
HAL Id: hal-04117456
https://imt-mines-ales.hal.science/hal-04117456

Submitted on 5 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptative Workflows for Process Management
Charbel Kady, Francois Trousset, Nicolas Daclin, Grégory Zacharewicz,

Charles Yaacoub, Adib Akl

To cite this version:
Charbel Kady, Francois Trousset, Nicolas Daclin, Grégory Zacharewicz, Charles Yaacoub, et al..
Adaptative Workflows for Process Management. CSD&M - 13th International Conference on Complex
Systems Design & Management, Dec 2022, Paris, France. �hal-04117456�

https://imt-mines-ales.hal.science/hal-04117456
https://hal.archives-ouvertes.fr

Charbel KADY1,2

1School of Engineering, Lebanese American University (LAU), P.O. Box 36,
Byblos 1401, Lebanon
charbel.kadi@lau.edu.lb, charbel.kady@mines-ales.fr

Francois TROUSSET, Nicolas DACLIN, Gregory ZACHAREWICZ

2IMT Mines Ales, LSR, 6 avenue de Clavières, 30319 Alès, France
{gregory.zacharewicz, nicolas.daclin, francois.trousset}@mines-ales.fr

Charles YAACOUB, Adib AKL

3School of Engineering, Holy Spirit University of Kaslik (USEK), Jounieh
P.O. Box 446, Jounieh 1200, Lebanon
{charlesyaacoub, adibakl}@usek.edu.lb

Adaptative Workflows for Process Management

Charbel KADY, Francois TROUSSET, Nicolas DACLIN, Gregory
ZACHAREWICZ, Charles YAACOUB, Adib AKL

Abstract In industry, modeling is used to enhance productivity, facilitate analysis,
and increase profitability. Modeling is used to represent the workflow activities of
a prescribed business process operation. But what happens if an unexpected event
occurs? This might lead to a deviation of prescribed business operation. In related
approaches all solutions are predefined in a way or in another where in other words,
most events must be predicted in advance and the others are not caught. This study
will introduce a new approach to consider unexpected events occurring in workflow
execution. Then, after characterizing the situation, the proposed approach will
search a library for compatible solutions to repair the model. Next, the best solution
is selected (automatically or manually) and injected in the workflow with respect to
an objective function set by experts. Moreover, the library of models can be open
to external contribution and benefits from collaborative works.

1 Introduction

Nowadays, the Business Process (BP) is becoming more and more complex in
organizations. It could encompass thousands of activities to be achieved.
Consequently, these BPs need to be modeled to control their complexity. In case of
unexpected malfunction, the Business Process will deviate from the prescribed
model. In industry, to overcome these situations, the habit has been taken to over-
specify the models to cope with every foreseen situation. But unfortunately, it is
impossible to describe all situations that could occur (the recent COVID-19
situation is a good example of this problem). In this case there is an urgent need to
repair the model for the sake of sustaining the company’s operation where the
following question is raised: “how to model the response to this problem?”. In fact,
it is costly to imagine all kind of malfunctions that could happen during runtime and
propose exhaustive repair for each problem. On one hand, in literature, a main
model is proposed, and many variations of the same model could be considered

Adaptative Workflows for process Management

during runtime. On the other hand, the approach described in this paper will not try
to model all cases. Instead, a main model will be built with the help of domain
experts and when the actual business process deviates from the main model during
execution (expected or unexpected deviation), the system will search a library for
compatible solutions to repair the deviation in the model, evaluate them and select
(automatically or manually) the best one to be injected in the main model. The
library initially will be populated with basic blocks (e.g. AND fork), and it with
time the users enrich this collaborative library with workflow blocks that combines
one or several activities which can serve as solution for certain deviations.
Decision-maker considerations may be carried by an objective function to classify
solutions. In addition, the mentioned library can reach outside contributors and
benefit from collaborative efforts to enrich the solutions repository.

This paper is organized as follows: section 2 presents a state of the art, the
proposed methodology is described in section 3, and conclusions are drawn in
section 4 with future work perspectives.

2 State of the Art and related work

Previous studies treated fully or partially four main aspects in relation with the
main problem statement: Problem Identification, Solution Evaluation, Model
Validation and Model Reparation. The first aspect “Problem Identification” is the
subject of many studies and groups such as the One-Way project [1] where a
Numerical Twin is defined to detect deviation of the system with respect to its
prescribed behavior. The second aspect is “Solution Evaluation” which was also
addressed by many studies as (Ducq et al.) [2] where performance indicators are
defined on models and methods of aggregation. These performance indicators were
used for example to evaluate interoperability of systems (Heguy) [3] and to
aggregate performance indicators (PIs) computed on single BPMN elements to
parts of the model (Ougaabal) [4]. The third aspect, “Model Evaluation”, where in
this regard, several theories have been proposed to validate a model. For instance,
the work of (Kherbouche) [5] who contributed to this direction by proposing a
method to validate the modification in workflow resulting from destroying and
inserting tasks based on PIs. (Mallek-Daclin) [6] suggested verification techniques
to validate interoperability in a collaborative process model based on the data
quality and time.

As for “Model Reparation” two main categories can be identified: “Over
Specified Models” (OSM) and “Under Specified Models” (USM). The first category
(OSM) emphasizes the variability approach, where all possible solutions are
predefined in a way or another and the system’s response will be defined at runtime
with respect to a variation point and conditions. Some of these approaches used the
concept of object-oriented languages to code workflows and handle possible
deviations (Alex Brogida et al. [7]). (Svendsen) [8] used the Common Variability
Language (CVL) to describe and generate variants of the same model to achieve

Adaptative Workflows for process Management

applications reconfiguration while (Honghao et al.) [9] discussed the workflow
reconfiguration. In his survey, (La Rosa et. al.) [10] defined four different types of
approaches in variability where in each one a different variation point is considered:
1) “Node Configuration” where the node is considered as the point of variation, and
for all node, different paths exist (Van der Aalst et. al.). [11] “Element Annotation”
where domain properties are assigned via Boolean expressions and selection can be
made manually or by aided model; in other words, a test on a specific condition is
performed on the level of each task (e.g., less cost) (Becker) [12]. 3) “Activity
Specialization”, named as such to stress that a custom-made business model relies
on the specialization on the activity level (Bayer et. al.) [13], and finally, 4)
“Fragment Customization” which depends on constraints; an activity is added if it
satisfies a given constraint or rejected if it does not (Hallerbach et. al.) [14]. In the
above OSM approaches and in either deviation or reparation modes, models rely on
the idea that all paths should be prescribed in advance in a way or in another, yet,
in most of real-life situations, it is proven to be impossible to predict all situations
[15].

The second category (USM) focused on management by exception, where a
main model is set for normal operation and an exception handling mechanism is set
to treat unexpected problems that could occur on the model at runtime using a
library of sub-models. (Nick Russel et al.) [16] define a categorization of exceptions
that could occur during execution of a process model and methods to handle them.
(Michael Adams et al.) [17] maintained a database of exception handling processes
(called exlets) that could respond to predefined categories of exceptions. The
database may be constructed statically during design or dynamically at runtime. A
recent study by (Jasinski et al.) [18] proposed a workflow management system that
manages a controlled environment using dynamically produced workflows.
Exception detection and handling in process creation generates mitigation
recommendations for potential occurrences. It enables the rapid formulation of new
tasks, both known and unknown, as well as the evaluation of the quality of the
created recommendation via input from the managed environment. (Kerstin et al.)
[19] pushed the exception handling even further by introducing an extra layer of
fragments that can be reused in workflows during failure. The limitation in the
existing USM approaches is that the Reparation is still local. That is, in case of
malfunction, the main workflow will stop when an exception occurs, will select a
solution from a library and will continue from the point where the problem has been
identified.

In this manuscript, the proposed solution consists of two parts. The first, is a
primary model that will be developed with the assistance of domain experts using
the OSM approach. While in contrast the second is based on USM approach where
a collaborative library is built progressively, and users will gradually enrich it with
workflow blocks that combine one or more activities and can serve as a solution for
certain deviations. These solutions are evaluated while the best one is selected and
injected in the main model to correct the deviation. Based on all the above, and in
either OSM or USM approaches, Reparation is poorly considered and remains

Adaptative Workflows for process Management

based on simplified conditions, does not rely in general on human decision and does
not cover the collaborative aspect of a solution.

3 Methodology and proposed solution

During a workflow execution, three types of problems (expected or unexpected)
are recognized: the first type of problems could be identified at the entry level of a
specific task, the second when a task fails to execute due to lack of resources or due
to constraints, and finally the third at the exit when the task is generating less than
expected for the system to perform normally. When one of these problems occurs,
the system will search for a possible compatible solution from a library of small
workflows (sub-models) that could help in repairing the workflow, taking into
consideration the needed resources to this correction and the constraints for this
solution to be chosen. The selected solution could either 1) correct the entry of a
task, 2) restore or bypass a defective task or 3) correct the output of the task to repair
the workflow. In the case of a bypass, and knowing the solution entry point, the
system will evaluate all possible exit points on the workflow depending on an
objective function set by a domain expert. Then, all compatible solutions are
evaluated (Correction, Repair or Bypass) and sorted. As for the decision, it could
be automatic where the system will choose the solution with the highest rank, or in
other case, one or more solutions are presented to the decision-maker (human
operator) to make the choice and to help him to decide.

Still to consider the situation where none of the solutions is selected due to
incompatibility, constraints, or lack of resources, a manual reparation is proposed
to the operator, and a new solution is added to the collaborative library where it
could contribute to solving similar problems in the future. To be able to achieve the
above some needed system information will be defined (in paragraph 3.1) and the
methodology will be fully discussed starting from (paragraph 3.2).

3.1 Definitions and Notations

Before proceeding with the methodology for this new approach, there is a need
to define some terms to be able to answer the questions raised in the introduction
(Section 1). Therefore, a set of definitions and notations are recalled from literature
while others are introduced to describe the proposed solution. For that purpose,
Business Process Modeling and Notation (BPMN) 2.0 [20] is used, where a task is
modeled using a rectangle, the starting event as a circle and a bold circle to represent
the ending event of a model (e.g., Fig. 1.Simple Task A).
Characterization of the system state: As per the definition of Derek Rowell [21],
a dynamic system state is a minimum collection of variables that can define a system
and its behavior at a specific time. In the rest of this manuscript, the real system

Adaptative Workflows for process Management

state at the entry of an activity 𝑨 will be annotated as a vector 𝑰𝑨
෡ while the real

system state at the exit of an activity 𝑨 will be annotated as a vector 𝑶𝑨
෢ . A system

state could be a set of variables that incorporate internet of things (IoT) parameters
(e.g., temperature, weight, humidity), resources or any other parameter.
Characterization of a task (Activity/Solution). In normal operation, a smooth
transition can be observed from one activity to another depending on the system
state. But, in case of malfunction, at any moment on the main workflow, the system
will stop the execution and search for compatible solutions from a library of
patterns. Activities and solutions are both tasks and characterized by 1) an input
vector 𝑰 that describes the expected state variables to enter a task (activity) 𝑨 and it
will be annotated by 𝑰𝑨, while 2) the output vector 𝑶 will describe the state variables
produced after executing the task and it will be annotated by 𝑶𝑨 3) the required
resources vector to achieve a task 𝑻 will be annotated by 𝑹𝑨, and finally 4) the
constraints vector 𝑪 which is a set of necessary conditions to allow the execution of
a task and will be annotated by 𝑪𝑨.

Fig. 1.Simple Task A

Performance Indicators (PIs) and Objective Function (OF): In order to evaluate
each solution from the library it is necessary to set an objective function (OF) that
evaluates and ranks every possible compatible solution with respect to several
performance indicators (PIs). An expert in the domain will choose the best objective
function that fulfills his goals. For example, in voice over IP industry, time delay,
reliability and availability could be used as performance indicators while in other
domains, like aviation for instance, in addition to the previously mentioned PIs,
quality, security and cost could be used as well. As for the aggregation of each
performance indicator, it may differ from an indicator to another and for the rest of
this manuscript as per the state of the art, the work of Yves Ducq [2] is considered,
where all activities can be reduced into three main categories: Sequential reduction,
“Or” reduction and “And” reduction. Performance indicators 𝑷𝑰s and their number
could vary from industry to another, and the set of performance indicators is
annotated by 𝑷 = {𝑷𝑰𝟏, 𝑷𝑰𝟐, … . . 𝑷𝑰𝒏}.

Later (in paragraph 4.2.5), the Objective Function concept is presented along
with an example to better illustrate the point.

3.2 Problem identification: “What kind of problems could
occur?”

In normal operation and in order to execute an activity 𝑨, the following should
be satisfied: 1) All required resources 𝑹𝑨 for executing task A should be available

Adaptative Workflows for process Management

2) all constraints 𝑪𝑨 are verified and finally 3) the system state at the entry of 𝑨
should be equal or better than expected for 𝑨 to execute:

𝑰𝑨 ≼ 𝑰𝑨
෡

Moreover, 4) the output of the task should be better or equal to the System state
at the exit point:

𝑶𝑨 ≽𝑶𝑨
෢

In contrast with normal operation, while executing the above simple task A,
three types of problems could occur: the first where the state of the system at the
entry is less than expected for task 𝑨 to be executed, the second case would be that
𝑨 itself is down and the third and last possible case is that the output after executing
the task will correspond no longer to the expected output of the activity 𝑨 or the
system state at the exit.

First, as a start the atomic case (cf. Fig. 1.Simple Task A) is considered and later
it can be applied on any complex workflow. In fact, the output of an activity 𝑨 could
be considered as an input of another activity 𝑩 and so on.

In summary, all problems can be reduced into three cases which can be
applied along the workflow:

1) Input Problem: A problem at 𝑰𝑨
෡ level (PS)

A cannot be executed as it is not receiving the proper set of state variables. The
system state at the entry 𝑰𝑨

෡ does not match with what is expected for 𝑰𝑨 and it will
be annotated by 𝑰𝑨

෡ ≺ 𝑰𝑨.
In this case a problem is detected at the input of task A.
2) Failing Task: Task “A” is failing to execute (PA)
In this case we have no problem at the system state level and a failure is occurring
during the executing the task. This Failure could be due to lack of resources
(annotated by 𝑰𝑨

෡ ≺ 𝑹𝑨) or due to a specific constraint.
3) Output Problem: A problem at the output of the Task (PO)
In this case, the output of activity A is incompatible with the system state 𝑶𝑨

෢ . In
other words, the task A is producing less than expected for 𝑶𝑨

෢ and will be
annotated as: 𝑶𝑨 ≺ 𝑶𝑨

෢ .

3.3 Repairing typology: “How to repair the model?”

In this manuscript three simple types of repairs are considered: first, the
Correction (entry/exit) where the system state at the entry or the exit is corrected.
Second, the Restore of failing task 𝑨 and finally the replacement of one or multiple
activities, the Bypass.
* When a problem is identified at the entry-level: In this case the state the system
state at the entry is less than expected for 𝑰𝑨 and it is annotated by 𝑰𝑨

෡ ’. In other
words, 𝑰𝑨 ≻ 𝑰𝑨′෢ . Here, a problem is detected, and there exists many possible ways
to inject a solution:

Adaptative Workflows for process Management

1) Entry-Correction: As shown in Fig.2, the input of the solution 𝑺 can be
injected at 𝑰𝑨

෡ ’ taking into consideration that the system state at that point is equal
or better than expected for the solution to be executed: 𝑰𝑺 ≼ 𝑰𝑨

෡ ′ . Whereas the
output of 𝑺 is injected before the Activity 𝑨 taking into consideration 𝑶𝑺 ≽ 𝑰𝑨

෡ . In
that case an entry-correction is made before entering an activity 𝑨.
2) Bypass: (cf. Fig. 2) 𝑺 can be injected at 𝑰𝑨

෡ ′ where 𝑰𝑺 ≼ 𝑰𝑨
෡ ′ and it bypasses the

activity A satisfying the following condition at the output of 𝑺𝟏: 𝑶𝑺 ≽ 𝑶𝑨
෢ . In that

case a Bypass is made. As an activity could be atomic or group of activities, it is
essential to mention at this point that the bypass can be made to override one, two
or as many blocks as required. But the output of the solution should always be
compatible with the injection point on the main workflow. This type of correction
is a novelty with respect to other approaches.

It is noteworthy to mention that there might be other ways to connect the
output such as before or in the middle of the task. But these cases will not be
considered in this paper as we consider only forward reparations.

* When a task fails to execute: This failure could be due to lack of resources
(annotated by 𝑰𝑨

෡ ≺ 𝑹𝑨) or due to a specific constraint and the task will fail to
produce any output. In this case the proposed repairs are:
1) Restore: (cf. Fig. 2) In that case, when a problem is identified and exception 𝑬 is
generated, the system will handle the exception and search for a suitable solution to
restore task 𝑨. The workflow will resume operation as soon as it gets an
acknowledgment message 𝑬ഥ that declares that the problem was solved.

2) Bypass: (cf. Fig. 2) The Bypass is used and Task 𝑨 is replaced in the workflow
by a solution 𝑺 same as the Bypass in the previous paragraph when the problem
occurred on the entry of the activity 𝑨.

* When a problem occurs at the output: In this case, the output of Activity A is
incompatible with the system state 𝑶𝑨

෢ . (𝑶𝑨 ≺ 𝑶𝑨
෢) and the only considered repair

is:
Exit-Correction: (cf. Fig. 2) here similarly to what is previously discussed in the
Entry-Correction.

Fig. 2 Reparation Types

After applying a repair, the characteristics (𝑰, 𝑶, 𝑹, 𝑪) of the resulting model can
be computed to be able to evaluate the impact of the reparation on the system. In
fact, we already know that (𝑰𝒔, 𝑶𝒔 𝐚𝐧𝐝 𝑪𝒔) are satisfied otherwise we could not use

Adaptative Workflows for process Management

S in the reparation (cf 3.4). The modification then only applies to the resources used
by the new model. Table 1 summarizes the impact of each reparation type on the
usage of resources compared to the one used by the original model/system, in other
words, before and after applying the reparation. The circled plus sign represents the
aggregation of resources.

Table 1. Reparation patterns for Atomic Case.
Problem Solution Solution Pattern Before After

At the Input Repair 1 Entry-Correction 𝑅஺ 𝑅௦ ⊕ 𝑅஺
 Repair 2 Bypass 𝑅஺ 𝑅௦

Task Failed Repair 1 Restore 𝑅஺ 𝑅ோ௘௦௧௢௥௘஺

 Repair 2 Bypass 𝑅஺ 𝑅௦
At the Output Repair 1 Exit-Correction 𝑅஺ 𝑅஺ ⊕ 𝑅ௌ

3.4 Selection of a sub-model from a library

In order to repair a problem, the system will search inside a library of sub-
models for solutions that can satisfy the following criteria:
-Criterion 1: The input of the solution 𝑰𝑺 is compatible with the system state:

𝑰𝒔 ≼ 𝑰𝑨
෡

-Criterion 2: The constraints 𝑪𝑺 to execute a solution 𝑺 are satisfied.
-Criterion 3: The resources 𝑹𝑺 to execute a solution 𝑺 are available

≼ 𝑰𝑨
෡

-Criterion 4: The output of the solution 𝑶𝑺 is compatible with the system state at
the exit:
𝑶𝑺 ≽ 𝑶𝑨

෢ .
It is essential to mention that solutions are regular activities that can be atomic

or a group of tasks. Moreover, the library of solutions can always be extended by
allowing users to collaborate, by always adding new solutions and fixes. The
proposed approach consists of finding solutions in the collaborative library that are
compatible with the actual system state where the system will not respond only to
prescribed exceptions but also to the unexpected ones. Moreover, the reparation
could imply or not the Bypass of one or many blocks respectively to each case by
searching a returning point on the main model where 𝑶𝒔 is compatible with the
expected system state at that point. Fig.3 shows an illustration of the solution
library.

Fig. 3 Collaborative Solutions library

Adaptative Workflows for process Management

3.5 Bypass Exit-Point (Granularity)

As previously mentioned in (paragraph 3.3), the Bypass could affect one or
more blocks on the main workflow. The granularity at this stage is defined by how
large the replaced block can be. In the case where a group of tasks (annotated by 𝑮)
is bypassed, the respective group’s properties are the aggregation properties of all
the bypassed blocks. Consequently, the exit point of the solution should satisfy the
constraints set 𝑺𝑮, meet the required resources 𝑹𝑮 and finally, match the output of
the system at the point of injection. Finally, the Performance Indicator of the
affected group will depend on the size of the replaced blocks and may be used to
set the penalty caused by this replacement, or in other terms, it will contribute to
computing the objective.

3.6 Evaluation and sorting

In order to evaluate the selected compatible set of solutions an objective set by
the decision-maker is calculated in function of the Performance Indicators, the
Overquality and the granularity of the proposed solutions. The objective function is
annotated by:

𝑶𝒃𝒋(𝑷𝑰𝟏, … 𝑷𝑰𝒏) where 𝑷𝑰 = {𝑸𝒖𝒂𝒍𝒊𝒕𝒚, 𝑮𝒓𝒂𝒏𝒖𝒍𝒂𝒓𝒊𝒕𝒚, 𝑪𝒐𝒔𝒕, 𝑰𝒏𝒕𝒆𝒓𝒐𝒑𝒆𝒓𝒂𝒃𝒊𝒍𝒊𝒕𝒚 … }.
The Quality is defined as Overquality where the output 𝑶𝑺 is much bigger than what
is expected on the workflow as system state and annotated as 𝑶𝑺 ≫ 𝑰෠. Finally, the
solutions will be ranked with respect to the objective function.

3.7 Decision Support

The decision can be configured by the decision-maker to be made manually or
automatically by the system based on the objective. The objective is set by the
decision maker, or a domain expert based on one or multiple performance indicator
(s). In this last case, the solution ranked first with respect to the objective function
will be selected. In the case of manual selection, all 𝑷𝑰𝒔 as well as the objective are
presented to the decision-maker for all the selected solutions to help him decide.
The selected solution (local deviation) should repair the local problem and ensure
the coherence of the global objective.

As an example, consider the set of solutions 𝑺:
𝑺 = {𝑺𝟏(𝟏𝟎€; 𝟐𝒎𝒔), 𝑺𝟐(𝟏𝟐€; 𝟐𝒎𝒔), 𝑺𝟑(𝟏𝟎€; 𝟏𝒎𝒔)}.

The system will evaluate and rank the above solution set with respect to the
objective function 𝑶𝒃𝒋 = {𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒄𝒐𝒔𝒕 𝒇𝒊𝒓𝒔𝒕 𝒕𝒉𝒆𝒏 𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒅𝒆𝒍𝒂𝒚},
where the considered indicators for this example are the time delay and cost: 𝑷𝑰 =
{𝑫𝒆𝒍𝒂𝒚, 𝑪𝒐𝒔𝒕}. Consequently, the first sorting will be performed on the Less Cost

Adaptative Workflows for process Management

indicator and then the second on the less delay indicator. In case the decision is
made automatically, 𝑺𝟑 is selected.

In case the user doesn’t want to choose the reparation preselected automatically,
a list with all possible reparations is presented, such as the list shown in Table 2.
The decision-maker can then choose the one that best meets his needs according to
his expertise in the domain. Thus, for instance, he could potentially make a different
choice than the one expressed by the objective function based on his previous
experience with a supplier (e.g., an additional delay, a quality problem, an additional
cost).

Table 2. Example of evaluation, ranking and decision.

4 Conclusion and Perspectives

This paper introduced a new approach to repair unexpected situations on a
workflow based on "simple" repairs but with complex verification and validity. The
reparation will take advantage of a collaborative library to identify compatible
solutions with respect to the state of the system. It can then gain benefits from
external expertise on similar problems. Semantic verification and simulation will be
used to ensure compatibility of the reparation with the system state. In literature,
“reparations” are generally done either by a predicted deviation of the workflow or
by raising an exception which is solved locally, and, in both cases, the original
model remains unchanged. By opposite to these static approaches, this study
introduces a dynamic approach by allowing to modify the model (inserting/deleting
parts of the workflow). As the proposed approach is dealing with unexpected
problems, then unpredicted reparations will be suggested. Compatible solutions are
evaluated and sorted with respect to performance indicators. The decision-maker
may express his needs by defining an objective function (based on these
performance inductors) where the best solution may be automatically injected in the
workflow. However, because of the unforeseen aspect of the problem, the method
always allows the decision-maker to interact with the system and manually select

Adaptative Workflows for process Management

his preferred reparation. To achieve this, performance indicators and the sorting are
available to assist the decision-maker in his choice.

As shown in this paper, one of the main problems is to identify where the
reparation should return on the workflow. In future work, one of the major works
would focus on this point by studying formal verification and simulation aspects, as
well as the implications inferred from this such as uncertainty about the outcome.
Discrete event simulation could be the key to study the dynamics and the
information related to time delay and use of resources. In addition, basic reparations
might be enhanced by introducing new features taking into account temporary
reparation. Another aspect of the future work is to carry out complex reparation by
combining simple repairs into one.

Acknowledgment: This research was partially funded by the BeePMN project
from Program Hubert Curien CEDRE (France/Lebanon), grant number 4541TF

References

1. Rabah-Chaniour, S., Zacharewicz, G., Chapurlat, V.: Process Centered Digital Twin.,
GDR MACS (2022), Online Oral presentation, last access: 31 May 2022, https://action-
jn.sciencesconf.org/resource/page/id/5

2. Ducq *, Y., Vallespir, B.: Definition and aggregation of a performance measurement
system in three aeronautical workshops using the ECOGRAI method. Production
Planning & Control. 16, 163–177 (2005).

3. Heguy, X., Zacharewicz, G., Ducq, Y., Tazi, S., Vallespir, B.: A Performance
Measurement Extension for BPMN. In: Popplewell, K., Thoben, K.-D., Knothe, T., and
Poler, R. (eds.) Enterprise Interoperability VIII. pp. 333–345. Springer International
Publishing, Cham (2019).

4. Ougaabal, K., Zacharewicz, G., Ducq, Y., Tazi, S.: Visual Workflow Process Modeling
and Simulation Approach Based on Non-Functional Properties of Resources. Applied
Sciences. 10, (2020).

5. Kherbouche, O.M., Ahmad, A., Basson, H.: Using model checking to control the
structural errors in BPMN models. In: IEEE 7th International Conference on Research
Challenges in Information Science (RCIS). pp. 1–12 (2013).

6. Mallek, S., Daclin, N., Chapurlat, V.: The application of interoperability requirement
specification and verification to collaborative processes in industry. Computers in
Industry. 63, 643–658 (2012).

7. Borgida, A., Murata, T.: Tolerating Exceptions in Workflows: A Unified Framework for
Data and Processes. In: Proceedings of the International Joint Conference on Work
Activities Coordination and Collaboration. pp. 59–68. Association for Computing
Machinery, New York, NY, USA (1999).

8. Svendsen, A.: Application Reconfiguration Based on Variability Transformations.
Technical Report 2009-566 School of Computing, Queen’s University Kingston,
Ontario, Canada. 4 (2009).

Adaptative Workflows for process Management

9. Gao, H., Huang, W., Yang, X., Duan, Y., Yin, Y.: Toward service selection for workflow
reconfiguration: An interface-based computing solution. Future Generation Computer
Systems. 87, 298–311 (2018).

10. Rosa, M.L., Aalst, W.M.P.V.D., Dumas, M., Milani, F.P.: Business Process Variability
Modeling: A Survey. ACM Comput. Surv. 50, (2017).

11. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H.: Configurable Process
Models — A Foundational Approach. In: Becker, J. and Delfmann, P. (eds.) Reference
Modeling: Efficient Information Systems Design Through Reuse of Information Models.
pp. 59–77. Physica-Verlag HD, Heidelberg (2007).

12. Becker, J., Delfmann, P., Knackstedt, R.: Adaptive Reference Modeling: Integrating
Configurative and Generic Adaptation Techniques for Information Models. In: Becker,
J. and Delfmann, P. (eds.) Reference Modeling: Efficient Information Systems Design
Through Reuse of Information Models. pp. 27–58. Physica-Verlag HD, Heidelberg
(2007).

13. Bayer, J., Kettemann, S., Muthig, D.: PESOA Process Family Engineering in Service-
Oriented Applications BMBF-Project Principles of Software Product Lines and Process
Variants. Presented at the (2004).

14. Hallerbach, A., Bauer, T., Reichert, M.: Issues in Modeling Process Variants with
Provop. In: Ardagna, D., Mecella, M., and Yang, J. (eds.) Business Process Management
Workshops. pp. 56–67. Springer Berlin Heidelberg, Berlin, Heidelberg (2009).

15. Possik, J., Zouggar-Amrani, A., Vallespir, B., Zacharewicz, G.: Lean techniques impact
evaluation methodology based on a co-simulation framework for manufacturing systems.
International Journal of Computer Integrated Manufacturing. 35, 91–111 (2022).

16. Russell, N., Aalst, W., Ter, A.: Exception handling patterns in process-aware information
systems. (2006).

17. Adams, M., ter Hofstede, A.H.M., van der Aalst, W.M.P., Edmond, D.: Dynamic,
Extensible and Context-Aware Exception Handling for Workflows. In: Meersman, R.
and Tari, Z. (eds.) On the Move to Meaningful Internet Systems 2007: CoopIS, DOA,
ODBASE, GADA, and IS. pp. 95–112. Springer Berlin Heidelberg, Berlin, Heidelberg
(2007).

18. Jasinski, A., Qiao, Y., Fallon, E., Flynn, R.: A Workflow Management Framework for
the Dynamic Generation of Workflows that is Independent of the Application
Environment. In: 2021 IFIP/IEEE International Symposium on Integrated Network
Management (IM). pp. 152–160 (2021).

19. Andree, K., Ihde, S., Pufahl, L.: Exception Handling in the Context of Fragment-Based
Case Management. In: Nurcan, S., Reinhartz-Berger, I., Soffer, P., and Zdravkovic, J.
(eds.) Enterprise, Business-Process and Information Systems Modeling. pp. 20–35.
Springer International Publishing, Cham (2020).

20. About the Business Process Model and Notation Specification Version 2.0.2,
https://www.omg.org/spec/BPMN/, last accessed 2022/05/27.

21. Rowell, D.: State-space representation of LTI systems. URL: http://web. mit.
edu/2.14/www/Handouts/StateSpace. pdf. 1–18 (2002).

