A Software Engineering Approach to Digital Twin Architecture: The HUman at home projecT and Twin Cooperation of roBot and human project case studies
Gaëlic Bechu, Antoine Beugnard, Caroline Gl Cao, Quentin Perez, Christelle Urtado, Sylvain Vauttier

To cite this version:
Gaëlic Bechu, Antoine Beugnard, Caroline Gl Cao, Quentin Perez, Christelle Urtado, et al.. A Software Engineering Approach to Digital Twin Architecture: The HUman at home projecT and Twin Cooperation of roBot and human project case studies. ETFA 2022 - IEEE 27th International Conference on Emerging Technologies and Factory Automation, Sep 2022, Stuttgart, Germany. , 2022. hal-03895898

HAL Id: hal-03895898
https://imt-mines-ales.hal.science/hal-03895898
Submitted on 11 Jun 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
In the home automation case study, DTs are used to handle and predict the interactions between a smart apartment and its inhabitants. The validation of our metamodel is twofold:

1. **Modeling of CPS architectures including DTs of sensors/actuators and AI models.**
2. **Full implementation as executable deployment descriptors using Ansible scripts.**

Motivation – Digital twin (DT), Internet of Things and Artificial Intelligence are key emerging technologies in Industry 4.0. However, concrete and operational models are still to be designed to manage the deployment of DTs [1]. Our proposed metamodel is a first step towards a model-driven approach for DT deployment. It is derived from our previous work on ADLs [2, 3].

Objective – Develop a metamodel that supports concrete operational descriptions of digital twins; validate in two human-robot interaction case studies: a robotic arm and a home automation application.

In the robotic arm case study, DTs of the interacting human and robot are used for motion planning in pick-and-place tasks.

Our deployment metamodel can describe the combination of software and hardware used, including: ROS, Unity, Kinect, Xsens body suit, Kinova j2n4s300 robotic arm, etc.

The transformation of this model into executable deployment descriptors is being studied.

In the home automation case study, DTs are used to handle and predict the interactions between a smart apartment and its inhabitants. The validation of our metamodel is here twofold:

1. **Modeling of CPS architectures including DTs of sensors/actuators and AI models.**
2. **Full implementation as executable deployment descriptors of the modeled elements using Ansible scripts.**