this limitation, we take inspiration from Kolthoff et
al. [19] and propose cropping each component of the generated
UI image based on its absolute position in the generated
layout image. The GUI components may overlap with each
other, leading to a blank space of the lower component when
cropping the top component. In such cases, the blank space
can be filled with the top-ranked RGB color from the color
histogram of the lower component. The cropped components
can be then reused in further prototyping.

Generating code from generated UIs: the ability to gen-
erate code from UI designs can significantly accelerate the
development of application prototypes. As the layout images
generated by UI-Diffuser contain the components’ category
as well as their size and position, it is possible to generate
corresponding code [44]. We intend to develop a GUI code
generator that compromises two steps: (i) extract location and
size of each components from generated layout image, and
the style from generated UI image, (ii) generate GUI code for
each kind of components according to its attributes.

We believe that exploring the potential of Diffusion Models
for generating UIs is a promising research direction, as it
can significantly improve the speed and efficiency of GUI
prototyping in requirements engineering.

REFERENCES

[1] Q. Chen, C. Chen, S. Hassan, Z. Xing, X. Xia, and A. E. Hassan,
“How Should I Improve the UI of My App?: A Study of User Reviews
of Popular Apps in the Google Play,” ACM Transactions on Software
Engineering and Methodology, vol. 30, no. 3, pp. 1–37, 2021.

[2] S. Hassan, C. P. Bezemer, and A. E. Hassan, “Studying Bad Updates
of Top Free-to-Download Apps in the Google Play Store,” IEEE
Transactions on Software Engineering, vol. 46, no. 7, pp. 773–793, 2020.



[3] K. Moran, B. Li, C. Bernal-Cárdenas, D. Jelf, and D. Poshyvanyk,
“Automated reporting of GUI design violations for mobile apps,” in 40th
International Conference on Software Engineering, 2018, pp. 165–175.

[4] T. R. Silva, J.-L. Hak, and M. A. Winckler, “A Review of Milestones
in the History of GUI Prototyping Tools,” INTERACT 2015 Adjunct
Proceedings: 15th IFIP TC.13 International Conference on Human-
Computer Interaction, pp. 267–279, 2015.

[5] S. ul Arif, Q. Khan, and S. Gahyyur, “Requirements Engineering
Processes, Tools/Technologies, & Methodologies,” International Journal
of Reviews in Computing, vol. 2, pp. 41–56, 2010.

[6] “Figma,” https://www.figma.com, accessed: 2023-04-02.
[7] “Invision studio,” https://support.invisionapp.com, accessed: 2023-04-

02.
[8] “Adobe xd,” https://helpx.adobe.com/support/xd.html, accessed: 2023-

04-02.
[9] “Moqups,” https://moqups.com, accessed: 2023-04-02.

[10] “Sketch,” https://www.sketch.com, accessed: 2023-04-02.
[11] “Pencil project,” https://github.com/evolus/pencil, accessed: 2023-04-02.
[12] F. Behrang, S. P. Reiss, and A. Orso, “GUIfetch: Supporting app design

and development through GUI search,” Proceedings - International
Conference on Software Engineering, pp. 236–246, 2018.

[13] F. Huang, J. F. Canny, and J. Nichols, “SWiRE: Sketch-based User In-
terface Retrieval,” Conference on Human Factors in Computing Systems
- Proceedings, pp. 1–10, 2019.

[14] J. Chen, C. Chen, Z. Xing, X. Xia, L. Zhu, J. Grundy, and J. Wang,
“Wireframe-based UI Design Search through Image Autoencoder,” ACM
Transactions on Software Engineering and Methodology, vol. 29, no. 3,
2020.

[15] T. J. J. Li, L. Popowski, T. M. Mitchell, and B. A. Myers, “Screen2vec:
Semantic embedding of GUI screens and GUI components,” Conference
on Human Factors in Computing Systems - Proceedings, 2021.

[16] S. Bunian, K. Li, C. Jemmali, C. Harteveld, Y. Fu, and M. S. Seif
El-Nasr, “VINS: Visual Search for Mobile User Interface Design,”
in Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, ser. CHI ’21. New York, NY, USA: Association
for Computing Machinery, 2021.

[17] C. Bernal-Cardenas, K. Moran, M. Tufano, Z. Liu, L. Nan, Z. Shi, and
D. Poshyvanyk, “Guigle: A GUI search engine for android apps,” Pro-
ceedings - 2019 IEEE/ACM 41st International Conference on Software
Engineering: Companion, ICSE-Companion 2019, pp. 71–74, 2019.

[18] S. Feng, C. Chen, and Z. Xing, “Gallery D.C.: Auto-created GUI
Component Gallery for Design Search and Knowledge Discovery,” in
Proceedings - International Conference on Software Engineering, vol. 1,
no. 1. Association for Computing Machinery, 2022, pp. 80–84.

[19] K. Kolthoff, C. Bartelt, and S. P. Ponzetto, “Data-driven prototyping via
natural-language-based GUI retrieval,” Automated Software Engineering,
vol. 30, no. 1, p. 13, 2023.

[20] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical
Text-Conditional Image Generation with CLIP Latents,” 2022. [Online].
Available: http://arxiv.org/abs/2204.06125

[21] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
Resolution Image Synthesis with Latent Diffusion Models,” Proceedings
of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2022-June, pp. 10 674–10 685, 2022.

[22] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton,
K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans, J. Ho,
D. J. Fleet, and M. Norouzi, “Photorealistic Text-to-Image Diffusion
Models with Deep Language Understanding,” in Advances in Neural
Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35. Curran Associates,
Inc., 2022, pp. 36 479–36 494.

[23] A. Q. Nichol and P. Dhariwal, “Improved Denoising Diffusion Proba-
bilistic Models,” in Proceedings of the 38th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
M. Meila and T. Zhang, Eds., vol. 139. PMLR, 2021, pp. 8162–8171.

[24] J. Wei, A.-L. Courbis, T. Lambolais, P. L. Bernard, and G. Dray,
“Towards Boosting Requirements Engineering of a Health Monitoring
App by Analysing Similar Apps: A Vision Paper,” in 2022 IEEE 30th
International Requirements Engineering Conference Workshops (REW),
2022, pp. 75–80.

[25] T. Zhao, C. Chen, Y. Liu, and X. Zhu, “GUIGAN: Learning to generate
GUI designs using generative adversarial networks,” Proceedings -
International Conference on Software Engineering, pp. 748–760, 2021.

[26] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[27] P. Dhariwal and A. Nichol, “Diffusion Models Beat GANs on Image
Synthesis,” in Advances in Neural Information Processing Systems,
M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. W.
Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp. 8780–8794.

[28] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic mod-
els,” Advances in Neural Information Processing Systems, vol. 33, no.
NeurIPS 2020, pp. 6840–6851, 2020.

[29] “Midjourney,” https://www.midjourney.com, accessed: 2023-04-02.
[30] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and

K. Aberman, “DreamBooth: Fine Tuning Text-to-Image Diffusion
Models for Subject-Driven Generation,” 2022. [Online]. Available:
http://arxiv.org/abs/2208.12242

[31] M. Hui, Z. Zhang, X. Zhang, W. Xie, Y. Wang, and Y. Lu, “Unifying
Layout Generation with a Decoupled Diffusion Model,” 2023. [Online].
Available: http://arxiv.org/abs/2303.05049

[32] C.-Y. Cheng, F. Huang, G. Li, and Y. Li, “PLay: Parametrically
Conditioned Layout Generation using Latent Diffusion,” 2023. [Online].
Available: http://arxiv.org/abs/2301.11529

[33] E. Levi, E. Brosh, M. Mykhailych, and M. Perez, “DLT: Conditioned
layout generation with Joint Discrete-Continuous Diffusion Layout
Transformer,” 2023. [Online]. Available: http://arxiv.org/abs/2303.03755

[34] N. Inoue, K. Kikuchi, E. Simo-Serra, M. Otani, and K. Yamaguchi,
“LayoutDM: Discrete Diffusion Model for Controllable Layout
Generation,” 2023. [Online]. Available: http://arxiv.org/abs/2303.08137

[35] S. Gu, D. Chen, J. Bao, F. Wen, B. Zhang, D. Chen, L. Yuan,
and B. Guo, “Vector Quantized Diffusion Model for Text-to-Image
Synthesis,” Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 10 686–10 696, 2022.

[36] Jacob Austin, Daniel D. Johnson, Jonathan H, Daniel Tarlow, and Rianne
van den Berg, “Structured Denoising Diffusion Models in Discrete
State-Spaces,” Advances in Neural Information Processing Systems, no.
NeurIPS, 2021.

[37] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li,
J. Nichols, and R. Kumar, “Rico: A mobile app dataset for building
data-driven design applications,” UIST 2017 - Proceedings of the 30th
Annual ACM Symposium on User Interface Software and Technology,
pp. 845–854, 2017.

[38] L. Zhang and M. Agrawala, “Adding Conditional Control to
Text-to-Image Diffusion Models,” 2023. [Online]. Available: http:
//arxiv.org/abs/2302.05543

[39] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,
“Learning Transferable Visual Models From Natural Language Supervi-
sion,” in Proceedings of the 38th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, M. Meila
and T. Zhang, Eds., vol. 139. PMLR, 2021, pp. 8748–8763.

[40] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Net-
works for Biomedical Image Segmentation,” in Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI 2015, N. Navab,
J. Hornegger, W. M. Wells, and A. F. Frangi, Eds. Cham: Springer
International Publishing, 2015, pp. 234–241.

[41] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2nd
International Conference on Learning Representations, ICLR 2014 -
Conference Track Proceedings, no. Ml, pp. 1–14, 2014.

[42] L. A. Leiva, A. Hota, and A. Oulasvirta, “Describing UI Screenshots
in Natural Language,” ACM Transactions on Intelligent Systems and
Technology, vol. 14, no. 1, pp. 1–28, 2023.

[43] J. Hessel, A. Holtzman, M. Forbes, R. Le Bras, and Y. Choi, “CLIP-
Score: A Reference-free Evaluation Metric for Image Captioning,”
EMNLP 2021 - 2021 Conference on Empirical Methods in Natural
Language Processing, Proceedings, no. 2014, pp. 7514–7528, 2021.

[44] D. De Souza Baule, C. G. Von Wangenheim, A. Von Wangenheim,
and J. C. Hauck, “Recent progress in automated code generation from
gui images using machine learning techniques,” Journal of Universal
Computer Science, vol. 26, no. 9, pp. 1095–1127, 2020.

https://www.figma.com
https://support.invisionapp.com
https://helpx.adobe.com/support/xd.html
https://moqups.com
https://www.sketch.com
https://github.com/evolus/pencil
http://arxiv.org/abs/2204.06125
https://www.midjourney.com
http://arxiv.org/abs/2208.12242
http://arxiv.org/abs/2303.05049
http://arxiv.org/abs/2301.11529
http://arxiv.org/abs/2303.03755
http://arxiv.org/abs/2303.08137
http://arxiv.org/abs/2302.05543
http://arxiv.org/abs/2302.05543

	Introduction
	Background
	GUI Prototyping
	Image synthesis

	UI-Diffuser
	Layout Generation
	UI Generation
	Architecture
	Dataset for fine-tuning
	Fine-tuning procedures


	Demo and Discussion
	Conclusion and Roadmap
	References

