Property Expression and Verification in an Incremental Model Development Framework: a Case Study

Thomas Lambolais and Anne-Lise Courbis, EuroMov DHM, IMT Mines Ales, Univ Montpellier, thomas.lambolais@mines-ales.fr, anne-lise.courbis@mines-ales.fr Abstract-The IDCM framework (Incremental Development of Conforming Models) supports incremental constructions and evaluations of UML behavioral models (architecture of components and state machines). This framework evaluates models with respect to implicit temporal safety and liveness properties. The specifiers and designers only describe models, they don't need to write down explicit temporal logic properties. In this paper, we show how explicit safety and liveness properties can also be described using semi-formal boilerplates, translated into classical temporal logic formulas which are themselves translated into testing transition systems.

Adding evaluation means to model-based development (relation checking) is a way to develop models incrementally, following a spiral-based development cycle.

I. INTRODUCTION

Our goal is to assist designers during modeling tasks of reactive systems. We consider two aspects: describing the history of an architectural model construction by a sequence of modeling steps; offering assistance during this history, by providing evaluation and construction techniques based on formal relations.

In [START_REF] Lambolais | Development and Verification of UML Architecture by Refinement and Extension Techniques[END_REF], we proposed a set of architectural construction techniques which (i) contribute to architectural model qualities through well-known design principles in software engineering (separation of concerns, hierarchy and information hiding); (ii) include formal verifications for early detection of behavioral issues, i.e. safety and liveness problems.

In this paper, we extend this approach and show how typical informal temporal properties, described by boiler plates, can be translated into Labelled Transition Systems and verified by our framework.

The article is structured as follows. Section 2 presents the main incremental paradigms, safety and liveness concerns and incremental relations. This section also presents a semantics of UML architectures. Section 3 presents the way we can define and verify explicit safety and liveness properties. A case study is given in Section 4, on which two properties are specified. Comparison with existing work is given in Section 5. We conclude in Section 6.

II. FUNDAMENTALS OF INCREMENTAL MODELING AND UML COMPOSITE COMPONENT SEMANTICS

By incremental modeling, we mean that models are progressively developed. They may be refined or abstracted, and extended or restricted [START_REF] Lambolais | Development and Verification of UML Architecture by Refinement and Extension Techniques[END_REF], [START_REF] Lambolais | IDF: A framework for the incremental development and conformance verification of UML active primitive components[END_REF]. At each step, the new model is compared to the previous one through a suitable relation, which focuses on behavioral and temporal aspects.

As shown by Alpern and Schneider [START_REF] Schneider | Decomposing Properties into Safety and Liveness using Predicate Logic[END_REF], all temporal properties can be seen as a conjunction of safety and liveness properties. The relation used to compare models is chosen among a set of relations which can be interpreted with respect to the way they preserve safety and/or liveness properties. We say that a property φ is preserved by a relation R if, for any two models P and

Q such that P R Q, P |= φ ⇒ Q |= φ.
We observe safety and liveness properties by means of the interactions of the system with its environment. These interactions consist in accepting an event (signal or operation reception), or performing an action requiring a signal send or operation call. A trace is a partial sequence of observable interactions starting from the initial state.

The LTS (Labeled Transition Systems) semantics we give to UML primitive components behavior state machines is not recalled here, see [START_REF] Courbis | A formal support for incremental behavior specification in agile development[END_REF], [START_REF] Lambolais | IDF: A framework for the incremental development and conformance verification of UML active primitive components[END_REF]. Let us briefly recall that an LTS P is a tuple P, Act, →, P where:

• P is a set of state names, • Act is a set of action names, • → ⊆ P × Act × P is a set of labeled transitions between states, • P is the initial state. The tool we have developed includes UML State Machine transformation into LTS [START_REF] Courbis | IDCM[END_REF]. Here follows an intuitive presentation of incremental relations, and a proposal for the UML composite component semantics.

A. Incremental relations between UML components.

Based on classical trace inclusion MAY and conformance relation conf [START_REF] Leduc | Conformance relation, associated equivalence, and minimum canonical tester in LOTOS[END_REF], the IDCM framework implements several incremental relations. We only give an intuitive presentation here of conf, INC , REF and = REF , which will be used in sections III and IV. Refer to [START_REF] Courbis | A formal support for incremental behavior specification in agile development[END_REF], [START_REF] Lambolais | IDF: A framework for the incremental development and conformance verification of UML active primitive components[END_REF], [START_REF] Phan | Développement Incrémental de Spécifications d'Architectures en UML Intégrant des Procédures de Vérification[END_REF] The verification algorithms to check these relations have been implemented within the IDCM tool.

B. UML composite components semantics.

UML composite components describe architectural systems in terms of UML component instances, linked between themselves by assembly connectors and connected to the outside environment by delegation connectors. We give a semantics of UML composite component behaviors on parallel compositions of processes in the EXPOPEN process algebra [START_REF] Garavel | CADP 2010: A Toolbox for the Construction and Analysis of Distributed Processes[END_REF]. EXPOPEN shares the same concepts as basic LOTOS process algebra [START_REF] Leduc | Conformance relation, associated equivalence, and minimum canonical tester in LOTOS[END_REF]. Secondly, EXPOPEN models are translated into LTS by the CADP tool [START_REF] Garavel | CADP 2010: A Toolbox for the Construction and Analysis of Distributed Processes[END_REF].

For instance, fig. 1 presents a UML architecture (A 0) which models an automotive front-light system (see details in section IV). In the architecture A 0 , there are three component instances linked by assembly connectors c3 and c4. There are three delegation connectors c1, c2 and c5 that link ports of the architecture to ports of its components. Ports linked by a connector share the same UML interface.

The external interfaces of A 0 correspond to actions exchanged on delegation connectors c1, c2 and c5. These actions must be observable to verify the properties of the system, while the set of synchronized actions on assembly connectors c3 and c4 are not on the focus of verification and will be hidden.

M |= (a tt ⇒ [b]ff)
-This is a general expression of a safety property.

Derived expressions of this kind are simply "b is never offered" or "b is always possible", since action b may also be a positive statement: M |= b tt -For example, "In any circumstances, the flash action is always offered". (L) "In any circumstances, every a-action leads eventually to b.":

-Using and ♦ (eventually) operators, such properties can be formally written: -This is a general expression of liveness property:

M |= ([a]♦(b tt ∧ [Act -b]ff) -A property [a]F
after any a-action, b will be done. -For example, "When the system is in headlamp mode (low or high beam), switching back to side lights switches off high beams and low beams". A. Verification of safety properties (S) 1) General case: Properties of kind (S) lead to:

M |= ([a]ff ∨ [b]ff).
Such safety properties define unwanted action. We define the LTS T (using '+', '.' operators and recursion textual notations for convenience), which accepts at any time actions a or b: T = a.T + b.T

Then, we observe the set of systems ObsSet after any trace of M :

ObsSet = {M | M σ =⇒ M , ∀σ ∈ Tr (M)}
Let us recall that Tr (M), the set of traces of M , are all the sequences of observable actions starting from the initial state, and that

M a1•••an ====⇒ M = M τ * -→ a1 -→ τ * -→ • • • τ * -→ an -→ τ * -→ M .
If the safety property (S) is satisfied by M , no set of ObsSet should simulate T :

∀M ∈ ObsSet. T M
The relation is the preorder associated to Milner's congruence equivalence. This verification corresponds to a simulation, which is convenient to verify safety properties and the most efficient for our purposes.

2) Particular case for positive statements when there is no premise: We may choose a simpler verification means, when safety properties (S) are of the kind:

M |= b tt ∧ • b tt
which means that M must always accept b every two actions (•F means that F is true in the next state).

We define process

T = b. a∈Act a.T
T is a process that "always" does b, at least every two following actions, and possibly several times in sequence (b ∈ Act).

In order to check the safety property, we verify that the process T synchronized with M on every actions (operator '||)

T ||M is deadlock free. This means that M can always do T actions. Absence of deadlock can be verified in IDCM.

B. Verification of liveness properties (L)

We consider properties of the kind (L):

M |= ([a]♦ b tt ∧ [Act -b]ff).

IV. ILLUSTRATION: ADAPTIVE FRONT-LIGHTING SYSTEM

We consider a car Adaptive Front-lighting System (AFLS) implemented by several car manufacturers [START_REF]Automotive Adaptive Front-lighting System Reference Design[END_REF]. Among the five models (S 0 , A 0 , . . . , A 3) incrementally defined, we present here S 0 and A 0 which fit the following requirements:

(User informal req.): the front-lighting system comprises side lamps, low and high beams that the driver chooses according to a precise protocol. There are two driver commands: a manual lighting control position switch (Fig. 2.1) and a low and high beam lever (Fig. 2.3). The lighting control switch offers "off" (A), "side lights" (B) and "headlamps" (C) positions. It is only when this switch is in the C position that the driver can change between the low and high beams with the lever. In any position, the low and high beam lever also offers a flash command.

(A. S 0 and A 0 models S 0 is intended to be a primitive component, representing the initial specification, whose behaviour is described by a single State Machine. A 0 , representing a possible realization of S 0 , is a composite component describing an architecture. Both S 0 and A 0 have the same outside provided and required interfaces (Fig. 3 In complement to further models, we developed a Java prototype application, which simulates the AFLS behaviour (Fig. 4). The two driver commands are the two button lines at the bottom (the low and high beam lever is grey, while the beige one can only go from one position to its successive or preceding position).

) (2) 1
The behavioral specification of S 0 (Fig. 5) has two roles: (i) it defines when operations are provided to the driver: in particular, driverHBon and driverHBoff are only possible when the switch is in LowBeam mode; (ii) it translates the driver commands into the lamp device operations: for instance driverLow switches low beams on, but keeps side lights on, driverPark switches side lights on or switches low beams off, and driverFlash effect is described by an activity of two sequenced operations: highBeamOn followed by highBeamOff. In [START_REF] Lambolais | Development and Verification of UML Architecture by Refinement and Extension Techniques[END_REF], we described a way to build an architecture A 0 which is a correct refinement of S 0 :

S 0 = REF A 0 . (1)
It leads to A 0 (described in Fig. 1) which connects three primitive components. We give here the state machines of HighBeamProtocol (Fig. 6) and LightControl (Fig. 7).

B. Specification and verification of typical properties

While equation (1) guaranties that A 0 and S 0 share the same safety and liveness properties, obviously, it does not guarantee that S 0 satisfies the informal requirements (User informal req.).

1) Example of safety property: "The system can always accept driverFlash commands every two steps, except in highbeam mode." This is the following φ safety property: φ = (driverFlash . Act -driverHB . driverFlash .tt)

In order to check this property, we build the LTS presented in Fig. 8, which first tests a driver flash action, and after any other action (driver low, driver park, driver off), tries to perform a driver flash action again. Using model transformation and IDCM, we can check that property φ is satisfied:

hide driverHB in (S 0 || T) is deadlock-free.
2) Example of liveness property: "In low/highBeam mode, driverPark command always switches off low beams." This is the following ψ property:

ψ = ([driverLow][driverPark]♦(lowBeamOff tt ∧ [Act -lowBeamOff]ff)) Let G = Act -driverLow -driverPark.
The testing LTS T is:

T = G .success.T + driverLow.driverPark.T 2 T 2 = lowBeamOff.success.T + G -lowBeamOff .T 2 It appears that hide Act -success in (S 0 ||T) = REF Ok .
with Ok = success.Ok Indeed, when in HighBeam state, S 0 can not perform driverPark followed by lowBeamOff: a transition is missing from HighBeam state to SideLight state, triggered by driverPark.

V. RELATED WORK

Most of the works dealing with verification (model-checking and theorem proving) take formal specifications as inputs. We used CADP toolbox [START_REF] Garavel | CADP 2010: A Toolbox for the Construction and Analysis of Distributed Processes[END_REF], as well as CCS tools such as CAAL [START_REF] Aceto | Reactive Systems: Modelling, Specification and Verification[END_REF], [START_REF] Wortmann | Caal 2.0 recursive hml, distinguishing formulae, equivalence collapses and parallel fixedpoint computations[END_REF]. Model checking tools use temporal logics (for instance Hennessy-Milner Logics in CAAL) do describe and verify properties. Compared to such tools, our objective in the IDCM framework is threefold: (i) taking as input UML architectures and state machines, i.e. semi-formal descriptions (ii) describing properties within the same language (iii) providing incremental relations of refinement and extension. In this paper, safety and liveness properties are verified by LTS comparisons and deadlock detection, without having to use temporal logics.

Moreover, the increasing number of works dealing with formal model based analysis [START_REF] Bertolino | Software architecture-based analysis and testing: a look into achievements and future challenges[END_REF] do not ensure extension, refinement or substitutability of models [START_REF] Lambolais | IDF: A framework for the incremental development and conformance verification of UML active primitive components[END_REF]. To the best of our knowledge, no work has defined relations for incremental development of architectural models, defined in UML. Table I gives the synthesis of the analyzed approaches along liveness, safety, substitution, extension and refinement aspects.

Liv.

Saf. Sub. Ext.

Ref. UML/Wright [START_REF] Graiet | Adaptation d'UML2.0 à l'ADL Wright[END_REF] UML/B [START_REF] Said | A method of refinement in UML-B[END_REF] ∼ SysML/Interface automata [START_REF] Chouali | Formal verification of components assembly based on SysML and interface automata[END_REF] ∼ UML/omega2 [START_REF] Ober | Unambiguous UML composite structures: the OMEGA2 experience[END_REF] ∼ AADL/FIACRE [START_REF] Berthomieu | Formal Verification of AADL models with Fiacre and Tina[END_REF] AADL/BIP [START_REF] Chkouri | Prototyping of distributed embedded systems using AADL[END_REF] Archware (LOTOS) [START_REF] Oquendo | π-Method: A Model-Driven Formal Method for Architecture-Centric Software Engineering[END_REF] PADL-AEmilia [START_REF] Aldini | On the usability of process algebra: An architectural view[END_REF] SafArchie [3] ∼ FIESTA [START_REF] Waignier | FIESTA: A Generic Framework for Integrating New Functionalities into Software Architectures[END_REF] ∼ : supported; ∼: partially supported; ' ': not supported;

TABLE I EVALUATION OF ARCHITECTURAL AND VERIFICATION TOOLS.

[23] proposes a UML profile and translates UML models into Wright for using the model checker FDR. FDR focuses on safety and liveness analyses without fairness assumption. It does not analyze any extension nor substitution relation. Some work such as [START_REF] Said | A method of refinement in UML-B[END_REF] focus on translating UML into B or Z. They include refinement techniques but do not address extension techniques. [START_REF] Chouali | Formal verification of components assembly based on SysML and interface automata[END_REF] considers SysML models in order to verify components assemblies. They perform behavioral compatibility verifications, but do not analyze any liveness property other than dead-lock detection and do not address extension and refinement problems. [START_REF] Ober | Unambiguous UML composite structures: the OMEGA2 experience[END_REF] has extended the analysis techniques proposed by [START_REF] Cuccuru | Meaningful composite structures[END_REF] which defined OMEGA2, a UML profile. Architectures are translated into IF/IFx models [START_REF] Bozga | IF-2.0: A Validation Environment for Component-Based Real-Time Systems[END_REF], [START_REF] Bozga | The IF Toolset[END_REF] in order to be analyzed by the CADP toolbox [START_REF] Garavel | CADP 2010: A Toolbox for the Construction and Analysis of Distributed Processes[END_REF] for safety property analysis. However, model substitutability, extension and refinement are not supported.

[7] considers AADL descriptions and transforms them into FIACRE in order to apply the model checker TINA [START_REF] Berthomieu | The tool TINA: Construction of abstract state spaces for Petri nets and time Petri nets[END_REF]. TINA analyzes safety, liveness and deadlocks under the fairness hypothesis, but it does not address extension, refinement and substitutability. [START_REF] Chkouri | Prototyping of distributed embedded systems using AADL[END_REF] has a similar approach by translating AADL into the BIP language [START_REF] Basu | Modeling Heterogeneous Real-time Components in BIP[END_REF]. [START_REF] Courbis | Safe Incremental Design of UML Architectures[END_REF] transforms UML architecture into BIP. However, BIP focuses on safety properties and does not address liveness, extension, refinement, nor substitutability. Archware [START_REF] Oquendo | ArchWare: Architecting Evolvable Software[END_REF], [START_REF] Oquendo | π-Method: A Model-Driven Formal Method for Architecture-Centric Software Engineering[END_REF] is a framework based on the LOTOS language allowing the use of the CADP model checker [START_REF] Garavel | CADP 2010: A Toolbox for the Construction and Analysis of Distributed Processes[END_REF]. Safety and liveness properties are analyzed under fairness assumption. Compatibility between components is verified, but no extension nor substitution relations is considered. PADL and AEmilia [START_REF] Bernardo | Architecting families of software systems with process algebras[END_REF], [START_REF] Aldini | On the usability of process algebra: An architectural view[END_REF] are languages based on a stochastic process algebra. They are associated with the model checker TwoTowers [START_REF] Bernardo | TwoTowers 5.1 User Manual[END_REF]. Analyses can be conducted according to several bisimulation relations. It appears that these relations are too strong for incremental developments.

SafArchie and TranSAT framework [START_REF] Barais | Transat: A framework for the specification of software architecture evolution[END_REF] deal with the evolution of architectures using safe patterns. The compatibility between components is addressed from different points of view: structural, functional and behavioral. Substitutability of components is studied from a syntactical point of view by considering interfaces. This does not guarantee the behavioral conformance of the architecture in which the component is substituted. FIESTA [START_REF] Waignier | FIESTA: A Generic Framework for Integrating New Functionalities into Software Architectures[END_REF] defines a generic framework where new components are introduced into architectural models. It is based on a pattern approach and focus on adding or modifying connections in order to ensure the compatibility between components. This work addresses a part of the incremental development in so far as the structural compatibility does not guarantee the behavioral one.

In [START_REF] Djaaboub | Generating verifiable LOTOS specifications from UML models: A graph transformation-based approach[END_REF], the authors propose a transformation of UML state charts and communication diagrams in LOTOS and use FOCOVE verification environment where properties expressed by CTL formulas are verified. [START_REF] Hnatkowska | Transformation of Dynamic Aspects of Uml Models Into Lotos Behaviour Expressions[END_REF] proposes UML statecharts and their synchronization transformation in LOTOS. No verification is proposed, nor extension and refinement.

[22] transforms UML protocol state machines into Alloy. No temporal properties are taken into account. Protocol state machines are convenient to express predicates on states, which depend on terms and values. We do not support such data verifications. On the opposite, standard Alloy models do not allow temporal logic verifications.

[25] presents a transformation of UML activity diagrams into Alloy. Such work has the same limits as [START_REF] Garis | Specifying UML protocol state machines in alloy[END_REF] concerning temporal aspects, hence they do not verify liveness properties.

UML activity diagrams are also considered in [START_REF] Daw | Uml-vt: A formal verification environment for uml activity diagrams[END_REF], using model checkers such as: UPPAAL, SPIN, NuSMV and PES. Hence, safety and liveness properties are described in specific temporal logics. Nevertheless, the automated aspect of the Eclipse-plugin implementation of the tool allows users without a background in formal methods to verify the safety and liveness of a system.

[29] presents an interesting transformation of UML components diagram and state machines into timed automata that are checked with UPPAAL tool. [START_REF] Burmester | incremental design and formal verification with uml/rt in the fujaba real-time tool suite[END_REF] also proposes a transformation of UML state machines into timed automata. These work support timed properties, whereas we only consider temporal properties. However, user must provide explicit descriptions of properties using timed temporal logics.

VI. CONCLUSION

IDCM framework proposes architectural modeling techniques for reactive systems which cover refinement and extension approaches, as well as evaluation means, based on conformance and refinement relations. Such relations verify implicit safety and liveness properties. In this paper, we present patterns of explicit safety and liveness properties and a mechanism to check them on the desired models, using the refinement equivalence relation. This relation has the advantage of being weaker than the traditional observational Milner's relation.

Describing and verifying explicit properties is a complementary means to check: (i) first abstract models; (ii) extension points: in the incremental approach, we check that extension preserves liveness properties, but we were not able to check that a specific safety property is not violated by new behaviours.

This work has several limits. The designer does not need to express safety and liveness properties in a specific temporal logics, but he has to translate such properties into specific LTS. Even if we provide templates, this can be tricky task. Secondly, the UML State Machine translation into LTS does not consider data and timing aspect. We focus on 'pure' actions, without data parameters. Hence, guards, change event and time event in UML state machines are always translated by non deterministic LTS.

Further works consist in improving the IDCM tool on two points: offering a way to describe semi-formally such properties (formal translations being automatically generated); improving verdicts and counter-examples in case a relation or property is not satisfied.

Fig. 1 .

 1 Fig. 1. A UML composite component (A 0)

 states in Hennessy-Milner logics that, for all processes after a, F is true. If there is no a-successor, this property is true whatever the value of F . -b tt ∧ [Act -b]ff is true when there exists a bsuccessor, and no other successor.

 Let success ∈ Act. We define LTS T and T b as follows: T = Act -a .success.T + a.T b T b = b.success.T + Act -b .T b Then, we observe the system M synchronized with T on every actions (operator '||'), where every actions except success are hidden: Obs = hide Act -success in (M ||T) If the liveness property (L) is satisfied by M , should be refinement equivalent to a process Ok = success.Ok: Obs = REF Ok which means that, when all actions are hidden except success, Obs should perform success infinitely often.

Fig. 2 .

 2 Fig. 2. Driver commands: (1) manual lighting control, (2) lighting control with auto mode, (3) low and high beam lever.

): Driver Light Switch and Driver High Beam correspond to Fig. 2.1 and Fig. 2.3, Device Light Switch is the required interface which commands the lighting device through Driver Light Switch and Driver High Beam interfaces correspond to driver commands of Fig.2.1 and Fig.2.3.

Fig. 3 .

 3 Fig. 3. UML provided and required interfaces for S 0 component

Fig. 4 .

 4 Fig. 4. Example of Graphical User Interface associated to a Java simulation of the AFLS.

Fig. 5 .

 5 Fig. 5. S 0 state machine

Fig. 6 .Fig. 7 .

 67 Fig. 6. HighBeamProtocol state machine

Fig. 8 .

 8 Fig. 8. LTS T to check if S 0 or A 0 can always accept the DRIVERFLASH action, except in high beam mode.

 to find formal definitions and an extensive presentation of other incremental relations. Given two models M 1 and M 2 , M 2 MAY M 1 means that M 2 traces are included into M 1 traces. It ensures that M 2 satisfies any safety property of M 1 : indeed, M 2 must refuse all what M 1 must refuse. M 2 conf M 1 , or M 2 conforms to M 1 , if after any trace of M 1 , M 2 must accept every action that M 1 must accept. It ensures that M 2 is more deterministic than M 1 . This relation guarantees that any liveness property of M 1 is satisfied by M 2 . The conformance relation is seen as an implementation relation. However, this relation is not transitive and cannot be used as such for incremental developments. M 1 INC M 2 , or M 2 increments M 1 , if any model which conforms to M 2 also conforms to M 1 . In particular, M 1 INC M 2 ⇒ M 2 conf M 1 , and INC is a transitive relation. M 1 REF M 2 , or M 2 refines M 1 , if M 1 INC M 2 and M 2 MAY M 1 . Hence, M 1 REF M 2 guarantees that liveness and safety properties of M 1 are also satisfied by M 2 . = REF is the equivalence relation associated to REF .