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Development and Implementation of Automated Qualification
Processes for the Identification of Pollutants in an Aquatic
Environment from High-Resolution Mass Spectrometric Nontarget
Screening Data

Francois Lestremau,™ Alexandre Levesque, Abdelmoughit Lahssini, Tanguy Magnan de Bornier,
Romain Laurans, Azziz Assoumani, and Hugues Biaudet
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ABSTRACT: Environmental pollution monitoring represents a major challenge due to the growing presence of a large and diverse
number of potential contaminants. In complement to target analysis, nontarget analysis, via liquid chromatography (LC) coupled to
high-resolution mass spectrometry (HRMS), is increasingly used to provide a more comprehensive characterization of pollution.
The challenge associated with this type of analysis is particularly related to the data treatment for substance identification. One of the
main limitations is that all data must be manually reviewed, which is tedious and time-consuming. Machine learning algorithms aim
to reproduce human behavior, and their capabilities were therefore evaluated to automatically identify substances in suspect
screening approaches. After selecting the relevant features produced from LC/HRMS, seven different machine learning models were
evaluated for each of the three different databases, which resulted in the selection of logistic regression (LR) and random forest
(RF)-based algorithms. An interface was built to rank the identified substances and to assess the performance of the developed
models. The LR model provided the best results when retention times were available. The developed LR and RF models were
determined complementarily, particularly when no retention times were available. However, limitations were noticed when using a
database containing different HRMS technologies.

KEYWORDS: suspect screening, LC/HRMS, machine learning, identification, contaminants, water

B INTRODUCTION

With the improvement of capabilities of the high-resolution data samples from different days/sites or for aiming at the
mass spectrometer, nontarget screening, which aims to provide identification of detected substances.”'’ Identification of
a more representative view of the presence of organic substances detected by nontarget screening approaches can
substances in samples, has been a growing field in the past therefore be performed using mass spectra databases in a so-
few decades in the characterization of environmental called “suspect screening”.'' The constitution of databases is
pollution.”” Coupled to gas or liquid chromatography, critical to ensure that a large number of substances can be

nontarget screening strategies were first originally applied to
metabolomics studies.” ° It has been extended to many fields
of environmental studies to characterize pollutants, for
instance, in atmospheric, soil, or water matrices.”®

Different categories can be distinguished for nontarget
screening, being used for fingerprint pattern comparison of
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accurately identified. Laboratories that developed their own
databases can generally inject only a limited amount of
analytical standards, between a hundred up to a thousand,
essentially due to the cost limitation of purchasing them. To
overcome this limitation, databases from external sources can
be employed. Manufacturers therefore provide spectral data-
bases, which can contain more than thousands of substances.
Collaborative databases have also been developed by the
scientific community. MassBank,'>" for instance, contains
overall up to 70,000 spectra from various types of
instrumentations and acquisition modes provided by diverse
voluntary contributor organisms. However, differences in
fragmentation patterns, in the number of fragments, and in
their relative intensities can occur between these different types
of instruments/vendors according to the technologies set up
even if several papers have reported that comparability
between QTOF spectra and Orbitrap spectra was providing
a good correlation.'*"?

For data treatment, dedicated software are used to automate
the substance identification (either from vendors or from
independent groups, for instance, EnviMass,'® MS DIAL,"” or
patRoon'®). Different strategies have been developed depend-
ing on the experimental data (molecular ion, retention time,
isotopic profile, fragmentation data) to provide assistance to
the user for substance identification. However, as there is a
huge amount of data to take into account and most of them
can suffer from more or less pronounced interferences, it is
common practice that experts manually validate all substance
identifications since the risk of false-positives can be large. All
proposed identifications have therefore to be reviewed, which
is time-consuming and represents a tedious task. This task is
also likely to become even more time-consuming as databases
are expected to grow and the number of substances to be
identified will therefore increase. This will lead to a completely
unacceptable amount of time dedicated to data analysis. An
additional downside is that the validation depends on the
experience and view of the expert who carries on this process.
Therefore, the validation procedure must be carefully defined
to obtain a reproducible process among different experts.

Artificial intelligence/machine learning approaches are
increasingly used to improve mass spectrometry-based data
treatment due to major improvements in recent years in
computing capabilities. Therefore, for example, metabolomic
communities have explored capabilities of using machine
learning to highlight biomarkers of diseases.'”*’ Deep learning
methods have also been investigated for example to improve
peak picking”' or mass spectra comparison.

This study was therefore dedicated to evaluating the use of
artificial intelligence to develop a scoring system that can
provide improved assistance to users for the verification of
substance identification in the suspect screening approach. It
ideally aims to provide a reproducible and automated
validation process without the need of a manual review. The
study focused particularly on water sample contaminants.
Various parameters were considered for the development of
the scoring system with a focus on processing data-
independent analysis results. Two main categories of databases
were considered to develop a dedicated data treatment
algorithm: a first one containing data generated with the
same type of instruments and a second one constituted from
different types of instruments. The obtained algorithms were
applied on a test data set to establish the degree of confidence

of the scoring system and the possibility of automating
substance identification.

B EXPERIMENTAL SECTION

Data Sources. Data Samples. Data were obtained from
the analysis of surface and wastewater samples from different
sites across France as part of a national French monitoring
campaign.”® All details about the samples and their extraction
procedure are described in this report. The samples extracted
onto the solid phase (SPE) were analyzed using an LC/QTOF
6550 system (Agilent technologies). Chromatographic analysis
used a Zorbax Aq column (150 mm X 2.1 mm, 1.8 pm)
(Agilent technologies) with 1 mM ammonium acetate and
methanol as mobile phases. Detailed chromatographic
conditions are presented in SI 1 in Table SI 1. All samples’
data were produced in the Agilent format (.d) and converted in
the mzML format using MS convert software (Proteowi-
zard™*).

Data Acquisition Mode. Analysis in the data-independent
mode was preferred to provide an exhaustive sample
characterization since it has the advantage that all ionized
substances that reach the collision cell are fragmented. Two
collision energies, 20 and 40 eV, were systematically acquired
in positive and negative modes for all data and included in the
process of the scoring model.

Databases. Three databases were used in this work.

e A database created by our laboratory from the injection
of 207 standards in the positive mode (POS) and 80 in
the negative mode (NEG) in the same analytical
conditions as used for the sample analyses.

e A database provided by Agilent in the sdf format, which
included 919 substances in POS and 295 in NEG.

e An extract of the MassBank Europe database—Release
version 2021.03."° Only spectra containing high-
resolution MS/MS information were considered for
this study representing a total of 1717 substances in POS
and 738 in NEG. As MassBank data contained spectra
from many different conditions and instruments, the
data were curated and homogenized to fit with the
intended study. All details about preprocessing of
MassBank data are provided in SI 2.

The laboratory and vendor databases included for all entries
mass spectra fragmentation at 10, 20, and 40 eV. Some entries
could include, if relevant, adduct spectra. Details on those data
are provided in Table SI 2. All databases were gathered,
formatted, and cleaned using homemade scripts. After this
preprocessing step, they were uploaded and stored in a
PostgreSQL database.

Data Treatment. All data were treated using a developed
in-house interface used to extract the relevant features and
display the results generated by the machine learning approach
(classification scores). Details on the data treatment are
provided in SI 3. General information about the treatment of
nontarget screening data and classification aspects have been
provided by Fisher et al.*® and can help facilitate the
comprehension of the results of this study.

Classification Problem and Machine Learning Approach.
Suspect screening relies on looking for a large number of
substances from a reference database into an experimental
sample. For each individual substance investigated, the
challenge is to certify if it is present or not in the sample,
which practically is being able to identify the substance or not.
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Table 1. Summary of All Features Considered for the Development of the Scoring System

type features

fragmentation at cos_sim_20
20 eV 20 eV

MassBank_sim_20

description study

cosine similarity between the experimental fragmentation spectrum and the theoretical one at AB,C

MassBank similarity between the experimental fragmentation spectrum and the theoretical one at  A,B,C

20 eV
nb_matched_peaks 20 number of matched peaks between the experimental fragmentation spectrum and the theoretical only C
one at 20 eV
ratio_peaks_found_20 ratio of peaks matched at 20 eV (= nb_matched_peaks_20/total_nb_peaks_20) AB,C
nb_high peaks 20 number of experimental fragments at 20 eV with a mass >100 only C

error_sum_20

cumulated sum of errors in mass peak by peak between the experimental fragmentation spectrum A,B,C

and the theoretical one at 20 eV

fragmentation at cos_sim_40
40 eV 40 eV

MassBank_sim_40

cosine similarity between the experimental fragmentation spectrum and the theoretical one at AB,C

MassBank similarity between the experimental fragmentation spectrum and the theoretical one at  A,B,C

40 eV
nb_matched_peaks 40 number of matched peaks between the experimental fragmentation spectrum and the theoretical only C
one at 40 eV
ratio_peaks found_ 20 ratio of peaks matched at 40 eV (= nb_matched peaks 40/total nb_peaks 40) AB,C
nb_high_peaks 20 number of experimental fragments at 40 eV with a mass >100 only C

error_sum_40

cumulated sum of errors in mass peak by peak between the experimental fragmentation spectrum  A,B,C

and the theoretical one at 40 eV

isotopic profile cos_sim_isotopic

cosine similarity between the experimental isotopic spectrum and the theoretical one AB,C

nb_matched peaks_isotopic = number of matched peaks between the experimental isotopic spectrum and the theoretical one at A,B,C

20 eV

other considered tic_flag
features

1 if apex intensity is higher than an intensity defined by expert; else 0 AB,C

This constitutes a binary classification problem, which can be
solved using different approaches. One particular method is to
use machine learning based on common properties, so-called
features, to provide an answer to this challenge with a
confidence value associated. Many machine learning algo-
rithms offer binary classification. One of the critical aspects of
this study was to select the most relevant features and model to
achieve an optimum classification.

Features Selected for Scoring System Evaluation. Feature
Overview. To develop the algorithm and rank the probability
of substance identification, a scoring system was developed.
Liquid chromatography/high-resolution mass spectrometry
(LC/HRMS) data contain different types of information
generated from chromatography, the MS TIC scan, or the MS
fragmentation pattern. Therefore, the following features,
considered the most significant, were selected for developing
the scoring system (Table 1).

As more variability was expected when comparing with a
database including multiple vendor spectra (MassBank data),
additional features were specifically included for this study
(Study C).

Details about the choice and the description of each feature
are provided in SI 3.

Construction of the Database Used for the Training
Phase. A training phase was carried out to develop the scoring
model. Representative experimental samples were manually
characterized and labeled. For this set of substances, the
selected features were built in comparison with the considered
reference databases, and various algorithms were trained. The
training data were built so that the two classes, substance is
present/is not present in the experimental sample, were equally
populated to avoid any bias.

Substances Considered for the Training. Twenty SPE
extracts of surface water samples from a national French
monitoring campaign were considered as case studies to train
the model (results for this study have been previously
published in a report’®). The data of these SPE extracts

were treated with vendor software, and the same two databases
(laboratory and vendor) were used in this study. Using the
vendor database in both cases allowed one to also consider a
larger number of substances and to include situations where no
retention times were available. For the classification of the
common approach, an adaptation of the Schymanski scale*®
was used. Substances for which retention times were matching
and at least or more than one fragment were determined were
classified as level 1. Substances without retention times but for
which at least three fragments were determined were classified
as level 2. To minimize the rate of false-positives, only these
two levels of classification, and therefore the corresponding
substances, were used to train the model. All results were
manually inspected with Agilent vendor software (Masshunter)
and validated using the criteria described previously. Although
this approach is not fully based on matching with retention
times of analytical standards (when they were not used) and
can therefore represent a larger risk to include some false-
positives, this choice of using real sample data over using
injected analytical standards was preferred since it could
provide more representative samples and a different level of
intensities, particularly in the case of data-independent analysis
where a larger noise is produced from the various sample
matrices for instance. This mode of analysis was selected
particularly since all ionized substances from the analyzed
samples produce fragmentation data and thereby a higher level
of interference, leading to a more challenging data
interpretation.

Overall and across all 20 samples in positive and negative
ionization modes and in the data-independent analysis mode,
approximately 1200 substances (600 for each category) were
selected for the training data set (including many identical
substances found in the different samples with different
abundances and impacted with different matrix effects).

Substances Not Present Considered for the Training. To
be able to train the algorithm, a category where molecules are
not present in the samples had to be defined. It had to
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Table 2. Performances Obtained with Different Classifiers for Study A

model fitting time scoring time accuracy precision recall F1_score
S random forests 0.324726 0.030378 0.965347 0.966728 0.965054 0.965296
4 quadratic discriminant analyses 0.008564 0.008156 0.961425 0.963795 0.960994 0.961312
0 logistic regression 0.018897 0.011027 0.953808 0.959158 0.953066 0.953484
2 support vector machines 0.019733 0.009340 0.953808 0.960903 0.952846 0.953399
1 decision tree 0.010815 0.008656 0.953771 0.955632 0.953510 0.953699
6 K-nearest neighbors 0.005651 0.013044 0.946116 0.954928 0.945000 0.945545
7 Bayes 0.007140 0.007359 0.934351 0.937782 0.935157 0.934185
3 linear discriminant analyses 0.010990 0.009642 0.924811 0.928917 0.924048 0.924512

(A) Confusion Matrix (B) Confusion Matrix (C) Confusion Matrix
o - o -

True labels
True labels

1
1

0 Predicted labels

0 Predicted labels

True labels

0 1
Predicted labels

Figure 1. Confusion matrix on the selected model using (A) laboratory database (Study A), (B) vendor database (Study B), and (C) MassBank

database (Study C).

represent roughly the same size in number as the category
considered for the molecules present in the samples. One
approach could have been to consider substances in the
databases that had not been determined in the samples.
However, this approach can potentially highlight substances
that were not identified using the common laboratory
approach (with vendor software) but that were in fact present
in the sample (false-negative). Therefore, instead of consider-
ing all of the molecules of the databases not identified, another
approach was preferred. To generate a set of molecules
classified as not present in the sample, it was chosen to label
the peaks with an identical molecular ion but with retention
times different from those of the molecules previously
identified in the samples.

Development and Test of the Different Algorithms.
Machine Learning Models Considered. The Python Package
scikit-learn for machine learning models was used to tackle the
data classification.”” The following eight classification models
implemented within this package were tested: decision tree/
random forest (RF), KNN classifier, MLP classifier, logistic
regression (LR), Bayes classifier, and SVM classifier (some
comparison elements can be found elsewhere™®).

Evaluation of the Models. For the evaluation phase, the
same approach was used for all evaluated algorithms to provide
a fair comparison between them. Thus, the labeled data set was
divided into 80% dedicated to training (i.e., the training set)
and 20% dedicated to testing (i.e., the test set). The different
trainings were performed with a cross-validation (k-fold = 10)
for which the training data were shuffled and split into 10
random subsets to perform small independent trainings. This
method usually results in less biased or less optimistic
estimates of the classifier than a simple train/test split. The
same standard measures were used to evaluate the models. It
was based on the confusion matrices of the models evaluated
on the test set. The numbers of correct and incorrect

predictions are summarized and broken down into each class
with count values.

Evaluation of Performance of the Developed Models
with the Test Set. The models were evaluated on a test set,
which comprised data from four different surface water
samples generated in the same analytical conditions, and that
was independent of the training set used for the devolvement
of the algorithm. All data were reviewed manually and
classified according to the Schymanski scale’® adapted in
level 1 and level 2 categories. Correlation between manual
classification and scoring obtained for each model was then
performed.

For the three studies performed and the models selected
(based with and without retention times on QTOF data and
on MassBank data—see the results part), the scoring obtained
for each model whatever the data processing was calculated.
For example, even if the data treatment was performed with
the laboratory database, the “confidence” scores were also
calculated with the model developed without considering the
retention times (based also on logistic regression) and with the
model developed from the MassBank Database (based on RF
and using more features). That provided additional informa-
tion that could be used to compare the different models. That
was particularly relevant for the model without using the
retention times, which has been selected based on logistic
regression although during the development, RF was providing
better results.

B RESULTS AND DISCUSSION

Development of the Scoring Model with the Same
HRMS Technology. Mass spectrometry data and particularly
fragmentation data can be influenced by the technology (and
experimental conditions) used. Therefore, to minimize the
number of factors having an impact on the variability of the
data produced, only data produced by an Agilent QTOF
system were initially considered.
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The first part of this work was therefore dedicated to
evaluating an automated scoring system using a unique
instrumentation type. Two cases were considered: when the
retention times in the database were available (Study A),
usually using a laboratory database; and when a vendor
database is used therefore without using the retention times
feature (Study B). Eight machine learning models were
evaluated in each case.

Study Using Retention Times (Study A). The best
performance could be observed with the “Random forest”
(RF) algorithm with an accuracy of 96% (Table 2). Even if the
performances obtained were slightly lower (95% accuracy), it
was preferred to select the “logistic regression” (LR) algorithm.
Indeed, when a visual inspection of the results with high scores
determined with the RF model was performed, some
inconsistencies were observed on certain substances, and
moreover, the logistic regression model was more under-
standable to rank the substance scores based on their
confidence level. The distribution of the different parameters
according to their classification is displayed in Figure SI 1, and
the coefficient obtained per considered parameter is shown in
Table SI 4.

To visualize the separation of the two classes with the
chosen algorithm, Figure SI 3 displays a PCA separating the
zones of the two classes 0 (in red) and 1 (in blue) created by
the algorithm. It can be noticed that both sets of data are
clearly separated. The confusion matrix performed on the test
set (Figure 1A) also demonstrated the good performances of
the developed model. No false-negatives were noticed on the
training set with an acceptable limited number of false-
positives. This result was determined acceptable since no
suspected substances would be missed when processing the
data and a manual double-check of the remaining doubtful
cases can be manageable. A robust probability score, obtained
with the selected LR model, enabled a ranking of the
substances based on the confidence of their presence (1
being the highest).

Study Not Using Retention Times (Study B). As for the
study using retention times, the best performance could be
observed with the RF model but with a lower accuracy at 92%
(Table SI S). To be in accordance and for the same reason as
for the choice of study A, the LR model, for which a lower
accuracy of 0.81 was determined, was finally preferred.

To visualize the separation of the two classes with the LR
model, Figure SI 6 displays a PCA separating the zones of the
two classes O (in red) and 1 (in blue) defined by the algorithm.
While both sets of data are correctly separated, it is not as clear
as to what was obtained for the study using the retention times.
This is also reflected by the confusion matrix performed on the
test set (Figure 1B), which also displayed lower performances
than for the other developed model. The retention times are
indeed strong indicators in the identification process of a
substance and bring a superior level of confidence than when
not used or available in the database. There is therefore more
uncertainty in the identification process when a model without
considering this parameter is used.

Evaluation with a Database Using Multiple HRMS
Technologies (Study C). The second part of the work was
dedicated to evaluating if the same approach could be
potentially used with a database including data produced
from a large panel of technologies/vendors. The MassBank
database was therefore used. Data were curated and
homogenized, and then, a ranking was performed to select

only one entry per substance considered. Additional features
were also included to reflect the expected increase in
variabilities in the reference spectra from multiple vendors
(see Experimental Section, Table 1).

Development, Training, and Comparison of Different
Algorithms. The eight classification models were tested on
MassBank data. The same set of sample data as the one used
for the first part was also selected. Therefore, only the
substances that were common between MassBank and the
substances determined in the samples using the standard
laboratory procedure were considered, which represented
overall 1220 substances. Since more variability was expected,
the pool of samples was extended with seven wastewater
samples also previously characterized by the laboratory.
Standard solutions of pesticides and pharmaceuticals injected
at three different concentrations, low, middle, and high, were
also used to have known substances at different levels of
intensities. Overall, 2155 different substances were used
instead of 1200 in the first phase of the project.

The same approach as for the first part was set up, with two
categories defined, which corresponded to the presence of the
substance in the sample (label 1) and when the substance was
not present (label 0).

Model Developed (Model C). Average performances for
each of the eight models are presented in Table SI 6, with the
best performance observed for the RF algorithm reaching an
accuracy of 94%. This model was therefore selected. The
confusion matrix performed on the test set (Figure 1C)
indicated a robust classification with a very low rate of false-
positives and false-negatives.

An overall summary of the three investigated studies
(Studies A, B, and C) is presented in Table SI 7.

Evaluation of the Performances of the Developed
Models. Four data sets from river sample analyses were
processed with the three different models to reproduce the
approach of assessing a confidence level for suspect analysis
(LR with retention times—Study A; LR without retention
times—Study B; and RF—Study C)/database (laboratory,
vendor, and MassBank). This process provided a score for
every substance matching with a database entry. All data were
also manually reviewed and classified according to the
Schymanski scale®”. The scoring obtained with the machine
learning process was then compared with the manual review.

It can also be pointed out that while for each database used,
a specific model was selected (for instance, an LR data
treatment performed for Study A with the laboratory database,
for instance), the scores based on LR and RF models were
anyway systematically calculated. That feature was particularly
useful considering Study C based on RF and including more
parameters than for Studies A and B when data treatments
were performed on the LR model.

Comparison of Performances Depending on Databases.
With the threshold of scoring set at LR > 0.8 (out of a
maximum scoring of 1), comparable results could be obtained
with Studies A and B regarding the percentage of substances
that could be assessed with the highest level of confidence
(Figure SI 9). For the positive ionization mode (POS), 86% of
the substances were classified as level 1 using the laboratory
database, while 84% were set at level 2 with the vendor
database. For the negative mode (NEG), 74% of the highest
confidence level was determined in both cases. The negative
mode produces generally less fragments than the positive
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POS NEG
LR 20.88 - 121 substances LR 20.90 - 75 substances
L1 RF <0.5 L1 RF <0.5
Laboratory 96% 1% 92% 12%
database (16)  89% 7% 4% (13) ©) [ 8% 4% 8% ©)
(with rt) (108)  (8) () (66) (3) (6)
LR 20.89 - 148 substances LR 20.90 - 94 substances
Nbr fragments
L2 RF <0.5 L2 20eV<s2
Vendor 96% 4 7% 89% 38%
database (142)f93% (39 3% (1) (84) 1% (36)
(without rt) (187 .\(6)  (6) (10)

Figure 2. Performances with the highest possible confidence levels obtained depending on the model/databases used and the ionization modes
(LR, logistic regression; RF, random forest; rt, retention time; L1/L2, level 1/2; in bracket, number of substances for each category).

mode, therefore leading to less confidence for substances with
a low number of fragments.

Through the evaluation of the test results, it was determined
that the RF model could be complementary to the use of the
LR model. When using the LR model with retention times
(Study A), RF did not bring any additional value since
retention time provides a sufficiently strong feature. For the LR
model developed without retention times (Study B), it was
noticed that some relevant substances (level 2) had a score
<0.8. In this case (Study B), the RF model (which includes
additional features) could provide 20 more substances in
addition to the LR model (note that using only the RF model
was not as efficient as using only the LR model).

The RF model (with the score set at >0.85) presented
however some limitations when used with the MassBank
database (Study C) with the percentage of substances set at
level 2 at 57% in POS and 44% in NEG. The MassBank
database used presented many substances in POS and
particularly in NEG with fragments of low mass (and therefore
poorly selective), particularly at 20 eV.

Evaluation of an Automated Validation of Substance
Identification. An automated validation process for substance
identification was evaluated by defining a scoring threshold
depending on the ionization mode and models/databases used
(Figure 2). As highlighted previously, the RF model seemed
complementary to the LR model. In the positive mode, for the
match obtained for both the laboratory and vendor databases,
setting the LR thresholds at, respectively, >0.88 and 0.89 while
ruling out substances with RF < 0.5 allowed one to
automatically classify at their highest level of confidence
(level 1 for the laboratory database, example of acetaminophen
in Figure S10; and level 2 for the vendor database, example of
clarithromycin and diltiazem in Figures S11 and S12) all of the
substances falling in these settings (representing about 88% of
the substances above the set RF threshold). The remaining
substances would then have to be evaluated by an expert
review.

For the negative mode, the same features (with thresholds
LR > 0.90 and RF < 0.5) could be used with the laboratory
database with the validation of all substances with these
settings (representing 88% of the substances with LR > 0.90).

The same NEG threshold of the LR score at 0.9 was
determined for the vendor database. However, using the RF
score <0.5 would not work out. It was however noticed that if

the feature “number of fragments at 20 eV” was used and the
number of fragments >2 was selected, all substances falling in
this category were level 2, representing 62% of the 94
substances with the LR score > 0.90. This parameter was not
as selective as the RF factor and led therefore to a lower
percentage of substances that could be automatically qualified.
Substances analyzed in the negative mode do not fragment as
much as those analyzed in the positive mode, particularly at 20
eV, which can be considered the most informative
fragmentation level. However, even if fragmentation at 40 eV
particularly in data-independent analysis produced more
interferences, using a secondary collision proved to be
complementary to only using one level of fragmentation.

For the RF model developed with the MassBank database,
no rules could be determined for automated identification with
either POS or NEG modes.

B CONCLUSIONS

A machine-learning-based approach has been developed to
provide better guidance and aiming at an automated validation
process for the identification of substances in the suspect LC
HRMS mode. For the first part of the study, using the same
HRMS technology, eight classification models were evaluated,
and the logistic regression model was selected, which provided
robust scoring ranking of identified substances with or without
using the retention time feature. In a second part, the study
was then continued with the use of an open-source reference
database including data from different HRMS technologies.
Additional features were included to consider for the larger MS
spectra variability, and the random forest model was
considered the most efficient. However, this approach was
determined to present limitations for a database that comprises
data from different HRMS technologies, particularly for
substances presenting a low fragmentation MS pattern, which
prevented a possible automated validation process.

Overall, this study demonstrates the potential of using
machine learning approaches to facilitate the data treatment
process and constitutes a first step for an automated process
for the identification of environmental substances in LC/
HRMS data.

The best approach was determined using both logistic
regression and random forest, so further work could include a
model combining both algorithms. Other improvements could
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also be considered with additional features such as intensity, a
better integration of substances with low MS fragmentation, or
using a predictive model for retention times or M
fragmentation data. Moreover, application on larger data sets,
including spiked samples with analytical standards, will provide
better refinement on the boundary and robustness of the
developed approaches. Machine learning approaches can also
be used to implement a simplified scoring model.”
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