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2DSBG: A 2D SEMI BI-GAUSSIAN FILTER ADAPTED FOR ADJACENT
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ABSTRACT Meanwhile, steerable Iters of second ord&F;) are an

Existing ltering techniques fail to precisely detect adjacent&l€gant technique to capture ridge information; they are gen-
line features in multi-scale applications. In this paper, a ne/grated by the linear combination of basis Iters [6] such as the

Iter composed of a bi-Gaussian and a semi-Gaussian kemglecond derivative gf th€'2 Gauszsﬁﬁ in one dimension (1D):

is proposed, capable of highlighting complex linear structures G%:x)= X . ez Z: with 2R,: X2 R: 1)

such as ridges and valleys of different widths, with noise ro-r, jjnrove the precision of the detection, elongated oriented
bustness. Experiments have been performed on a set of bojfyrs were designed in terms of a better compromise between
synthetic and real images containing adjacent line featuregojse rejection and localization accuracy [13, 7, 14, 15], see
The obtained results show the performance of the new techsotropic versus anisotropic kernels in Fig. 1(a)-(b). Then, to
nigue in comparison to the main existing ltering methods. extract line feature, the Second-Order Anisotropic Gaussian

Index Terms— bi-Gaussian, semi-Gaussian, line features.KemeKSOAGK) can be applied in two dimensions (2D):

NS GRS T2 L _
1. INTRODUCTION AND MOTIVATIONS SOAGK(: sixy)= 55 _¢© Ti0s)2Re Ry

2
The _detection of features_in images is a computationally in—rhe choice of ¢> enables to build a narrow lter, the§1 2he
tensive process and remains a primary step in many low-1evée is oriented to extract ridges, as illustrated in Fig. 1(b).
computer vision tasks. Linear structures (ridges, edges, etC.) The second order Gaussian kernels are even kernels and
are widely used features in various computer vision applicage |ter coef cients distant from the center of the Iter have
tions. To detect these linear structures, numerous 'teringbpposite signs. These even kernels get enlarged when the
approaches have been implemented; originally, they were ex- narameter is growing. Though this enlargement yields
tracted by computing an impulse response of a simple line dggsiness against noise, the problem is that it unfavorably
tector corresponding to a speci c line/valley orientation (Se%erges the adjacent lines (detailed in [15], Sec. 2 and Fig. 3).
[1], Eq.15.7-). Incidentally, a review of line feature detection Therefore, an empirical trade-off when adjusting the param-
is presented in [2]. The optimal approach is chosen based Qfjer ¢on guration (kernel support versug is unavoidable
how to retain the maximum amount of desired information,, the conventional manner. In particular, adjacent and close
whilst removing the noise to obtain an optimal segmentatiofy ey structures of different widths cannot be accurately ex-
result depending on the application. To that end, linear struGzacted with this type of Iter. The proposed solution consists
ture detection techniques require the analysis of the rst of, seizing the properties of both a precisely orientable lter

second order derivative of the images, which is obtained bYSemi-Gaussian [16, 17]) and an adjustable Iter under cer-

ltering the image using a kernel convolution/correlation [3, 5 conditions of adjacent linear structures, see the different
4, 5]. Gaussian kernels are the most popular and widely useflg iy Figs. 1(a)-(b). As a result, a new lter is generated,

ltering techniques due to their useful isotropy, steerability ,4med 2D-Semi-Bi-Gaussian Iter (2DSBG). The 2DSBG
and decomposability properties related to the implementationgorous|y minimizes the interference of adjacent line fea-

of integration and differentiation in images [6, 7, 8]. The ze-y o5 [18] while retaining adequate line feature information

. x2= .
roth order Gaussian kermne®(;x )= po— e = ° (With  yyankst0 the ne-tuning of and the scale ratio parameter.
2R, , X2R) are used for regularization [9]. The rst and

second order Gaussian kernels are commonly used for lin-
ear structure detection. However, these kernels are prone to
noise, relative to both the derivative order and thgarame-

ter. Gaussian multi-scale is the primary method in scale-space

feature analysis, as it let us with an option to keep good IocaIFig_ 1. 2D discrete lters of second order steered atahd
ization [10]. These techniques are mostly based on the eigeBn  For the derivative parl6®or BG®in (d), = 3:91

decomposition of the Hessian matrix, as in [11, 10, 12, 2]. \vhereas for (b)-(d), the anisotropic parameter 5



04 f 7AN 04l

02 0:2

0:4 - 0:4

10 8 6 4 2 0 2 4 6 8 10 20 15 10 5 0 5 10 15 20

(a) Convolution withG % (b) Convolution withBG ®°, =0 :5 =181 =493

Fig. 3. Discrete second derivatives of bi-Gaussians in 1D
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Fig. 2. Ridge highlighting in 1D for different scales. G computed using different parameters —: and see Eq. (3).

and BG®convolutions are used in (a) and (b) respectively.
The blue bars represent the original signal containing sep

ted rid hile th ved sianal lotted i 20][2]. For the multi-scale step, the highest Itered value is
rated ridges, while the convolved sighals are plotted In orangg, e along the different scales (see [2][17]). The Fig. 2(b)
and the maximum of each signal is displayed by black circles

Lo ; _ illustrates the application of t8G % Iter at different scales
As detailed in [2], values are tied to the optimum parame- PP

ters forG funci  the feat o f 1109 pixel on a 1D signal containing different ridges of variable widths.
ersforloas a function ot the feature Size from L 10 3 PIXEIS. g ¢onyolved signals are plotted, and the maximum of the

signal is displayed where each ridge is tied to a speci c scale
2. PROPOSED APPROACH: 2DSBG (width of value 1, 3, 5, 7 and 9). Contrary to the Gaussian
The objective is to detect several line features in an imagRernel in Fig. 2(a), th&G best ts the signal along the dif-
at different unknown positions, scales and orientations. BYerent scales, revealing the great interest of this Ilter shape.
means of a truncation function, the detection procedure is for-
mulated as a rotational matched ltering from O to 360 2.2. Proposed Method: 2D Semi Bi-Gaussian Filter

2.1. Prior Work: Bi-Gaussian Filter The proposed technique (2DSBG) consists in combining a bi-
Gaussian and a Semi-Anisotropic Gaussian Iter which can
be steered [21, 16, 17]. The main idea of the developed lter

H S . . is to consider: (i) close and parallel neighboring ridges and
owever, this simple Gaussian kernel relies on only one pa]: . A . .
rameter to determine its shape: This denotes one of the near feature and (ii) paths (i.e. ridges or valleys) crossing
main well-known drawbacks of the Gaussian lter. Due to the®ach pixel. To innovate, the proposed lter can detect close
length of its support, this is therefore not suf cient to differen- and parallel narrow bent ridges of different widths in two dif-
tiate between adjacent or closely related structures, especiafi§rent directions thanks to the semi bi-Gaussian capacities.
whenthe value is large [18]. Consequently, linear structures It is inspired by the SDSG (Second-Derivative of a Semi-
cannot be suitably separately detected without any delocaliz&aussian [17]) where the main idea is wut’ the SOAGK
tion or fusion due to the regularization Iter [19], asillustrated (Eq. (2)) using a Heaviside function and, then, steer this Iter
in Fig. 2(a). To address this drawback, the main idea is tg all directions around the considered pixel: from 0 to 360°

transform the initial Gaussian lter into a bi-Gaussian, WhiCh(steered by bilinear rotation, evaluated in [22]). Mathemati-
combines the merits of the Gaussian and the Rectangular k%a||y the SDSG lter is de néd by the combination of:

nels. The bene ts of this kernel are that it has a scale ratio able . . . .

to clearly separate adjacent structures and, at the same time, * & Sémi-Gaussia® for the smoothing, vertically trun-
the Gaussian part gives it robustness against noise. To tune cated by a Heaviside functidt, for s2R, andx2R:
theBG lter, a |, parameter allows us to play on the width G ;X)= H(x) e X*=2 ¢,

and the sharpness of the curves on both sides of the central - a second derivative of a Gaussi@°horizontally.

part [18]. To simplify, a parameter is de ned as the scale The proposed 2D lter substitutes the second order deriva-

ratio: = -2:Hence, a value ranging ifj0; 1] improves the e of 4 GaussiaG®for a second order derivative of a bi-
detection of peaks, especially for adjacent contours, by ma aussiarBG ©presented in Eq. (3): it is composed of Semi-

ing the bi-Gaussian kernel narrower. The in uence ofalue aussian and bi-Gaussian operators. Note that fo , the
is studied in the next section. The second order bi-Gaussi i ' . '
SBG lter becomes the SDSG lter, see Fig. 1(c)-(d).

lter BGis expressed as follows: >
. ) To adapt the multi-scale strategy, the response of the |-
oS G Coix ot ) if x ter for different scaling parameters is con gured - and the
BG™: wix)=. Gix) it jxj < (3 maximum value among the different Iter responses can be
G wix+ v ) ifx selected [16]. When this new lter is steered towards the
When =1, theBG Iter is equivalent to the 2nd deriva- linear structure direction, thes parameter allows an elon-
tive of the GaussiaG® The Fig. 3 shows the 1D normalized gated smoothing in the line direction, whereas theaptures
BG @ Iters for different values of and . This lter's shape the line structure strength (Eg. (3)). Then, the line struc-
behaves in an opposite manner to Ziou's Iter, which is veryture strength is calculated using a local directional maximiza-
sharp in the middle, but contains the large length of its suppotton/minimization (see [17]).

The second order Gaussi@{°presented in Eq. (1) is useful
to determine the location of linear structures [11, 10, 15, 17]



Fig. 4. Evaluation of the ridge extraction technigues on synthetic images corrupted by a Gaussian noisedRa¢edBand
SNR=3dB( s =5 for SOAGK, SDSGand2DSBG). On the bottom: visualization of the best segmented imagesSRt4dB

3. EXPERIMENTAL EVALUATION AND RESULTS cases, scores achieved by 2DSBG are superior to those of
The proposed technique is evaluated on a set of both synthefher techniques, showing the reliability of the proposed lter.
and real images-containing complex linear features such ddditionally, the Fig. 5 shows that the optimum parameter
close adjacent lines and ridges with varied scales. To evalu- for the 2DSBG belongs t{0:5; 0:7] and its reliability in-
ate the linear structure extraction, tNermalized Figure of creases wher< 1, compared to the SDSG lIter (correspond-
Merit method [23] calledN is employed. Thud\ calculates ingto =1). Thus, the prominence of the proposed 2DSBG
a standardized dissimilarity score; the closer the evaluatiorter is con rmed in Fig. 4, where the Linderberg ariiF;
score is to 1, the more the linear structure is qua" ed as suitpresent the worst results with adjacent linear features because
able. On the contrary, a score close to 0 corresponds with po8f their unadjustable kernel. The SDSG [17] obtains desirable
line feature detection,e. too much undesired detected pixels results for the close and narrowly bent contours, but undesir-

appear (fa|se positives) or/and too many undetected points a@é)'e results in the case of wider contours due to the sensi-
missing (false negatives) in the detection result. tivity of the second-order kernel. The SOAGK and 2DSBG
The aim here is to get the best contour map in a suProduced broken lines when applied to thick and thin linear
pervised way: theoretica”y, to be objective|y Compared,structures respectively. However, the fractures obtained with
the ideal contour map must be the one for which the su2DSBG are very small and recoverable via post-processing.
pervised evaluatioN gets the highest score [23, 24]. In Regarding real images, the 5 multi-scale linear feature
addition, from the proper binary confusion matrix, the pre-extraction techniques are compared and evaluated together
cision Preg and Recall evaluations are computed, given on the Ghent University Fungal Images 1 (GUFI-1) dataset
the overall quality expressed in terms of the-measure: which contains 100 images, extracted from fungi grown in
F =it prec —avp o es» When =0:5, where vitro [15]. The resolution of images is 30@B00 pixels, con-
TP represent true positiveRP: false positive andN: false  sist of hand-labelled ground truth data. Visually, the results
negative points respectively [24]. Als@G:j represents the presented in Fig. 6 indicate that Linderberg's method and es-
cardinality of true edges points in the ground truth map. pecially theSF, produce erroneous contours and thus have a
In this context, the 2DSBG lter is compared with 4 other low segmentation quality. Although SDSG has been able to
multi-scale linear feature extraction techniques via Itering,detect most of the contour details as well as the bent and nar-
namely: Lindeberg [10]SF, [6], SOAGK [15], and SDSG row structures, it also generated erroneous points due to its
[17]. Evaluation scores for synthetic cases are presented second-order noise sensitivity. Accordingly with the previ-
Figs. 4(b)-(e) for percentage of true positife® 5§G;j), false  ous performance results, the 2DSBG clearly extracts the most
negative pointsF andN measures respectively. In most contours, especially in the case of narrow and adjacent lines,

Fig. 5. Estimation of the best parameter of the 2DSBG on synthetic images corrupted by a Gaussian noisé& ().



( IagSO (b) Hand labelled (c) Lindeberg [10] (8F2 [6] (e) SOAGK [15] (f) SDSG [17] (g) 2DSBG
Fig. 6. Images of size 300300. Comparison of the proposed Iter-2DSBG with the four state-of-the-art Iters in the detection
of linear structures in real fungus images. Parameters for SOAGK, SDSG and 2DSBG lters are the sarbe:

with barely any erroneous points. merit of the 2DSBG over the existing Itering methods.
Statistically, the 2DSBG Iter is compared with four |- To supplement this study, the contour detection models in
tering based state-of-the-art techniques in scale-space, tleep learning generalize the contours and thus give the ap-
scores are reported in the Tab. 1. As it is observed, the medafoximate structure whereas the proposed lter offers more
evaluation scores of andN measures, achieved by the accurate results especially for ne-grained ridges and noisy
proposed lter are better to those of compared techniquednages. As an example, the result presented by the deep

presenting the accuracy reliability of the 2DSBG lter. learning approach in [25] is different and does not have quite
the context to compare with our proposed technique. The dif-
4. DISCUSSION AND CONCLUSION ference is that the deep learning based methods are trained

to detect rather the generic low-level features (interest points,
2DSBG, anew lter for multi-scale linear features extraction edgeS, ridges/va”eyS, corners, SpotS, etc_), and they usua”y do
in images, constructed from bi-Gaussian and second-ordeiot extract a speci ¢ types of low-level features, such as if we
semi-Gaussian lters is presented. This lter exploits thewant to extract only the contours of types of ridges/valleys.
advantages of the bi-Gaussian for the detection of adjacep{dditionally, if we aim to obtain a particular type of contour,
linear features, as well as the qualities presented by senjinecessitates a large dataset with accurate and precise hand-
Gaussian kernels for the analysis of bent and complex lineagpelled ground truth, we might be able to obtain comparable
structures. Experiments on synthetic and real images weg@sylt (with lots of manual hyperparameter tuning to avoid
performed, allowing us to nd the optimal parameter con-gyer- tting). However, based on our scope, no such types of
guration (- 2[0:5;0:7]), and thus con rming the novelty and ataset is available, because developing this type of dataset is

quite error-prone and time-consuming process.
Table 1. Line feature detection performance of different  To conclude, the proposed ltering technique can be used

methods on the dataset of 100 fungi images. as pre-processing, then be fed to Hough transform or neural
[ Method | Lindeberg [10]] SF, [6] | SOAGK [15] | SDSG [17]] 2DSBG | network for enhancing speci ¢ object detection/classi cation
[Fos | 021 [ 022 ] 024 [ 026 | 029 | tasks. For many tasks, classic lItering is used with the combi-
[N | o7 | o7 | o077 | o078 | o8l |

nation of neural network for optimizing the result, as in [26].
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