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Carotid atherosclerotic stenosis of the carotid artery is an important cause of

ischemic cerebrovascular disease. The aim of this study was to predict the

presence or absence of clinical symptoms in unknown patients by studying the

existence or lack of symptoms of patients with carotid atherosclerotic stenosis.

First, a deep neural network prediction model based on brain MRI imaging data of

patients withmultiplemodalities is constructed; it uses themulti-modality features

extracted from the neural network as inputs and the incidence of diagnosis as

output to train themodel. Then, amachine learning-based classification algorithm

is developed to utilize the clinical features for comparison and evaluation. The

experimental results showed that the deep learning model using imaging data

could better predict the clinical symptom classification of patients. As part of

preventive medicine, this study could help patients with carotid atherosclerosis

narrowing to prepare for stroke prevention based on the prediction results.

KEYWORDS

brain MRI, carotid atherosclerotic stenosis, ischemic stroke, deep learning, diagnostic

classification

1. Introduction

Ischemic stroke is a major cause of morbidity and mortality worldwide. Carotid
atherosclerotic stenosis is an important risk factor of ischemic stroke and accounts for
approximately 20% of stroke patients (Johnson et al., 2019). At present, it is proved that
the main mechanisms of stroke due to carotid atherosclerotic stenosis are the intracranial
arteries embolism caused by carotid unstable plaque rupture and the reduction of cerebral
blood flow caused by moderate and severe carotid stenosis (Gupta et al., 2013). Then,
cerebral ischemic injury occurs and patient presents with clinical symptoms of stroke.

Nowadays, the widely use of magnetic resonance imaging (MRI) in stroke clinical
practice makes carotid atherosclerotic stenosis-related cerebral ischemic injury easily to be
detected. Cerebral signal abnormality is the direct embodiment of the injury caused by
carotid stenosis. Cerebral signal abnormality is much more frequent than clinical stroke
and is highly prevalent in older people. Generally, the signal abnormalities of cerebral
ischemic injury can present as several types on routine MRI, including (but not limited
to) infarctions and white matter hyperintensities. Many studies have suggested that cerebral
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signal abnormalities are associated with an increased risk of
ischemic stroke (Debette et al., 2019; Epstein et al., 2022).
Therefore, better exploring the cerebral signal abnormalities on
MRI is crucial to stroke prediction strategies in patients with
carotid atherosclerotic stenosis. Best medical therapy has showed
the effectiveness in reducing stroke risk (Abbott, 2009; Reiff et al.,
2020). Patients with carotid stenosis who have a high possibility to
suffer stroke are more likely to benefit from intensive and rigorous
medical therapy.

In recent years, deep learning (DL) has been increasingly
applied in the medical field to solve clinical problems. Stroke
medicine is a quite suitable application for DL because vast
amount and wide variety of brain imaging data need to be
collected, combined and analyzed in making clinical decisions.
Most of previous studies adapted DL algorithms based on brain
MRI data have focused on acute ischemic stroke, either for
the infarction detection and segmentation, or for the clinical
prognosis evaluation (Yu et al., 2020; Li et al., 2022; Shin et al.,
2022). However, few has concerned about predicting risk of
ischemic stroke.

Given the clear correlation between cerebral signal
abnormalities and ischemic stroke, and the advantage of DL
techniques to integrated process variety of visible and invisible
features, we present a DL algorithm to predict the occurrence of
ischemic stroke in patients with carotid atherosclerotic stenosis
using their routine brain MRI images. Deep convolutional neural
networks require a large number of training parameters, which not
only create a classification burden but also may lead to overfitting.
We hope that the existing model can meet the clinical needs
without overtraining parameters. Finally, we chose 3d Resnet-18
(He et al., 2016) because it not only uses more hidden layers and
images for training, it also has a smaller convolutional kernel, which
can effectively improve model performance. T1-weighted imaging
(T1WI), T2-weighted imaging (T2WI), fluid attenuated inversion
recovery (FLAIR), and apparent diffusion coefficient (ADC) were
the most common sequences used in clinic and different modalities
can provide different information. For example, T2WI and FLAIR
were extremely useful to detect cerebral ischemic injury lesions
because most lesions presented as hyperintensities on these two
modals but often showed subtle or obvious differences. T1WI
could provide good cerebral anatomical information and helped to
discriminate infarctions and white matter hyperintensity. Besides,
ADC was also important for diagnosing cerebral ischemic injury
lesions in different stages.

Based on this consideration, we designed a channel attention
mechanism to learn salient regions in different modal images.
Feature fusion can enhance the ability of characterizing the
prognosis of ischemic stroke in patients with carotid atherosclerotic
stenosis. In addition, clinical data are used in the algorithm to
improve the prediction accuracy.

2. Related work

To date, several stroke risk prediction models were developed,
most of them were based on clinical data, especially the
demographic factors and common cardiovascular risk factors
(Flueckiger et al., 2018; Arafa et al., 2022; Chun et al., 2022).

The Framingham Stroke Risk Score (FSRS) (Flueckiger
et al., 2018) was one of the most widely used risk score for
prediction of stroke. It provided sex-specific predictions of
the absolute risks of total stroke in the future 5–10 years,
which representing important information for the patient.
The revised FSRS updated stroke risk factors prevalence
and stroke rate incidence and showed better discriminative
ability and calibration for incident stroke than original
FSRS (Flueckiger et al., 2018).

Computational learning offers opportunity to improve
accuracy by exploiting complex interactions between risk
factors. Recent years, some studies have tried to employ
machine learning (ML) algorithms to predict the stroke risk
(Weng et al., 2017; Teoh, 2018; Penafiel et al., 2020). Weng
et al. (2017) used four different algorithms including logistic
regression, random forest, gradient boosting machines, and
neural networks to predict the patients at risk of stroke. Teoh
(2018) proposed a Recurrent Neural Network method in
combination with a custom loss function to predict a diagnosis
of stroke. The best neural network of the model attained an
area under the curve (AUC) of 0.67. Penafiel et al. (2020)
presented a model for predicting stroke occurrences within a
year based on Dempster-Shafer theory. The model achieved
good performance for stroke risk prediction even with some
missing data.

Commonly used ML-based solutions require manual
computation of grayscale features (Acharya et al., 2013a,b;
Araki et al., 2017); then a training classifier is used to learn these
features. Thereafter, the model is trained, features from external
data can be learned to predict its class risk (Saba et al., 2019b).
However, this ML-based solution is ad-hoc, slow, and not universal,
in addition to lacking reliability and stability. In recent years, DL
techniques have dominated various industries, especially inmedical
imaging (Biswas et al., 2019; Khanna et al., 2019; Saba et al., 2019a).
This technique provides an alternative to ML strategies. It is
able to automatically learn feature maps in the original image.
Changes in grayscale contrast are dynamically adjusted through
neural network layers of the DL architecture. Lekadir et al. (2016)
developed a Convolutional Neural Network (CNN) model for
the classification of plaque components by extracting 90,000
plaques from 50 in vivo ultrasound images and achieved a
correlation coefficient of 0.90. This study aimed to develop and
design an automated carotid plaque characterization and binary
classification system, i.e., symptomatic and asymptomatic, with an
implementation on a supercomputer through a DL framework.

Generally, single modality medical images often do not contain
enough information to reach a reliable diagnosis. Clinical diagnosis
often uses multiple sources of information, such as brain tumor
segmentation with multiple MR images. Effective fusion of multi
modal information is of great importance in the medical field
for better diagnostic prediction. Mainly, CNNs use probabilistic
methods for information fusion, which can be divided into
three strategies:

• Image-level fusion, such as input data cross talk (Peiris et al.,
2021),

• Feature-level fusion, such as attention mechanism cross talk
(Zhou et al., 2020),
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• Decision-level fusion, such as weighted average (Kamnitsas
et al., 2017).

However, probabilistic fusion cannot effectively manage the
conflicts that occur when different labels based on several
modalities are assigned to the same voxel. In this paper, a feature-
level fusion is used to fuse the brain MRI images of the four
modalities extracted by themodel with shared structures, effectively
reducing the parameters while learning complementary features of
different modalities.

3. Method

3.1. Dataset

In this dataset, 282 patients are included (mean age 69.8 ±

9.4; 250 males, 66 females) from July 2020 to September 2022,
who had internal carotid artery stenosis of > 50% diagnosed by
computed tomograph (CT) angiography or magnetic resonance
(MR) angiography. Of all the patients, 151 have experienced
ischemic stroke before they were diagnosed of carotid stenosis,
the remaining 131 were asymptomatic with no neurological
abnormalities. The common clinical symptoms of ischemic stroke
include weakness or numbness of the face, arm or leg, trouble
speaking and understanding, and monocular blindness. The study
was approved by the ethics committee of our institution and
informed consent was obtained from all patients.

The exclusion criteria were as follows:

1. Non-atherosclerotic carotid artery stenosis,
2. Carotid artery occlusion,
3. Prior carotid artery procedures,
4. Cardiogenic stroke,
5. Hemorrhagic stroke,
6. Primary intracranial diseases.

All the patients underwent brain MR examination using a 1.5
or 3.0 Tesla (T) MR scanner within 1 week of their carotid artery
examination. TheMRI protocol included T1WI, T2WI, FLAIR, and
diffusion weighted imaging (DWI)/ADC. The imaging parameters
were as follows: T1WI: repetition time (TR)/echo time (TE) =

2,000∼2,400/7.6∼18.0 ms; T2WI: TR/TE= 5,000∼6,000/100∼136
ms; FLAIR: TR/TE = 8,400∼9,000/87.0∼97.0 ms; and DWI/ADC:
TR/TE = 4,000∼5,000/77.0∼85.0 ms, b = 0, and 1,000 s/mm2.
Here, ms represents milliseconds and mm millimeters. Slice
thickness was 5 mm and slice spacing was 1.5 mm for all
the sequences.

Clinical features including sex, age, and vascular risk factors
(hypertension, diabetes mellitus, hyperlipidemia, and coronary
heart disease) were also recorded.

3.2. Deep learning architecture

In this paper, a multimodal fusion model is designed, and
the overall flowchart is shown in Figure 1. Specifically, the model
consists of a feature extraction encoder and a classification head for
multimodal fusion, where weights are shared among the unimodal

encoders and features are extracted from each unimodal input
encoder, which means that all spatial locations share the same
convolution kernel, which greatly reduces the number of parameter
layers required for convolution. The feature extraction encoder
consists of four residual blocks, and the specific flow is shown in
Figure 2. The CNNmodel constructed in this paper mainly consists
of a convolutional layer, a maximum pooling layer and a Dropout
layer, and finally a fully connected layer as the output layer.

3.2.1. Feature extraction module
In our dataset, the image format is digital imaging and

communications in medicine (DICOM). After preprocessing, the
image output size is 256 × 256 × 24. Then, after a 7 × 7 ×

7 convolutional layer with 64 channels and two steps, a 3×3×3
maximum pooling layer with two steps is connected to the output.
Next, four modules consisting of residual blocks are used, each
using several residual blocks with the same number of output
channels. The first module has the same number of channels as the
number of input channels. Each subsequent module doubles the
number of channels of the previous module in the first residual
block and halves the height and width. For each module, two
residual blocks are included, and the residual block structure is
shown in Figure 2A. The residual block is to fuse the features of the
(i)th layer with those of the (i+ 2)th layer, which can maximize the
retention of shallow features while the network level is deepening
to avoid overfitting. Four residual blocks are structured as shown in
Figure 2B, and the main parameters are as follows.

For each after two convolutions of 64 convolution kernels
of 3 × 3 × 3, a maximum pooling is used. Then, after two
convolutions of 128 convolution kernels, a maximum pooling is
used. Again, after three convolutions of 256 convolution kernels, a
maximum pooling is used. This continues to repeat twice with three
convolutions of 512 convolution kernels, followed by a maximum
pooling; and finally after fully connected layers, the output. As
the residual module deepens, the number of convolutional kernels
increases, so that more channels can be obtained and different
features can be extracted at a deeper level.

3.2.2. Feature fusion module
To better fuse multimodal features, the feature extraction

module express different modal data as low-dimensional semantic
vectors and finally train a semantic similarity model, at which
point the different modalities can be constrained to a unified
representation space and multimodal fusion representation. Here
we designed a channel attention for multimodal feature fusion.
Specifically, for the image of the mth modality, where m ∈

[1, 2, 3, 4]. The output features Fm of the feature extraction module
are pooled globally in one spatial dimension to obtain a channel
description of C× 1× 1× 1, where C is the number of channels of
a single modal feature. A sigmoid activation function is then used
to obtain the weighting coefficients. Finally, the weight coefficients
are multiplied with the corresponding input features Fm to obtain
the new weighted features. The calculation of the weighted features
is shown in the following equation:

F
′

m = [σ (wm · Fm)]⊗ Fm, (1)
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FIGURE 1

The overview of multimodal fusion containing T1WI, T2WI, FLAIR, and ADC images as input.

FIGURE 2

Schematic illustration of the deformed feature extraction module. (A) Residual block and (B) Four Residual layers.

where σ represents the sigmoid function, and wm represents
the parameter matrix at training time. The features of different
modalities are stitched together after the maximum pooling
layer. Finally, a Fully Connected (FC) layer is created in the
corresponding dimension of the channel and output to the classifier
to obtain the classification result.

3.2.3. Loss function
In statistics, loss functions allow an evaluation of the difference

values between the true value of the degree and the predicted value.
The appropriate loss function usually increases the complexity of

the model. There are a number of loss functions including Mean-
Absolute loss function category Error (MAE), categorical cross-
entropy, Mean Squared Error (MSE) and binary cross-entropy.
This last lost function is used for our study, whose formula is
defined as:

Loss =
∑T

j=1
ŷj · log(yj)+ (1− ŷj) · log(1− ŷj), (2)

where T denotes the number of samples. yj is the true label value,
and ŷj is the predicted probability value.

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1118376
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Lv et al. 10.3389/fnins.2023.1118376

FIGURE 3

The original images of the four modalities in (a) T1WI, (b) T2WI, (c) FLAIR, and (d) ADC, and their pre-processed images. Patients in group (A) have

yellow dashed circles indicating symptomatic areas and patients in group (B) have red arrows indicating symptomatic areas. Note that visually,

symptoms in (A) are more obvious.

3.3. Machine learning architecture

On the one hand, clinical data is indispensable for physicians’
diagnosis. On the other hand, for the collected clinical features,
we used a ML analysis method. The data were divided in exactly
the same way as the deep learning approach. We measured four
commonMLmethods to predict stroke recurrence. These methods
are as follows: random forest (Breiman, 2001), logistic regression
and extreme gradient boosting (XGBoost):

1. Random forest is composed of many independent stand-alone
decision trees that are individually trained on a random sample
of data. The flexibility of random forest is one of its most
attractive features. It can be used for recurrence detection and
grouping tasks, and the overall weight of the overall weighted
features on the information is obvious.

2. Logistic regression uses a collection of independent factors
to predict a categorical dependent variable. Using logistic
regression, the output of the categorical dependent variable is

TABLE 1 Comparison of classification performance based on di�erent

modalities.

Modality AUC (%) Accuracy (%) Recall (%)

T1WI 62.2 60.5 78.3

T2WI 68.9 60.5 100

FLAIR 65.4 65.1 87.0

ADC 60.4 53.5 69.7

The bold values represent the best values.

predicted. Therefore, the output must be discrete or categorical
(it can be yes or no, 0 or 1, true or false, and so on).

3. The basis of XGBoost idea is to keep generating new trees. Each
tree is learned based on the difference between the previous
tree and the target value, thus reducing the bias of the model.
Therefore, it is using multiple base learners, each of which is
relatively simple to avoid overfitting. The next learner is the
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FIGURE 4

ROC curves of our network and compared methods. (A) Single modality and (B) Multi modality fusion.

result of learning the previous base learner, and the difference
between the model value and the actual value is continuously
reduced through the learning of multiple learners.

The comparison experimental results of different classifiers are
shown in Table 3.

4. Experiments

4.1. Evaluation metrics

For the analysis of the results, we used accuracy, recall,
and AUC scores for evaluation. In that respect, accuracy is
used to determine the performance of a classification model.
It determines the ratio of the correct predictions to the total
number of predictions. Recall is the ratio of true positives to
the sum of true positive and false negative predictions. The area
under the Receiver Operating Characteristic (ROC) is denoted
as the AUC. The closer the ROC curve is to the upper left
corner of the ROC curve, the more accurate the model is
and the more desirable the model is. The AUC score is what
determines the ability of the model to distinguish between different
categories, and higher values indicate better model performance. It
determines the ratio of the correct prediction to the total number
of predictions.

4.2. Implementation details

As our data were collected from different hospitals and different
machines, the voxels of the data were not the same. In order
to reduce the influence of unrelated other organ regions on
feature extraction in the lesion region, thus achieving the goal of
weakening data noise and improving model stability, we resampled
the original unique hedge and normalized the different sized
voxels in the medical images to the same size. In addition, all

data were normalized to adjust the feature values of different
dimensions to a similar range, and then a uniform learning rate
could be used to accelerate the model training. The two sets
of sample images shown in Figure 3 were original image of (a)
T1WI, (b) T2WI, (c) FLAIR, and (d) ADC, and their images
after pre-processing. Patients in group (Figure 3A) have a larger
symptomatic area, indicated by the yellow dotted circle. Patients
in group (Figure 3B) have a smaller symptomatic area, indicated by
the red arrow.

For data set partitioning, in this paper, the provided

training data set (four-modality MRI images) was randomly

divided into training set, validation set, and test set according

to the principle of positive and negative sample balance,
according to whether there are bleeding symptoms for the
dichotomous classification task. The main aim was to ensure
that the validation samples did not overlap with the training
samples, leading to the random division of the training set
(n = 197, 70%), validation set (n = 42, 15%), and test set
(n= 43, 15%).

Due to the small amount of data obtained from the hospital,
less coverage of imaging features may lead to over-fitting problems.
The model may not apply to other untrained data. Therefore,
data expansion methods including zooming in, zooming out
and moving this study compensated for the lack of data. The
final softmax classifier of the convolutional neural network had
final nodes that predicted the probability of each class based
on the features extracted from the network. The models were
implemented using PyTorch and trained by the Adam (Kingma
and Ba, 2014) optimization algorithm. The models were trained
for 300 epochs. All models were trained from scratch using
an initial learning rate of 1 × 10−4. The final loss function
was computed for each task for all samples in the batch with
known base fact labels and averaged to a global loss, which was
then back-propagated through the models to a predictive loss
for the final labels. These parameters were well-verified in the
industry empirically.
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TABLE 2 Comparison of classification performance based on di�erent

modalities.

Modality AUC (%) Accuracy (%) Recall (%)

T2WI and ADC 70.0 65.1 82.6

T2WI and FLAIR and
ADC

72.0 67.4 60.9

MF_CAM (ours) 78.5 76.7 87.0

The bold values represent the best values.

4.3. Analysis on single modality

Based on the same data partitioning method and the same
experimental setup as above, we first performed feature extraction
and classification of the unimodal MRI images. The experimental
results are reported in Table 1. In the single-modality experiments,
the AUC metrics of the four different modalities reached 62.2,
68.9, 65.4, and 60.4%, respectively, with the T2WI modality being
8.5% higher than the ADC modality AUC metric. Comparing the
accuracy classification performance of the four different modalities
longitudinally, the ADC modality was relatively poor, 11.6% lower
than the better-performing FLAIR. The ROC curves based on four
single modality image classifications are shown in Figure 4A.

4.4. Analysis on multi-modal fusion

In order to verify the effectiveness of data fusion of different
modes, we designed a fusion experiment of different modes, and
the experimental results are shown in Table 2. Compared with
the experimental results in Table 1, the classification effect of
multimodal fusion is improved, which verifies the theory that
different modalities can provide richer information. In addition,
for AUC measurement, the fusion result of T2WI and ADC mode
is lower than the fusion classification result of T2WI, FLAIR and
ADC, which indicates that FLAIR mode provides richer features.

In addition, to verify the effectiveness of different fusion
methods, we designed three groups of different fusion experiments,
all of which fused the features of four modes. Table 3 shows the
results of ablation research. Specifically, MF_Add directly adds the
features of different modes, and MF_Concat splices the features
of different modes through channels. In this paper, MF_CAM is
used. Before feature fusion, the attention mechanism of single-
mode images is increased, and then the features of key areas of
single mode are enhanced and then spliced by channels. From the
experimental results, the performance of MF_Add is the worst,
which shows that the feature addition fusion method is not a
desirable choice. In addition, MF_Concat does not fully consider
the importance of different modal features, and direct splicing
may have feature redundancy. In contrast, the model MF_CAM
with attention mechanism has achieved better fusion classification
results. It is verified that the attention mechanism designed in this
paper can help the model to focus on the same symptomatic area
after fusing the features of differentmodalities, so feature fusion can
obtain richer and more comprehensive tumor features of different
modalities, which greatly improves the classification results. ROC

TABLE 3 Comparison of classification performance based on di�erent

modalities.

Modality AUC (%) Accuracy (%) Recall (%)

MF_Add 67.0 60.5 56.5

MF_Concat 72.8 67.4 60.9

MF_CAM (ours) 78.5 76.7 87.0

The bold values represent the best values.

TABLE 4 A quantitative comparison of the e�ectiveness of di�erent

machine learning algorithms based on clinical data.

Methods AUC (%) Accuracy
(%)

Recall (%)

Random forest 50.6 54.8 63.6

Logistic regression 64.8 64.3 63.6

XGBoost 66.8 59.5 72.7

The bold values represent the best values.

curves based on four kinds of multimodal image classification are
shown in Figure 4B.

4.5. E�ectiveness of machine learning

The results of classification based on clinical features using three
different machine learning algorithms (RF, logistic regression, and
XGBoost) were shown in Table 4. The AUCs of the three algorithms
were 50.6, 64.8, and 66.8%, respectively. Among them, the value
of AUC of XGBoost classification algorithm reached 66.8%, which
was the highest among the three classification algorithms, and the
classification effect was average compared with the deep learning
methods based on image data in Table 1. Therefore, compared
with clinical features, image data can provide more abundant
information, which is indispensable for doctors’ diagnosis.

5. Discussion

Carotid atherosclerotic stenosis-related cerebral ischemic
injury, especially infarctions and white matter hyperintensities, can
be easily assessed with routine brain MRI. The signal abnormalities
of cerebral ischemic injury on MRI is far more common than
clinical cardiovascular risk factors. These imaging findings are
strong, independent risk factors for future symptomatic stroke.
Meta-analysis of a large amount of studies showed that presence
of bran infarctions and extensive white matter hyperintensities
burden were associated with higher risk of ischemic stroke (hazard
ratio, 2.18 and 2.39, respectively) (Debette et al., 2019). In this
paper, the AUC value of the classification experiment based on
single mode can reach 68.9% (T2WI), and the AUC value of
the experiment based on the fusion of T1WI, T2WI, FLAIR,
and ADC can reach 72.8%. To the best of our knowledge,
this is the first study that used brain MRI data to build a
prediction model using deep learning algorithms. The performance
of the model is better than the Meta-analysis also used brain
MRI data and the revised FSRS which is widely used in
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clinic (Flueckiger et al., 2018; Debette et al., 2019). The multiple
resources of MRI data partly ensured the reliability of the model
in real-world clinical situations.

6. Conclusion

In this paper, we first collected 282 cases of carotid artery
stenosis, each of which contained four different modes of brain
MRI images, namely: T1WI, T2WI, FLAIR, and ADC. In this
way, a multi-modal data set is constituted for judging whether
patients had symptoms or not. In addition, we propose a multi-
modal fusion learning classification network. Our method can
fuse multi-modal image features, effectively enhance the model
representation ability, and effectively improve the classification
performance compared with single-modality MRI images. As they
are widely used in clinical practice, our current study included
only routine brain MRI sequences. In the future, the data of
perfusion weighted imaging, also susceptibility weighted imaging
and functional MRI could be added to a comprehensive model to
provide more imaging information.
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