N
N

N

HAL

open science

Property Expression and Verification in an Incremental
Model Development Framework: a Case Study

Thomas Lambolais, Anne-Lise Courbis

» To cite this version:

Thomas Lambolais, Anne-Lise Courbis. Property Expression and Verification in an Incremental Model
Development Framework: a Case Study. ERTS 2022 - 11th European Congress on Embedded Real

Time Systems, Jun 2022, Toulouse, France. hal-04095205

HAL Id: hal-04095205
https://imt-mines-ales.hal.science/hal-04095205

Submitted on 11 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

https://imt-mines-ales.hal.science/hal-04095205
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Property Expression and Verification in an
Incremental Model Development Framework:
a Case Study

Thomas Lambolais and Anne-Lise Courbis,
EuroMov DHM, IMT Mines Ales, Univ Montpellier,

thomas.lambolais@mines-ales.fr, anne-lise.courbis@mines-ales.fr

Abstract—The IDCM framework (Incremental Development
of Conforming Models) supports incremental constructions and
evaluations of UML behavioral models (architecture of compo-
nents and state machines). This framework evaluates models with
respect to implicit temporal safety and liveness properties. The
specifiers and designers only describe models, they don’t need
to write down explicit temporal logic properties. In this paper,
we show how explicit safety and liveness properties can also be
described using semi-formal boilerplates, translated into classical
temporal logic formulas which are themselves translated into
testing transition systems.

Adding evaluation means to model-based development (rela-
tion checking) is a way to develop models incrementally, following
a spiral-based development cycle.

I. INTRODUCTION

Our goal is to assist designers during modeling tasks of
reactive systems. We consider two aspects: describing the
history of an architectural model construction by a sequence
of modeling steps; offering assistance during this history, by
providing evaluation and construction techniques based on
formal relations.

In [26], we proposed a set of architectural construction
techniques which (i) contribute to architectural model qualities
through well-known design principles in software engineering
(separation of concerns, hierarchy and information hiding); (ii)
include formal verifications for early detection of behavioral
issues, i.e. safety and liveness problems.

In this paper, we extend this approach and show how typical
informal temporal properties, described by boiler plates, can
be translated into Labelled Transition Systems and verified by
our framework.

The article is structured as follows. Section 2 presents the
main incremental paradigms, safety and liveness concerns and
incremental relations. This section also presents a semantics
of UML architectures. Section 3 presents the way we can
define and verify explicit safety and liveness properties. A
case study is given in Section 4, on which two properties are
specified. Comparison with existing work is given in Section
5. We conclude in Section 6.

II. FUNDAMENTALS OF INCREMENTAL MODELING AND
UML COMPOSITE COMPONENT SEMANTICS

By incremental modeling, we mean that models are pro-
gressively developed. They may be refined or abstracted, and

extended or restricted [26], [27]. At each step, the new model
is compared to the previous one through a suitable relation,
which focuses on behavioral and temporal aspects.

As shown by Alpern and Schneider [35], all temporal
properties can be seen as a conjunction of safety and liveness
properties. The relation used to compare models is chosen
among a set of relations which can be interpreted with respect
to the way they preserve safety and/or liveness properties. We
say that a property ¢ is preserved by a relation R if, for any
two models P and Q such that PR Q, P = ¢ = Q E ¢.

We observe safety and liveness properties by means of
the interactions of the system with its environment. These
interactions consist in accepting an event (signal or operation
reception), or performing an action requiring a signal send
or operation call. A trace is a partial sequence of observable
interactions starting from the initial state.

The LTS (Labeled Transition Systems) semantics we give
to UML primitive components behavior state machines is not
recalled here, see [16], [27]. Let us briefly recall that an LTS
P is a tuple (P, Act,—, P) where:

e P is a set of state names,

e Act is a set of action names,

e — CPx Actx P is a set of labeled transitions between

states,

o P is the initial state.

The tool we have developed includes UML State Machine
transformation into LTS [15]. Here follows an intuitive pre-
sentation of incremental relations, and a proposal for the UML
composite component semantics.

A. Incremental relations between UML components.

Based on classical trace inclusion C,, and conformance
relation conf [28], the IDCM framework implements several
incremental relations. We only give an intuitive presentation
here of conf, Cye, Crer and =g, which will be used in
sections III and IV. Refer to [16], [27], [33] to find formal
definitions and an extensive presentation of other incremental
relations. Given two models My and Ms, My Ty M7 means
that M, traces are included into M traces. It ensures that M5
satisfies any safety property of M;: indeed, Ms must refuse
all what M, must refuse.

Ms conf My, or Ms conforms to M, if after any trace of
My, M must accept every action that M; must accept.

It ensures that M5 is more deterministic than M. This
relation guarantees that any liveness property of M; is
satisfied by Ms. The conformance relation is seen as
an implementation relation. However, this relation is not
transitive and cannot be used as such for incremental
developments.

Cine Mo, or Ms increments M, if any model which

conforms to Ms also conforms to M;. In particular,

My Cne My = My conf M, and T, is a transitive

relation.

My Crer Ms, or My refines My, if My Ee Mo and Ma Cyay
M. Hence, My Cpee M, guarantees that liveness and
safety properties of M are also satisfied by Ms. =ger is
the equivalence relation associated to Cpee.

M,y

The verification algorithms to check these relations have
been implemented within the IDCM tool.

B. UML composite components semantics.

UML composite components describe architectural systems
in terms of UML component instances, linked between them-
selves by assembly connectors and connected to the outside
environment by delegation connectors. We give a semantics
of UML composite component behaviors on parallel compo-
sitions of processes in the EXPOPEN process algebra [21].
EXPOPEN shares the same concepts as basic LOTOS process
algebra [28]. Secondly, EXPOPEN models are translated into
LTS by the CADP tool [21].

For instance, fig. 1 presents a UML architecture (Ag)
which models an automotive front-light system (see details in
section IV). In the architecture Ag, there are three component
instances linked by assembly connectors c3 and c4. There are
three delegation connectors cl, c2 and cb that link ports of
the architecture to ports of its components. Ports linked by a
connector share the same UML interface.

The external interfaces of Ay correspond to actions ex-
changed on delegation connectors c1, c2 and c5. These actions
must be observable to verify the properties of the system, while
the set of synchronized actions on assembly connectors c3 and
c4 are not on the focus of verification and will be hidden.

«Component»
A0

B + LS: LightSwitchProtocol [1]
+ OUT: evicelightswitch [1] + IN: DriverLightSwitch [1
© + Light: LightControl [1]

+ IN1: DrfverLightSwitch [1]
c N

T T

i vy + IN: LigthController

a5

+ OUT: LigthController [1]

+ OUT: DevicelightSwitch [1] =+ HB: HighBeamProtocol [1]

+ IN2: DrjverHighBeam [1]

L

+ IN: DriverHighBeam [
OUT: LigthController [1]

I
1

Fig. 1. A UML composite component (Ag)

III. PROPERTY DEFINITION AND VERIFICATION

Let a and b be two actions (a,b € Act). We illustrate here
two patterns of temporal properties to be satisfied by a model
M, for safety (S) and liveness (L) properties:

(S) “In any (a)-circumstances, action b is never possible.”:

- an (a)-circumstance means that M offers action a,
what is formally written, in Hennessy Milner Logic
(HML): M = (a)tt

— b is not possible is written, in HML: M = [b]ff

— Hence, using usual logical implication = and modal
operator [J (always) for convenience, property (S)
corresponds to:

M = O((a)tt = [bl£f)

— This is a general expression of a safety property.
Derived expressions of this kind are simply “b is
never offered” or “b is always possible”, since action
b may also be a positive statement: M = ()t

— For example, “In any circumstances, the flash action
is always offered”.

(L) “In any circumstances, every a-action leads eventually to
b.”

— Using O and ¢ (eventually) operators, such proper-

ties can be formally written:

M = O([a]O((b)tt A [Act — bfF)

— A property [a]F' states in Hennessy-Milner logics
that, for all processes after a, I is true. If there is no
a-successor, this property is true whatever the value
of F.
— (b)tt A [Act — b]ff is true when there exists a b-
successor, and no other successor.

— This is a general expression of liveness property:
after any a-action, b will be done.

— For example, “When the system is in headlamp mode
(low or high beam), switching back to side lights
switches off high beams and low beams”.

A. Verification of safety properties (S)
1) General case: Properties of kind (S) lead to:

M = O([alff v [blF)-
Such safety properties define unwanted action. We define
the LTS T (using ‘4°, ‘. operators and recursion textual
notations for convenience), which accepts at any time actions

a or b:
T=aT+bT

Then, we observe the set of systems ObsSet after any trace
of M:
ObsSet = {M' | M == M’ Yo € Tr(M)}

Let us recall that Tr(M), the set of traces of M, are all the
sequences of observable actions starting from the initial state,
and that M === M’ = M 5T . I 2 Ty,

If the safety property (S) is satisfied by M, no set of ObsSet
should simulate 7™:

VM' € ObsSet. T Iz M’

The L relation is the preorder associated to Milner’s
congruence equivalence. This verification corresponds to a
simulation, which is convenient to verify safety properties and
the most efficient for our purposes.

2) Particular case for positive statements when there is no
premise: We may choose a simpler verification means, when
safety properties (S) are of the kind:

M = (b)tt ATIO(b)tt

which means that M must always accept b every two actions
(OF means that F' is true in the next state).
We define process

T =b. Z a.T

a€Act

T is a process that “always” does b, at least every two
following actions, and possibly several times in sequence (b €
Act).

In order to check the safety property, we verify that the
process 1" synchronized with M on every actions (operator

D
T||M

is deadlock free. This means that M can always do T
actions. Absence of deadlock can be verified in IDCM.

B. Verification of liveness properties (L)
We consider properties of the kind (L):

M = O([a]O(b)tt A [Act — bIff).
Let success ¢ Act. We define LTS T and T}, as follows:

T =
T, =

(Act — a).success. T + a.Tp
b.success. T + (Act — b).Ty,

Then, we observe the system M synchronized with T
on every actions (operator ‘||”), where every actions except
success are hidden:

Obs = hide Act — success in (M||T)

If the liveness property (L) is satisfied by M, Obs should
be refinement equivalent to a process Ok = success.Ok:

ObS ~—REF Ok

which means that, when all actions are hidden except
success, Obs should perform success infinitely often.

IV. ILLUSTRATION: ADAPTIVE FRONT-LIGHTING SYSTEM

We consider a car Adaptive Front-lighting System (AFLS)
implemented by several car manufacturers [36]. Among the
five models (Sp, Ag, ..., Asz) incrementally defined, we
present here Sy and Ao which fit the following requirements:

(User informal req.): the front-lighting system comprises side
lamps, low and high beams that the driver chooses accord-
ing to a precise protocol. There are two driver commands:
a manual lighting control position switch (Fig. 2.1) and a
low and high beam lever (Fig. 2.3). The lighting control

switch offers “off” (A), “side lights” (B) and “headlamps”
(C) positions. It is only when this switch is in the C
position that the driver can change between the low and
high beams with the lever. In any position, the low and
high beam lever also offers a flash command.

E: \ovibeam F: high beam
6)) @) 3

Fig. 2. Driver commands: (1) manual lighting control, (2) lighting control
with auto mode, (3) low and high beam lever.

A. Sy and Ay models

S is intended to be a primitive component, representing the
initial specification, whose behaviour is described by a single
State Machine. Ay, representing a possible realization of Sg,
is a composite component describing an architecture. Both Sy
and Ag have the same outside provided and required interfaces
(Fig. 3): Driver Light Switch and Driver High Beam correspond
to Fig. 2.1 and Fig. 2.3, Device Light Switch is the required
interface which commands the lighting device through Driver
Light Switch and Driver High Beam interfaces correspond to
driver commands of Fig.2.1 and Fig.2.3.

«Interfaces
[DriverLightSwitch

,'l @ + driverLow()
@ + driverPark()
@ + driverOff()

«Interfaces
= DeviceLightSwitch

«components.
#15_0 AFLS

& + sideLight()

@& + lightOff()

+ lowBeamOn()
& + lowBeamOff()
& + highBeamOni)
& + highBeamOff()

‘| +IN1: DriverLightSwitch [1]

+ QUT: DeviceLightSwitch [1]
+ IN2: DriverHighBeam [1]

«Interface»
DriverHighBeam

“n| @ + driverHB()
& + driverFlash()

Fig. 3. UML provided and required interfaces for Sy component

In complement to further models, we developed a Java
prototype application, which simulates the AFLS behaviour
(Fig. 4). The two driver commands are the two button lines
at the bottom (the low and high beam lever is grey, while the
beige one can only go from one position to its successive or
preceding position).

The behavioral specification of Sy (Fig. 5) has two roles:
(i) it defines when operations are provided to the driver:
in particular, driverHBon and driverHBoff are only possible
when the switch is in LowBeam mode; (ii) it translates the
driver commands into the lamp device operations: for instance
driverLow switches low beams on, but keeps side lights on,
driverPark switches side lights on or switches low beams off,
and driverFlash effect is described by an activity of two se-
quenced operations: highBeamOn followed by highBeamOff.

Feux de position ON. ® Feux de croisement ON Auto mode ON
Feux de route ON/OFF [l Appels de phares

Fig. 4. Example of Graphical User Interface associated to a Java simulation
of the AFLS.

-

5.05M

HighBeam

erHBfActivity: HighBeamOn

driverHB/Activity: HighBeamOf

Sidelight | grivert ow/Activity: lowBeamOn f%
owBeam

dl\verPa ri/Activity: lowBeamOff

driverFlash/Activity: HBOnOff driverFlash/Activity: HBONOff

LightOff

o0

o

driverFlash/Activity: HBOnOff

driverPark/Activity: sideLight

driverOf/Activity: lightOff

Fig. 5. Sp state machine

In [26], we described a way to build an architecture Ag
which is a correct refinement of Sy:

SO ~—REF AO- (1)

It leads to Ap (described in Fig. 1) which connects three
primitive components. We give here the state machines of
HighBeamProtocol (Fig. 6) and LightControl (Fig. 7).

(HighBeamProtocol SM |

driverHB/Activity: HBJ
HBState
o |

driverFlash/Activity: CFlash

Fig. 6. HighBeamProtocol state machine

LightControlSM

chb

sideLight

coff/Activity: lightOff

\ash,’A(n\'\ty: Flash
csl/Activity: sideLight

cslfActivitg? lowBeamOff ctivity: lowBeamOff
clb/Activity: lowBeamOi

HighBeamOn LowBeam
h,ﬂAm\w Flash

hb/Activity: highBeamOn

chb/Activity: highBeamGi.

clash/Activity: Flash

Fig. 7. LightControl state machine

B. Specification and verification of typical properties

While equation (1) guaranties that Ay and Sy share the
same safety and liveness properties, obviously, it does not

guarantee that Sy satisfies the informal requirements (User
informal req.).

1) Example of safety property: “The system can always ac-
cept driverFlash commands every two steps, except in highbeam
mode.” This is the following ¢ safety property:

¢ = O((driverFlash).(Act — driverHB).(driverFlash).tt)

In order to check this property, we build the LTS presented
in Fig. 8, which first tests a driver flash action, and after
any other action (driver low, driver park, driver off), tries to
perform a driver flash action again.

IN_DRIVERLOW

IN_DRIVEI
OUT_LOWBEAMON

Fig. 8. LTS T to check if Sp or Ag can always accept the DRIVERFLASH
action, except in high beam mode.

Using model transformation and IDCM, we can check that
property ¢ is satisfied:

hide driverHB in (Sy || T)
is deadlock-free.

2) Example of liveness property: “In low/highBeam mode,
driverPark command always switches off low beams.” This is
the following v property:

¢ = O([driverLow][driverPark] O ({lowBeamOff) ¢t
A [Act — lowBeamOff]ff))

Let G = Act — driverLow — driverPark. The testing LTS T is:

T = (G).success. T + driverLow.driverPark.T
T5 = lowBeamOff.success. T + (G — lowBeamOff).Th

It appears that
hide Act — success in (Sp||T") #eer Ok.

with Ok = success. Ok
Indeed, when in HighBeam state, Sy can not perform
driverPark followed by lowBeamOff: a transition is missing
from HighBeam state to SideLight state, triggered by driverPark.

V. RELATED WORK

Most of the works dealing with verification (model-checking
and theorem proving) take formal specifications as inputs.
We used CADP toolbox [21], as well as CCS tools such as
CAAL [1], [38]. Model checking tools use temporal logics
(for instance Hennessy-Milner Logics in CAAL) do describe
and verify properties. Compared to such tools, our objective

in the IDCM framework is threefold: (i) taking as input UML
architectures and state machines, i.e. semi-formal descriptions
(ii) describing properties within the same language (iii) pro-
viding incremental relations of refinement and extension. In
this paper, safety and liveness properties are verified by LTS
comparisons and deadlock detection, without having to use
temporal logics.

Moreover, the increasing number of works dealing with
formal model based analysis [9] do not ensure extension,
refinement or substitutability of models [27]. To the best of
our knowledge, no work has defined relations for incremental
development of architectural models, defined in UML. Table I
gives the synthesis of the analyzed approaches along liveness,
safety, substitution, extension and refinement aspects.

Liv. Saf. Sub. Ext.
UML/Wright [23] v
UML/B [34]
SysML/Interface automata [14]
UML/omega2 [30]

AADL/FIACRE [7]
AADL/BIP[13]

Archware (LOTOS) [31]
PADL-Amilia [2]
SafArchie [3]

FIESTA [37] ~

Ref.
v
v v

N2l

AN

INENEN|ENENIENENENEN

v': supported; ~: partially supported;
TABLE I
EVALUATION OF ARCHITECTURAL AND VERIFICATION TOOLS.

’: not supported;

[23] proposes a UML profile and translates UML models
into Wright for using the model checker FDR. FDR focuses
on safety and liveness analyses without fairness assumption. It
does not analyze any extension nor substitution relation. Some
work such as [34] focus on translating UML into B or Z. They
include refinement techniques but do not address extension
techniques. [14] considers SysML models in order to verify
components assemblies. They perform behavioral compatibil-
ity verifications, but do not analyze any liveness property other
than dead-lock detection and do not address extension and
refinement problems. [30] has extended the analysis techniques
proposed by [18] which defined OMEGA?2, a UML profile.
Architectures are translated into IF/IFx models [10], [11] in
order to be analyzed by the CADP toolbox [21] for safety
property analysis. However, model substitutability, extension
and refinement are not supported.

[7] considers AADL descriptions and transforms them into
FIACRE in order to apply the model checker TINA [8]. TINA
analyzes safety, liveness and deadlocks under the fairness
hypothesis, but it does not address extension, refinement and
substitutability. [13] has a similar approach by translating
AADL into the BIP language [4]. [17] transforms UML
architecture into BIP. However, BIP focuses on safety prop-
erties and does not address liveness, extension, refinement,
nor substitutability. Archware [32], [31] is a framework based
on the LOTOS language allowing the use of the CADP model
checker [21]. Safety and liveness properties are analyzed under
fairness assumption. Compatibility between components is
verified, but no extension nor substitution relations is con-
sidered. PADL and Amilia [6], [2] are languages based on a
stochastic process algebra. They are associated with the model

checker TwoTowers [5]. Analyses can be conducted according
to several bisimulation relations. It appears that these relations
are too strong for incremental developments.

SafArchie and TranSAT framework [3] deal with the evo-
lution of architectures using safe patterns. The compatibility
between components is addressed from different points of
view: structural, functional and behavioral. Substitutability of
components is studied from a syntactical point of view by
considering interfaces. This does not guarantee the behavioral
conformance of the architecture in which the component is
substituted. FIESTA [37] defines a generic framework where
new components are introduced into architectural models. It is
based on a pattern approach and focus on adding or modifying
connections in order to ensure the compatibility between
components. This work addresses a part of the incremental
development in so far as the structural compatibility does not
guarantee the behavioral one.

In [20], the authors propose a transformation of UML
state charts and communication diagrams in LOTOS and use
FOCOVE verification environment where properties expressed
by CTL formulas are verified. [24] proposes UML statecharts
and their synchronization transformation in LOTOS. No veri-
fication is proposed, nor extension and refinement.

[22] transforms UML protocol state machines into Alloy.
No temporal properties are taken into account. Protocol state
machines are convenient to express predicates on states, which
depend on terms and values. We do not support such data
verifications. On the opposite, standard Alloy models do not
allow temporal logic verifications.

[25] presents a transformation of UML activity diagrams
into Alloy. Such work has the same limits as [22] concerning
temporal aspects, hence they do not verify liveness properties.

UML activity diagrams are also considered in [19], using
model checkers such as: UPPAAL, SPIN, NuSMV and PES.
Hence, safety and liveness properties are described in specific
temporal logics. Nevertheless, the automated aspect of the
Eclipse-plugin implementation of the tool allows users without
a background in formal methods to verify the safety and
liveness of a system.

[29] presents an interesting transformation of UML compo-
nents diagram and state machines into timed automata that are
checked with UPPAAL tool. [12] also proposes a transforma-
tion of UML state machines into timed automata. These work
support timed properties, whereas we only consider temporal
properties. However, user must provide explicit descriptions
of properties using timed temporal logics.

VI. CONCLUSION

IDCM framework proposes architectural modeling tech-
niques for reactive systems which cover refinement and ex-
tension approaches, as well as evaluation means, based on
conformance and refinement relations. Such relations verify
implicit safety and liveness properties. In this paper, we
present patterns of explicit safety and liveness properties and
a mechanism to check them on the desired models, using
the refinement equivalence relation. This relation has the
advantage of being weaker than the traditional observational
Milner’s relation.

Describing and verifying explicit properties is a comple-
mentary means to check: (i) first abstract models; (ii) ex-
tension points: in the incremental approach, we check that
extension preserves liveness properties, but we were not able
to check that a specific safety property is not violated by new
behaviours.

This work has several limits. The designer does not need to
express safety and liveness properties in a specific temporal
logics, but he has to translate such properties into specific
LTS. Even if we provide templates, this can be tricky task.
Secondly, the UML State Machine translation into LTS does
not consider data and timing aspect. We focus on ‘pure’
actions, without data parameters. Hence, guards, change event
and time event in UML state machines are always translated
by non deterministic LTS.

Further works consist in improving the IDCM tool on
two points: offering a way to describe semi-formally such
properties (formal translations being automatically generated);
improving verdicts and counter-examples in case a relation or
property is not satisfied.

REFERENCES

[1] L. Aceto, A. Ingdlfsdottir, K. Larsen, and J. Srba. Reactive Systems:
Modelling, Specification and Verification. Cambridge University Press,
2007.

[2] A. Aldini and M. Bernardo. On the usability of process algebra: An
architectural view. Theoretical Computer Science, 335(2-3):281-329,
May 2005.

[3] O. Barais, E. Cariou, L. Duchien, N. Pessemier, and L. Seinturier.
Transat: A framework for the specification of software architecture
evolution. Issues on Coordination and Adaptation Techniques, pages
31-38, 2004.

[4] A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous Real-time
Components in BIP. In Proceedings of the Fourth IEEE International
Conference on Software Engineering and Formal Methods (SEFM 2006),
pages 3-12, Washington, DC, USA, 2006. IEEE Computer Society
Washington.

[5] M. Bernardo. TwoTowers 5.1 User Manual, 2006.

[6] M. Bernardo, P. Ciancarini, and L. Donatiello. Architecting families
of software systems with process algebras. ACM Trans. Softw. Eng.
Methodol., 11(4):386-426, Oct. 2002.

[7] B. Berthomieu and J.-P. Bodeveix. Formal Verification of AADL models
with Fiacre and Tina. In Embedded Real-Time Software and Systems
(ERTS 2010), 2010.

[8] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA: Con-
struction of abstract state spaces for Petri nets and time Petri nets.
International Journal of Production Research, 42(14):2741-2756, 2004.

[9] A. Bertolino, P. Inverardi, and H. Muccini. Software architecture-based

analysis and testing: a look into achievements and future challenges.

Computing, 95(8):633-648, 2013.

M. Bozga, S. Graf, and L. Mounier. IF-2.0: A Validation Environment

for Component-Based Real-Time Systems. In International Conference

on Computer Aided Verification, pages 343-348. Springer, 2002.

M. Bozga, S. Graf, 1. Ober, 1. Ober, and J. Sifakis. The IF Toolset. In

Formal Methods for the Design of Real-Time Systems, volume 3185 of

LNCS, pages 237-267. Springer Berlin Heidelberg, 2004.

S. Burmester, H. Giese, M. Hirsch, and D. Schilling. "incremental design

and formal verification with uml/rt in the fujaba real-time tool suite”.

In "International Workshop on Specification and Validation of UML

Models for Real Time and Embedded Systems, SVERTS2004, Satellite

Event of the 7th International Conference on the Unified Modeling

Language”, 2004.

M. Y. Chkouri and M. Bozga. Prototyping of distributed embedded

systems using AADL. ACESMB 2009, pages 65-79, 2009.

S. Chouali and A. Hammad. Formal verification of components assem-

bly based on SysML and interface automata. Innovations in Systems

and Software Engineering, 7(4):265-274, Oct. 2011.

A.-L. Courbis and T. Lambolais. IDCM. http://idcm.wp.mines-telecom.

fr. Accessed: 2017-04-01.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27])

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

A.-L. Courbis, T. Lambolais, H.-V. Luong, T.-L. Phan, C. Urtado, and
S. Vauttier. A formal support for incremental behavior specification in
agile development. In The 24th International Conference on Software
Engineering and Knowledge Engineering (SEKE), pages 694-699, 2012.
A.-L. Courbis, T. Lambolais, and T.-H. Nguyen. Safe Incremental
Design of UML Architectures. In 29th International Conference on
Software Engineering and Knowledge Engineering, 2017.

A. Cuccuru. Meaningful composite structures. In K. Czarnecki, I. Ober,
J.-M. Bruel, A. Uhl, and M. Vélter, editors, Model Driven Engineering
Languages and Systems (MODELS 2008), volume 5301 of LNCS, pages
828-842. Springer Berlin Heidelberg, 2008.

Z. Daw, J. Mangino, and R. Cleaveland. Uml-vt: A formal verification
environment for uml activity diagrams. In P&D@ MoDELS, pages 48—
51, 2015.

S. Djaaboub, E. Kerkouche, and A. Chaoui. Generating verifiable
LOTOS specifications from UML models: A graph transformation-based
approach. International Journal of Embedded Systems, 10(6):453—469,
2018.

H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: A
Toolbox for the Construction and Analysis of Distributed Processes. In
P. A. Abdulla and K. R. M. Leino, editors, Tools and Algorithms for
the Construction and Analysis of Systems, volume 6605 of LNCS, pages
372-387. Springer Berlin Heidelberg, Saarbriicken, 2011.

A. Garis, A. C. Paiva, A. Cunha, and D. Riesco. Specifying UML
protocol state machines in alloy. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 7321 LNCS(June):312-326, 2012.
M. Graiet, M. T. Bhiri, F. Dammak, and J.-P. Giraudin.
d’UML2.0 a ’ADL Wright. In CAL, pages 83-100, 2006.
B. Hnatkowska and Z. Huzar. Transformation of Dynamic Aspects of
Uml Models Into Lotos Behaviour Expressions. International Journal
of Applied Mathematics and Computer Science, 11(2):537-556, 2001.
M. Kherbouche and B. Molnar. Formal model checking and transforma-
tions of models represented in uml with alloy. In International Workshop
on Modelling to Program, pages 127-136. Springer, 2020.

T. Lambolais and A.-L. Courbis. Development and Verification of UML
Architecture by Refinement and Extension Techniques. In European
Congress on Embedded Real Time Software and Systems (ERTS), 2018.
T. Lambolais, A.-L. Courbis, H.-V. Luong, and C. Percebois. IDF: A
framework for the incremental development and conformance verifi-
cation of UML active primitive components. Journal of Systems and
Software, 113:275-295, 2016.

G. Leduc. Conformance relation, associated equivalence, and minimum
canonical tester in LOTOS. PSTV XI. North-Holland, pages 249-264,
1991.

A. L. Muniz, A. M. Andrade, and G. Lima. Integrating uml and
uppaal for designing, specifying and verifying component-based real-
time systems. Innovations in Systems and Software Engineering,
6(1):29-37, 2010.

I. Ober and I. Dragomir. Unambiguous UML composite structures: the
OMEGAZ2 experience. SOFSEM 201 1: Theory and Practice of Computer
Science, pages 418430, 2011.

F. Oquendo. m-Method: A Model-Driven Formal Method for
Architecture-Centric Software Engineering. ACM SIGSOFT Software
Engineering Notes, 31(3):1-13, 2006.

F. Oquendo, B. Warboys, R. Morrison, R. Dindeleux, F. Gallo, H. Gar-
avel, and C. Occhipinti. ArchWare: Architecting Evolvable Software. In
Software Architectures, volume 3047 of LNCS, pages 257-271. Springer
Berlin Heidelberg, 2004.

T.-L. Phan. Développement Incrémental de Spécifications
d’Architectures en UML Intégrant des Procédures de Vérification.
PhD thesis, Montpellier 2, France, 2013.

M. Y. Said, M. Butler, and C. Snook. A method of refinement in UML-
B. Software & Systems Modeling, 14(4):1557-1580, 2015.

F. B. Schneider. Decomposing Properties into Safety and Liveness using
Predicate Logic. Technical report, Cornell Univ. Ithaca, NY, Dept. of
Computer Science, 1987.

Texas-Instruments. Automotive Adaptive Front-lighting System Refer-
ence Design. Technical Report SPRUHP3, Texas Instruments, System
Application Engineering, July 2013.

G. Waignier, A.-F. Le Meur, and L. Duchien. FIESTA: A Generic Frame-
work for Integrating New Functionalities into Software Architectures. In
F. Oquendo, editor, Software Architecture, volume 4758 of LNCS, pages
76-91. Springer Berlin Heidelberg, 2007.

J. K. Wortmann, S. R. Olesen, and S. Enevoldsen. Caal 2.0 recursive
hml, distinguishing formulae, equivalence collapses and parallel fixed-
point computations, 2015.

Adaptation

