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2DSBG: A 2D SEMI BI-GAUSSIAN FILTER ADAPTED FOR ADJACENT
AND MULTI-SCALE LINE FEATURE DETECTION

Baptiste Magnier, Ghulam Sakhi Shokouh, Louis Berthier, Marcel Pie and Adrien Ruggiero

EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France

ABSTRACT

Existing filtering techniques fail to precisely detect adjacent
line features in multi-scale applications. In this paper, a new
filter composed of a bi-Gaussian and a semi-Gaussian kernel
is proposed, capable of highlighting complex linear structures
such as ridges and valleys of different widths, with noise ro-
bustness. Experiments have been performed on a set of both
synthetic and real images containing adjacent line features.
The obtained results show the performance of the new tech-
nique in comparison to the main existing filtering methods.

Index Terms— bi-Gaussian, semi-Gaussian, line features.

1. INTRODUCTION AND MOTIVATIONS

The detection of features in images is a computationally in-
tensive process and remains a primary step in many low-level
computer vision tasks. Linear structures (ridges, edges, etc.)
are widely used features in various computer vision applica-
tions. To detect these linear structures, numerous filtering
approaches have been implemented; originally, they were ex-
tracted by computing an impulse response of a simple line de-
tector corresponding to a specific line/valley orientation (see
[1], Eq.15.7-1). Incidentally, a review of line feature detection
is presented in [2]. The optimal approach is chosen based on
how to retain the maximum amount of desired information,
whilst removing the noise to obtain an optimal segmentation
result depending on the application. To that end, linear struc-
ture detection techniques require the analysis of the first or
second order derivative of the images, which is obtained by
filtering the image using a kernel convolution/correlation [3,
4, 5]. Gaussian kernels are the most popular and widely used
filtering techniques due to their useful isotropy, steerability
and decomposability properties related to the implementation
of integration and differentiation in images [6, 7, 8]. The ze-
roth order Gaussian kernels G(o,z)=—7— - e~=/27% (with
c€R”, x€R) are used for regularization [9]. The first and
second order Gaussian kernels are commonly used for lin-
ear structure detection. However, these kernels are prone to
noise, relative to both the derivative order and the o parame-
ter. Gaussian multi-scale is the primary method in scale-space
feature analysis, as it let us with an option to keep good local-
ization [10]. These techniques are mostly based on the eigen-
decomposition of the Hessian matrix, as in [11, 10, 12, 2].

Meanwhile, steerable filters of second order (SF5) are an
elegant technique to capture ridge information; they are gen-
erated by the linear combination of basis filters [6] such as the
second derivative of the Gaussian G’ in one dimension (1D):
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G'(o,x) = "7 .e3s? withoeR}, z€R. (1)
To improve the precision of the detection, elongated oriented
filters were designed in terms of a better compromise between
noise rejection and localization accuracy [13, 7, 14, 15], see
isotropic versus anisotropic kernels in Fig. 1(a)-(b). Then, to
extract line feature, the Second-Order Anisotropic Gaussian
Kernel (SOAGK) can be applied in two dimensions (2D):
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The choice of o,>0 enables to build a narrow filter, then the

filter is oriented to extract ridges, as illustrated in Fig. 1(b).
The second order Gaussian kernels are even kernels and
the filter coefficients distant from the center of the filter have
opposite signs. These even kernels get enlarged when the
o parameter is growing. Though this enlargement yields
robustness against noise, the problem is that it unfavorably
merges the adjacent lines (detailed in [15], Sec. 2 and Fig. 3).
Therefore, an empirical trade-off when adjusting the param-
eter configuration (kernel support versus o) is unavoidable
in the conventional manner. In particular, adjacent and close
linear structures of different widths cannot be accurately ex-
tracted with this type of filter. The proposed solution consists
in seizing the properties of both a precisely orientable filter
(Semi-Gaussian [16, 17]) and an adjustable filter under cer-
tain conditions of adjacent linear structures, see the different
filters in Figs. 1(a)-(b). As a result, a new filter is generated,
named 2D-Semi-Bi-Gaussian filter (2DSBG). The 2DSBG
rigorously minimizes the interference of adjacent line fea-
tures [18] while retaining adequate line feature information

thanks to the fine-tuning of ¢ and the scale ratio parameter.
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Fig. 1. 2D discrete filters of second order steered at 0° and
20°. For the derivative part G” or BG” in (d), o0 = 3.91
whereas for (b)-(d), the anisotropic parameter 65 = 5 - 7.
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Fig. 2. Ridge highlighting in 1D for different scales 0. G”
and BG” convolutions are used in (a) and (b) respectively.
The blue bars represent the original signal containing sepa-
rated ridges, while the convolved signals are plotted in orange
and the maximum of each signal is displayed by black circles.
As detailed in [2], o values are tied to the optimum parame-
ters for G” as a function of the feature size from 1 to 9 pixels.

2. PROPOSED APPROACH: 2DSBG

The objective is to detect several line features in an image
at different unknown positions, scales and orientations. By
means of a truncation function, the detection procedure is for-
mulated as a rotational matched filtering from 0 to 360°.

2.1. Prior Work: Bi-Gaussian Filter

The second order Gaussian G” presented in Eq. (1) is useful
to determine the location of linear structures [11, 10, 15, 17].
However, this simple Gaussian kernel relies on only one pa-
rameter to determine its shape: o. This denotes one of the
main well-known drawbacks of the Gaussian filter. Due to the
length of its support, this is therefore not sufficient to differen-
tiate between adjacent or closely related structures, especially
when the ¢ value is large [18]. Consequently, linear structures
cannot be suitably separately detected without any delocaliza-
tion or fusion due to the regularization filter [19], as illustrated
in Fig. 2(a). To address this drawback, the main idea is to
transform the initial Gaussian filter into a bi-Gaussian, which
combines the merits of the Gaussian and the Rectangular ker-
nels. The benefits of this kernel are that it has a scale ratio able
to clearly separate adjacent structures and, at the same time,
the Gaussian part gives it robustness against noise. To tune
the BG" filter, a o}, parameter allows us to play on the width
and the sharpness of the curves on both sides of the central
part [18]. To simplify, a parameter p is defined as the scale
ratio: p = %¢. Hence, a p value ranging in ]0, 1] improves the
detection of peaks, especially for adjacent contours, by mak-
ing the bi-Gaussian kernel narrower. The influence of p value
is studied in the next section. The second order bi-Gaussian
filter BG" is expressed as follows:

0> -G (op,x —op +0) ifx<—0o
BG"(0,0p,2)=4 G"(0,2) iflzg] <o (3)
p? -G op,x+0p—0) ifz>o0.

When p = 1, the BG” filter is equivalent to the 2nd deriva-
tive of the Gaussian G”. The Fig. 3 shows the 1D normalized
BG@G" filters for different values of o and p. This filter’s shape
behaves in an opposite manner to Ziou’s filter, which is very
sharp in the middle, but contains the large length of its support
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Fig. 3. Discrete second derivatives of bi-Gaussians in 1D
computed using different parameters p = 22 and see Eq. (3).

[20][2]. For the multi-scale step, the highest filtered value is
retained along the different scales (see [2][17]). The Fig. 2(b)
illustrates the application of the BG" filter at different scales
on a 1D signal containing different ridges of variable widths.
The convolved signals are plotted, and the maximum of the
signal is displayed where each ridge is tied to a specific scale
(width of value 1, 3, 5, 7 and 9). Contrary to the Gaussian
kernel in Fig. 2(a), the BG" best fits the signal along the dif-
ferent scales, revealing the great interest of this filter shape.

2.2. Proposed Method: 2D Semi Bi-Gaussian Filter

The proposed technique (2DSBG) consists in combining a bi-
Gaussian and a Semi-Anisotropic Gaussian filter which can
be steered [21, 16, 17]. The main idea of the developed filter
is to consider: (i) close and parallel neighboring ridges and
linear feature and (ii) paths (i.e. ridges or valleys) crossing
each pixel. To innovate, the proposed filter can detect close
and parallel narrow bent ridges of different widths in two dif-
ferent directions thanks to the semi bi-Gaussian capacities.

It is inspired by the SDSG (Second-Derivative of a Semi-
Gaussian [17]) where the main idea is to “cut” the SOAGK
(Eq. (2)) using a Heaviside function and, then, steer this filter
in all directions around the considered pixel: from O to 360°
(steered by bilinear rotation, evaluated in [22]). Mathemati-
cally, the SDSG filter is defined by the combination of:

* a semi-Gaussian G for the smoothing, vertically trun-
cated by a Heaviside function H, for 0,€R’” and z€R:
G(00,) = H(z) - e~ /2",

* a second derivative of a Gaussian G’ horizontally.

The proposed 2D filter substitutes the second order deriva-
tive of a Gaussian G” for a second order derivative of a bi-
Gaussian BG" presented in Eq. (3): it is composed of Semi-
Gaussian and bi-Gaussian operators. Note that for p = 1, the
2DSBG filter becomes the SDSG filter, see Fig. 1(c)-(d).

To adapt the multi-scale strategy, the response of the fil-
ter for different scaling parameters is configured - and the
maximum value among the different filter responses can be
selected [16]. When this new filter is steered towards the
linear structure direction, the o4 parameter allows an elon-
gated smoothing in the line direction, whereas the o captures
the line structure strength (Eq. (3)). Then, the line struc-
ture strength is calculated using a local directional maximiza-
tion/minimization (see [17]).
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Fig. 4. Evaluation of the ridge extraction techniques on synthetic images corrupted by a Gaussian noise between SNR=10dB and
SNR=3dB (05 = 5 - 0 for SOAGK, SDSG and 2DSBG). On the bottom: visualization of the best segmented images at SNR=4dB.

3. EXPERIMENTAL EVALUATION AND RESULTS

The proposed technique is evaluated on a set of both synthetic
and real images-containing complex linear features such as
close adjacent lines and ridges with varied scales. To evalu-
ate the linear structure extraction, the Normalized Figure of
Merit method [23] called NV is employed. Thus, N calculates
a standardized dissimilarity score; the closer the evaluation
score is to 1, the more the linear structure is qualified as suit-
able. On the contrary, a score close to 0 corresponds with poor
line feature detection, i.e. too much undesired detected pixels
appear (false positives) or/and too many undetected points are
missing (false negatives) in the detection result.

The aim here is to get the best contour map in a su-
pervised way: theoretically, to be objectively compared,
the ideal contour map must be the one for which the su-
pervised evaluation N gets the highest score [23, 24]. In
addition, from the proper binary confusion matrix, the pre-
cision (Prec) and Recall evaluations are computed, given
the overall quality expressed in terms of the F-measure:
Fo‘:Q»Recfzjlrlef‘(}ficgcl)l-Precz2TP<5;‘11€+FP’ when a=0.5, where
TP represent true positive , FP: false positive and FN: false
negative points respectively [24]. Also, |G| represents the
cardinality of true edges points in the ground truth map.

In this context, the 2DSBG filter is compared with 4 other
multi-scale linear feature extraction techniques via filtering,
namely: Lindeberg [10], SFs [6], SOAGK [15], and SDSG
[17]. Evaluation scores for synthetic cases are presented in
Figs. 4(b)-(e) for percentage of true positive (T'P/|G:|), false
negative points, F, and N measures respectively. In most

SNR (dB) SNR (dB)

cases, scores achieved by 2DSBG are superior to those of
other techniques, showing the reliability of the proposed filter.
Additionally, the Fig. 5 shows that the optimum parameter
p for the 2DSBG belongs to [0.5,0.7] and its reliability in-
creases when p<1, compared to the SDSG filter (correspond-
ing to p = 1). Thus, the prominence of the proposed 2DSBG
filter is confirmed in Fig. 4, where the Linderberg and SF»
present the worst results with adjacent linear features because
of their unadjustable kernel. The SDSG [17] obtains desirable
results for the close and narrowly bent contours, but undesir-
able results in the case of wider contours due to the sensi-
tivity of the second-order kernel. The SOAGK and 2DSBG
produced broken lines when applied to thick and thin linear
structures respectively. However, the fractures obtained with
2DSBG are very small and recoverable via post-processing.

Regarding real images, the 5 multi-scale linear feature
extraction techniques are compared and evaluated together
on the Ghent University Fungal Images 1 (GUFI-1) dataset
which contains 100 images, extracted from fungi grown in
vitro [15]. The resolution of images is 300x 300 pixels, con-
sist of hand-labelled ground truth data. Visually, the results
presented in Fig. 6 indicate that Linderberg’s method and es-
pecially the SF'» produce erroneous contours and thus have a
low segmentation quality. Although SDSG has been able to
detect most of the contour details as well as the bent and nar-
row structures, it also generated erroneous points due to its
second-order noise sensitivity. Accordingly with the previ-
ous performance results, the 2DSBG clearly extracts the most
contours, especially in the case of narrow and adjacent lines,
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Fig. 5. Estimation of the best p parameter of the 2DSBG on synthetic images corrupted by a Gaussian noise (o5 = 5 - 7).
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Fig. 6. Images of size 300x300. Comparison of the proposed filter-2DSBG with the four state-of-the-art filters in the detection
of linear structures in real fungus images. Parameters for SOAGK, SDSG and 2DSBG filters are the same: 05 = 5 - 0.

with barely any erroneous points.

Statistically, the 2DSBG filter is compared with four fil-
tering based state-of-the-art techniques in scale-space, the
scores are reported in the Tab. 1. As it is observed, the mean
evaluation scores of F,, and N measures, achieved by the
proposed filter are better to those of compared techniques,
presenting the accuracy reliability of the 2DSBG filter.

4. DISCUSSION AND CONCLUSION

2DSBG, a new filter for multi-scale linear features extraction
in images, constructed from bi-Gaussian and second-order
semi-Gaussian filters is presented. This filter exploits the
advantages of the bi-Gaussian for the detection of adjacent
linear features, as well as the qualities presented by semi-
Gaussian kernels for the analysis of bent and complex linear
structures. Experiments on synthetic and real images were
performed, allowing us to find the optimal parameter con-
figuration (p€[0.5, 0.7]), and thus confirming the novelty and

Table 1. Line feature detection performance of different
methods on the dataset of 100 fungi images.

[ Method | Lindeberg [10] | SF; [6] | SOAGK [15] | SDSG [17] | 2DSBG |
[ Facos | 021 [ 022 | 024 | 026 [ 029 |
[N | 07 | 075 | 077 | 078 | 081 |

merit of the 2DSBG over the existing filtering methods.

To supplement this study, the contour detection models in
deep learning generalize the contours and thus give the ap-
proximate structure whereas the proposed filter offers more
accurate results especially for fine-grained ridges and noisy
images. As an example, the result presented by the deep
learning approach in [25] is different and does not have quite
the context to compare with our proposed technique. The dif-
ference is that the deep learning based methods are trained
to detect rather the generic low-level features (interest points,
edges, ridges/valleys, corners, spots, etc.), and they usually do
not extract a specific types of low-level features, such as if we
want to extract only the contours of types of ridges/valleys.
Additionally, if we aim to obtain a particular type of contour,
it necessitates a large dataset with accurate and precise hand-
labelled ground truth, we might be able to obtain comparable
result (with lots of manual hyperparameter tuning to avoid
over-fitting). However, based on our scope, no such types of
dataset is available, because developing this type of dataset is
quite error-prone and time-consuming process.

To conclude, the proposed filtering technique can be used
as pre-processing, then be fed to Hough transform or neural
network for enhancing specific object detection/classification
tasks. For many tasks, classic filtering is used with the combi-
nation of neural network for optimizing the result, as in [26].
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