
HAL Id: hal-03867657
https://imt-mines-ales.hal.science/hal-03867657

Submitted on 25 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A conceptual, methodological and technical contribution
for modeling and V&V in MBSE context

Vincent Chapurlat, Blazho Nastov, Jeremy Bourdon

To cite this version:
Vincent Chapurlat, Blazho Nastov, Jeremy Bourdon. A conceptual, methodological and technical con-
tribution for modeling and V&V in MBSE context. ISSE 2022 - 8th IEEE International Symposium on
Systems Engineering, Oct 2022, Vienne, Austria. �10.1109/ISSE54508.2022.10005444�. �hal-03867657�

https://imt-mines-ales.hal.science/hal-03867657
https://hal.archives-ouvertes.fr

A conceptual, methodological and technical
contribution for Modeling and V&V in MBSE

context
Vincent Chapurlat

Laboratory for the Science of Risks, IMT
Mines Ales, Ales, France

vincent.chapurlat@mines-ales.fr

Blazho Nastov
Ansys

4 Avenue des Saules, 59160 Lille
blazho.nastov@ansys.com

Jérémy Bourdon
Laboratory for the Science of Risks, IMT

Mines Ales, Ales, France
jeremy.bourdon@mines-ales.fr

Abstract – The role of modeling, verification, and
validation, even not new in Systems Engineering, is
increasingly highlighted as crucial expectation in Model
Based System Engineering context (MBSE). However, some
difficulties, needs, and locks must be considered to allow
MBSE to grow in capabilities and maturity. This article
clarifies some fundamental expectations for MBSE and
proposes research findings to address some of the MBSE
practitioners’ needs more precisely.

Keywords – Model, Modeling, Domain Specific
Modeling Languages, Model-Based Systems Engineering,
models versus system Verification / Validation

I. INTRODUCTION

The role of modeling, verification, and validation, even
though not new in Systems Engineering, is more and more
requested and promoted for various advantages regarding a
more classical document-oriented engineering. This induces
particular interests and relevance for the Model-Based System
Engineering approach (MBSE). Several academic works and
industrial developments have taken up these orientations.
However, some fundamentals still need to be discussed, may
be improved, or even laid down, both in terms of conceptual,
methodological, and technical aspects. This article attempts to
address some of these fundamentals for MBSE and proposes
research findings to address the needs of MBSE practitioners.

II. PROBLEMATIC

A. MBSE position

Model-Based Engineering is defined in [2][3] as “an
approach to engineering that uses models as an integral part
of the technical baseline that includes the requirements,
analysis, design, implementation, and verification of a
capability, system, and/or product throughout the acquisition
life cycle” hereafter called System of Interest (SoI) [1]. In
coherence with SE expectations and principles, Model-Based
System Engineering (MBSE) is defined as “the formalized
application of modelling to support system requirements,
design, analysis, verification and validation beginning in the
conceptual design phase and continuing throughout
development and later life cycles phases” [4]. To complete
this definition, [5] considers more globally MBSE as “a
collection of related processes, methods, and tools”. Last,
MBSE aims to support operational actors involved in SE
projects and, more generally, all Stakeholders themselves
concerned, involved or impacted by such projects. The goal is
to engineer complex systems by creating, checking, and
handling models. So MBSE is to be considered a mean for
SE

practitioners. As mentioned by [6], “MBSE doesn’t replace
traditional SE Rather, MBSE formalizes part of SE”.

B. MBSE practitioners’ global needs

As evidence, MBSE must provide or be based on shared
and recognized theoretical, methodological, and technical
bases to support these actors in its implementation covering
all the SE stakeholders’ needs. MBSE must therefore allow
SE Stakeholders to:

- model any viewpoint of any (part of) complex system
and more generally of any kind of System of Interest (SoI) in
conformance with systemic principles. However, what is
considered as a model and modeling activity in the MBSE
context?

- check models of (part of) SoI, i.e., to verify and validate
(V&V) models and pay attention to qualities and default of
such models, e.g., precision, use of reductionist hypotheses,
etc.) prior to verify and validate the modeled SoI itself.
However, how can these V&V activities, both focusing on
models or on system, be more appropriately defined and
implemented in the MBSE context?

- manipulate these models to justify decision-making
processes, requesting, for instance, simulations [7], formal or
semi-formal analysis techniques that can be directly or
indirectly (via model transformations) applied to different
models of the same SoI. However, these models are often
considered in isolation to test separately various expectations
or hypothesis. Today, they must be regarded globally as
interconnected and interdependent modeling elements whose
whole forms a more complete, if possible faithful and realistic,
description of the same SoI;

- use these models as much as possible in confidence, i.e.,
to analyze, evaluate, compare alternative solutions, optimize,
trace, and at the end, to generate documents;

- remain coherent with SE principles and processes that
are subject to standardization [1] or adaptation according to
the type of company [8];

- dispose of data, information, and knowledge
repositories accessible all along the life cycle of the SoI. The
knowledge includes models that must then be accepted or at
least consensual, shareable without a considerable effort and
loss of meaning, and considered mature or authoritative in
specific fields of systems engineering and business
engineering.

Last, MBSE must also:
- dispose of relevant “modeling languages that support

rigorous modeling techniques and integration of various
systems engineering disciplines (structural, electrical,
mechanical, software, etc.) and stakeholders” [6];

- consider usages and practices of actors involved in
engineering projects, for instance, in terms of modeling

means, objectives, or even tools, by preferring the use of
existing tools and avoiding as much as possible specific
developments of new tools.

C. Proposed contributions

This article intends to:
- Formalize more precisely some basics of modeling

concepts for the MBSE;
- Formalize more precisely some basics, even propose

alternative point of view about V&V meeting the needs of the
MBSE Stakeholders;

- Propose then an operational and equipped approach to
promote modeling and V&V in line with these expectations
based on so-called xviDSML (executable verifiable and
interoperable DMSL [12] (see section III.C);

- Propose how to develop a support tool for the use of
xviDSML in modeling and V&V.

III. CONTRIBUTION: CONCEPTUAL ASPECTS

A. Modeling, view and viewpoint, model

Before proposing how to characterize a model, some
hypotheses are fixed. First, modeling describes a system, a
phenomenon, or any element, by respecting the conventions
specified generally by a modeling language and for a given
purpose and objectives. In other words, it leads to create,
according to given rules and formalisms, a model of the
system, phenomenon, or element on which it must be possible
to make reasoning and judgements coherently to serve these
objectives and finality.

Fig. 1: IEEE Std 1471-2000 (interpretation overview)

Second, [9] (see Fig. 1) defines:
- A view as “a representation of a whole system from the

perspective of a related set of concerns”.
- A viewpoint as “a specification of the conventions for

constructing and using a view. A pattern or template from
which to develop individual views by establishing the
purposes and audience for a view and the techniques for its
creation and analysis”.

Fig. 2 proposes some views considered in the next as
relevant for the MBSE context and some appropriate Domain
Specific Modeling Languages (DSML) [10] or model kinds
that are to be used by MBSE practitioners to express one or
several models in each view.

As a first conclusion, the position of the views and
viewpoints is detailed and specified by considering the

Modeling Pyramid initially proposed by OMG in [11] (see
Fig. 3).

Fig. 2: main relevant views and model kinds

Then, as commonly defined, a model M of an SoI S refers
to the data obtained after modeling S and is “a perception of
(maybe imaginary) reality”. Indeed, by hypothesis:

- M must reproduce how S behaves, evolves, or interacts
with its environment when placed in the same conditions as S;
M provides the same outputs as S when subjected to the same
inputs. Indeed, a model Mi expresses a stakeholder’s advice in
a given view, allowing him or her to select and focus on a
particular set of concerns (see Fig. 3). The whole approach is
used to model by conforming to a viewpointi or, eventually,
various viewpoints that are equivalent or complementary for
the view purpose.

Fig. 3: revisiting OMG metamodeling pyramid

- A model has to be “useful when it answers a question!”
[13] but M remains only an image that is not necessarily
complete or faithful, filtering out unnecessary details of reality
of S or of its environment with respect to the modeling
objectives and viewpoint of the stakeholder who built it. So,
M is a snapshot therefore likely to be limited or even invalid
for other objectives.

Finally, [14] defines a System model as “an
interconnected set of model elements which represent key

Mission

System

Stakeholder

Environment Architecture

Architectural
description

Rationale

Viewpoint View

ModelLibrary
Viewpoint

Concern

fullfills 1.*

has 1.*

has 1.*

has 1.1

provides

participates in 1.*

participates in 1.*

has source 0.1

conforms to

aggregates 1.*

consists of 1.*

establish methods for 1.*

selects 1.*

is important to 1.*

influences
inhabits

identifies 1.*

is addressed to 1.*

identifies
1.*

described by 1

Related view…

Requirements Baseline, Requirements
models, Values and preference
diagram, Properties influence graph,…

Requirements, Values and Properties: what
should S answer to?

Life-cycle diagram (steps and
milestones), Context diagram (services
and fields), Stakeholders list, Data /
Information / Knowledge…

System: what seems to be or must be S?
What are the relevant and available data,

information and knowledge about S?
interactions? …

Functional Architecture(s), Logical
Architecture(s), Decision models…
Logical Architecture(s), Decision
models…

Functional/Logical: what is the mission and
what should S do, what services should it

render? what are the components of S, and
how are they structured independently of

any physical solution?

Physical Architecture(s), Decision
models…

Physical/Organic: in the reality of
implementation, what does S consist of to

fulfil this mission?

(discrete, continuous, or hybrid
modelling) Operational Scenarios,
Operational Modes, Equations, …

Behavioural: how does S evolve and behave
in order to fulfil its mission?

Examples of model kind

Risk management: events, situations and
dangers to be detected, anticipated or
avoided in order to gain S stability and

integrity all along its lifecycle

Risks (effects, impacts), Influence
relations network diagram, …

system aspects including its structure, behavior, parametric,
and requirements” as synthesized in Fig. 4. This proposition
converges with the concept of Digital Mock-Up (DMU)
proposed in [15]. As a second conclusion, a first version of
model formalization for the MBSE domain is proposed in [15]
and is then not recalled in this article.

More generally, as this is often the case with other
engineering disciplines, MBSE may use two types of models
(see Fig. 5 being inspired from [16]).

Fig. 4: System model as a global, common, and shared modeling

artifact inspired from [6]

- Black Box model: Model M results from dedicated
modeling activities focusing on data sets extraction,
classification, training, and analysis processes (all data are
then considered as related to the SoI S or equivalent systems)
by using various techniques and approaches for data
extraction, indexation, identification, treatment, etc. including
for instance more or less classical statistical approaches, fuzzy
approaches or neural networks approaches from AI domain.
Considering some of these approaches, stakeholders could
face various difficulties in justifying and explaining its
contents, inducing a lack of confidence in terms of fidelity,
credibility, and plausibility of M;

- White Box model: Model M results from an explicit
modeling activity and uses a formalized DSML (analytical
model). M is to conform to this DSML then it may be more or
less formally interpretable and justifiable by respecting
DSML operational semantics and properties, and by proving
and evaluating model M properties. This article focuses on
this type of model.

Fig. 5: Roles and use of models, inspired by [16]

Last, MBSE requests models from various natures (Fig. 5)
allowing us to precise roles and objectives of a model
whatever may be its type:

Cognitive model solicited as:
- a means of understanding the problem (iteratively, step

by step), the perceived phenomenon, the demand, the
environment, and the solution: to make stakeholders express
themselves and to capture opinions, dissatisfactions,
expectations, and visions.

- a communication vehicle: formalizing and sharing
knowledge (at any stage in the life of the system), getting
teams to collaborate

Normative model (prescriptive or construct) solicited:
- for designing ("engineering") a solution i.e. finding it:

respect the requirements i.e. the modeling properties, the
properties translating the 'native' requirements, and the
requirements induced by possible previous choices

- to optimize a solution: is it multi-disciplinary (wishful
thinking)? This would imply modeling the field of possibilities
and being able to "walk-around" in it, aligning and

reconciling models of costs, business, efficiency, risk,
decision, etc.

Predictive or prospective model solicited to check and
evaluate, then help decide and argue (choice, rejection,
quantified or qualified), to describe and evaluate a (beginning
of) solution track (which may allow initiating several different
and more complete solutions) by simulation/evaluation/...
verify certain properties of the solution and validate it against
the problem and requirements

B. V&V

Verification is "a set of activities that compares a system
or system element against the required characteristics. This
includes, but is not limited to, specified requirements, design
description, and the system itself. The system was built right"
[1] (section 6.4.6). The verification of a model of the SoI,
however, remains evasive.

Validation is "the set of activities ensuring and gaining
confidence that a system can accomplish its intended use,
goals, and objectives (i.e., meet stakeholder requirements) in
the intended operational environment. The right system was

System Model

InterfacesRequirements

Architectures Behaviors

Properties

Etc.

Power
model

Mechanical
model

X disciplin
model

Model
(diagramming),
Verify, Validate,
View, Interpret,

Simulate,
Analyze, Comment

models, …

Architects

Tests

Operations

Integration

M
ac

hi
ne

 /
 H

um
an

re

ad
ab

le
 fo

rm
at

s

Business
engineering

built" [1] (section 6.4.8). Particularly, model validation is
defined by [17] as "the process of ensuring., e.g. the model
correctly represents the domain or system-of-interest”.

By operating iteratively during the technical processes of
systems engineering e.g. as proposed in [8], V&V is a
necessary step to guide, assure or reassure oneself, to progress
in the design step by step and to improve the level of maturity
of the solution, by ensuring that one's own needs are met. It is,
therefore, a necessary step to guide, ensure, or, failing that,
reassure oneself, to progress in the design step by step and by
improving the maturity level of the solution, by ensuring that
one progresses in conformity with business and domain
customs and practices without cutting oneself off from
possible innovations, by helping to detect errors, omissions or
ambiguities, to anticipate and to test situations by bringing
into play only models, to test the non-regression of the
solution, etc.

In fact, by focusing on the design phase of an SoI that puts
forward diverse and varied models, the questions that V&V
must answer, and thus the early V&V that is increasingly
referred to today, are a priori:

- How to improve confidence in a model of an SoI? We
consider here a model in isolation from the others: the goal is
to ensure the level of 'quality' of what it represents
independently of the other models of the same SoI;

- How to improve the confidence in the set of models that
describe the same SoI? We consider here all the models of this
SoI, which should then be put into interaction (composed
and/or federated as allowed by the FMI/FMU standard [18],
for example) to move towards the system model. The latter
offers a holistic and more complete vision and is considered
sufficient if not totally faithful to the solution (notion of
duplication). It is then necessary to consider the differences
between these models during this federation/composition (e.g.
semantics, level of maturity, modeling language (DSML)
used, level of detail addressed in the SoI, objectives of the
modeler at the origin of this model, ...). The goal is to ensure
a coherent and, if possible, complete multi-point of view
representation with respect to the objectives of the actors to
produce proofs, simulations, non-functional property
evaluations, analyses (e.g. sensitivity or dependency analysis,
impact analysis, effects propagation analysis, etc.)

- How can we then rely on these models to ensure that the
solution found (or the various alternative solutions) for the SoI
is indeed the expected system? The two hypotheses to
consider to answer this question are 1) we rely on previously
verified and validated models and 2) we perceive this solution
only through these models. There is therefore a possible bias
between reality (the expected system) and perception (model)
since models are only filters of reality and are themselves
based on assumptions (reductive and/or simplifying) that had
to be adopted to consider the objectives, experience, and
process employed by the modeler. It is at this level that we
speak of early V&V, which requires the use of models with a
maximum level of confidence.

So, a stakeholder involved in V&V activities seeks overall
to improve and justify his or her level of confidence, that is,
he or she seeks to establish and be able to argue that there is a
balance between:

- Credibility: Credibility: 1) the credibility of the model
concerning the SoI and the domain, as well as 2) the
organization put in place to produce this model: skills and
recognition of the modeler's experience, relevance, use, and
availability of resources (tools, methods, testbeds, etc.) and
overall maturity of the V&V process (see for example [19]);

- Plausibility of the model i.e. likelihood or acceptability
of the model by other stakeholders considered as experts from
a domain and regarding the SoI requirements;

- Fidelity of the model i.e. the model ideally converges to
a necessary and sufficient duplicate of the SoI, as it is
understood by the stakeholder and considered a requested
level of details, the modeling assumptions imposed by the
view, the modeling language, or even the modeling tool used,
and the limiting or simplifying assumptions adopted by the
stakeholder related to its objectives;

- Relevance of the model to the modeler's objectives and
answer various kinds of questions!

Finally, it should be noted that trust is an expectation that
is constantly evolving and may even collapse as a justifiable
belief. So, to assume, or at least improve stakeholders’
confidence level, it is then proposed to define four kinds of
V&V activities. Each intends to provide essentially theoretical
justifications, sometimes to provide results that can be
considered as more or less empirical justifications considering
the confidence level of the model/system model:

- Model verification (or model quality checking): "did I
do the model right?" (or "did I follow the rules and practices
to model the system of interest?").

- (A previously verified) Model validation: "did I make
the right model?" (or, at a minimum, "did I model the system
of interest I have in mind?").

- (A previously verified and validated Model is used for)
System Model early verification: "have I modeled the system
of interest correctly?" or, is the system of interest, as modeled
(i.e. represented by a set of heterogeneous, federated or
composed models), coherent, unambiguous, compliant with
business and domain rules, and compliant with some of the
requirements specified for the system of interest, provided that
these requirements are analyzable through these models?

- (A previously verified and validated Model that has been
already used successfully for early verification) is used for
System Model early validation [20]): "have I modeled the
right system of interest so that I can argue with confidence
that this system of interest is a good solution?”.

Table 1, Table 2, Table 3, and Table 4 (next page) show
respectively model Verification, Validation, system (early)
verification, and system (early) validation expected outcomes
in terms of theoretical or empirical justification and
considering two model cases, focusing on static and dynamic
aspects:

(Case 1) a model M (considered alone and independent
from other models of the same SoI SOI), or,

(Case 2) a model M that results from the federation or
composition of a set of models i.e. M is a system model.

In both cases, expected returns are errors, mistakes,
oversights, misunderstanding, requests for model
modification, modeling rules explanation or model
clarification or precision, requests for requirements
explanation, modification or clarification, justifications,
performance evaluation, non-functional properties evaluation
(values, limit, dependence, ...), ...

For these aims, V&V strategies can be classified into:
Model Appraisal, Guided Modeling, Simulation, and Formal
Proof [21]. Particularly, we focus hereafter on the Simulation
and Formal proof strategies for which a tool-equipped
approach for the design and use is proposed below.

C. DSML vs. xviDSML

A Domain Specific Modeling Language (DSML)
formalizes a set of modeling conventions, and rules to create

a model from both syntactic, semantic and pragmatic rules and
conventions i.e. a methodological way to build and use it.

Model verification
Focus on the static aspect Focus on the dynamic aspect

(Case 1) aims to: demonstrate
the absence of modeling

errors, mistakes, and
oversights, the respect to

particular modeling rules (i.e.,
conformity to a metamodel,
constraints, and invariants),

and rules corresponding to the
domain and business field

modeling expertise (e.g. good
practices and modeling

patterns)

(Case 1) aims to: demonstrate
that applying the DSML

operational semantic allows
executing the model

(considered alone and
independent from other
models of the same SoI)

without errors, mistakes, or
ambiguities when applying
these behavioral semantics
then 'executing' the model

(Case 2) aims to: demonstrate
the whole coherence, absence
of federation, or composition

errors (e.g. models’
connections, models i/o

definition, etc.). If federation
or composition is checked,
demonstrate the absence of
mistakes and oversights, the

respect to particular modeling
rules (i.e., conformity to a

metamodel, constraints, and
invariants), and rules

corresponding to domain
expertise (i.e., good practices

and patterns)

(Case 2) aims to: demonstrate
the whole dynamic coherence

and executability of the system
model M

Table 1: Model Verification aims

(verified model is then used for) Model validation
Focus on the static aspect Focus on the dynamic aspect

(Cases 1 and 2) aims to:
demonstrate M is the right one
that is to say: 1) M is relevant
considering the modeling
objectives and hypotheses, and
2) M is trustworthy i.e. it
provides a sufficient and
accurate representation of the
SoI as it is modeled in a view
(e.g. functional, structural,
requirements, or behavioral)

(Cases 1 and 2) aims to:
demonstrate M execution
strengthens the demonstration
obtained from a static aspect,
by executing the model facing
various scenarios considered
necessary and sufficient by all
stakeholders.

Table 2: Model validation aims

(verified and validated model is then used for) System Model
early verification

Theoretical justification Empirical justification
(Case 1) aims to: demonstrate
and provide justifications that

M (previously verified and
validated) provides an

accurate representation of the
SoI 1) when modeled in a

given view (e.g. functional,
structural, requirements, or

behavioral), and 2) M respects
various, at least one,

stakeholders' requirements or
system requirements thanks to

the modeling objectives for
which M has been built.

not yet applicable nor relevant
for M use in case 2

(Case 2) aims to:
demonstrate and provide

justifications that federating or
composing each model that

composes M allows modeling
entirely the SoI to become

able to prove the SoI is
correctly built thanks to all
stakeholders' and system

requirements.

(Case 2) aims to: use M
as a numeric representation

(e.g. numeric prototype i.e. an
equipped DMU) to assume the
SoI is correctly built thanks to

stakeholders' and system
requirements, business field
and domain expectations,
usages, and best practices

Table 3: System (early) verification aims

(verified and validated model previously used for system early
verification is then used for) System Model early validation

Theoretical justification Empirical justification

(Case 2 mainly) aims to:
demonstrate that, M being

previously used to verify the
system, allows to test SoI to
assume its relevance and it

reaches its objectives thanks to
stakeholders' and system

requirements and considering
various scenarios as necessary

and sufficient by all
stakeholders.

(Case 2 mainly) aims to:
use M as a basis of a specific
Digital Twin to be developed,
or 2) prefer to complete the

demonstration by developing
and using prototypes or

demonstrators to assume the
SoI is relevant and reach its

objectives thanks to
stakeholders' and system

requirements, and considering
various scenarios as necessary

and sufficient by all
stakeholders.

Table 4: system (early) validation aims

A DSML is then considered equivalent to a model kind
that is defined by [22] as a “kind conventions for a type of
modeling (examples of model kinds include data flow
diagrams, class diagrams, Petri nets, balance sheets,
organization charts, and state transition models)”.

As proposed in other relevant works e.g. [23][24], this
article promotes to building and use executable, verifiable,
and interoperable DSML (xviDSML) that, besides classical
system (parts or elements) modeling in conformance with
views definition, allows direct verification without model
transformation, support validation then evaluation of the
models i.e. allows to prove various kinds of properties and
simulating or even emulating the behavior of the model. As it
could be done for other DSML, building xviDSML is to be
done by defining Abstract syntax, Concrete (and alternative
but equivalent) syntaxes, Operational semantics, and
Modeling Properties as detailed below. To illustrate the
concepts, an application example is given in [25] and
illustrated hereafter by defining an xviDSML named
Operational Mode Analysis Guide (OMAG) [26]. OMAG
aims to help engineers and architects describe, share, discuss
and formalize:

- what are the expected operational modes of an SoI from
its realization to its end of life;

- how they must be chained thanks to various events and
considering system requirements;

- what are then the expected operational scenarios and the
requested SoI configurations that must be achievable in each
mode or during the transition from one mode to the next.

The goal is then to facilitate the obtaining of a basic
functional architecture of this SoI satisfying a priori these
operational scenarios and the whole set of system
requirements. Applied to the OMAG case, the requested
elements are:

- Abstract syntax: It gathers and formalizes concepts,
relations between concepts, attributes, and constraints

imposed to be used to model (partially or entirely) one
(eventually various) views(s). It is commonly defined as
metamodel respecting meta-modeling principles [27] as
depicted in Fig. 6 where metamodel conforms to Ecore meta
metamodel language [28];

Fig. 6: abstract syntax (partial view of OMAG meta model)

- Concrete syntax: It defines at least one, eventually
various equivalent graphical or textual rendering allowing
stakeholders to create and handle the elements highlighted in
the abstract syntax. It could be not unique considering the
usages and habits of stakeholders, the whole concrete syntaxes
remaining fully semantically interoperable allowing to
facilitate model sharing without ambiguities. Any of these are
defined thanks to the development environment, hereafter
using OBEO Designer Team environment [29] as proposed in
Fig. 7 in OMAG case that presents the initial concrete syntax
and the one that has been then developed in this environment;

Fig. 7: OMAG concrete syntax (as expected and as currently
implemented)

- Operational Semantic: It is composed of a set of
formal interpretation/execution rules that define how must
evolve the model or each of the concepts that compose the
model (autonomous mode if considered alone or in controlled
mode when considered as a model of System Model, then
being synchronized and dependent from the evolution of the
whole set of models that compose the system model). It could
be formalized for instance by using a state machine or
software code. It remains unique to avoid any ambiguities
during model execution i.e. model simulation or model
emulation. Fig. 8 shows the unformal version of such a set of

interpretation rules that have been translated under
ACCELEO code [30] enabling then direct simulation on the
OBEO Designer environment. The stakeholder can then check
directly, without any transformation, any OMAG model.

Fig. 8: unformal OMAG operational semantic

- Model properties: A property is “a provable or
assessable characteristic of an artifact [which is 1) a system
S, or 2) a model M of S] that reflects all or part of the
stakeholder's expectations that must be met by that artifact”
[21]. They express then the expected general qualities (both
static, or dynamic i.e. dependent on temporal hypotheses as
defined in [31]) of the model. Some are mandatory and all
allow verifying and partially validating the model in model
verification and validation.

Examples of static model properties: informal and
formal definitions of such Model Properties are hereafter done
by using ACCELEO and can be proved by using proof
mechanisms allowed in the OBEO Designer environment.

MP1::= Is the operational mode definition complete?
MP1::= P1  P2  P3 where:

- P1::=The mode has a name i.e. P1 ::=
[thisEObject.name<>''/]

- P2::=The mode has a guard expressed in Logical Unit
Time, eventually set to the ‘O.O’ value i.e.

P2 ::= [thisEObject.guard->asSet()->size()<>0 and ([if]
(thisEObject.guard->asSet()->size()<>0) [then]

thisEObject.guard- >=0.0[endif/](/]
- P3::= If and only if (P3.1  P3.2)=true, the default

configuration C conditions at least the default operational
scenario OS i.e.

P3::= P3.1  P3.2 
[thisEObject.authorisesScenariosAndConfigurations.default
OperationalScenario.conditionnedByConfiguration=(thisEO

Initialise model (set xviDSML OMAG monitor)
Return global result of modelling properties checking (all static MP must be checked)
Return global result of modelling properties checking (all dynamic MP must be checked)
if OK then

Activate Initial Operational Mode
Set initial SOI Configuration
Set initial Operational Scenario
Set execution environment

Set and initialise content of Black-board for Logical Time Unit T=0
Set and initialise shared variables / events / clocks
Set Logical Time Unit T=0
Set Logical Time Unit Tmax
[optional: launch and initialise execution of other models i.e. set xviDSML monitors e.g
initial Operational Scenario xviFunctionalDiagram monitor])
Initialise and update simulation interface rendering

endif
Read OMAG inputs

Set Logical Time Unit T=T+1
Read inputs from Black-board (messages, events,shared values from other xviDSML monitors)
Read inputs from user

Compute next OMAG State
Compute set {Tr} of fireable transitions
if card{Tr}=0 (no possible OMAG evolution) or card{Tr}>1 (non dynamic determinism) then STOP
Fire selected transition Tr (unique)

Deactivate source operational mode MS
Check current SOI configuration used in MS
[optional: halt current Operational Scenario xviDSML monitor to be analysed when MS is
Check functional state of the SOI

Activate destination operational mode MD
Check differences between current SOI configuration used in MS and default SOI
configuration promoted in MD
[optional: launch and initialise the Operational Scenario xviDSML monitor simulating the
SOI reconfiguration scenario associated to Tr]
[optional: launch and initialise default Operational Scenario xviDSML monitor
Check new functional state of the SOI

[Optional: check and trace System properties evolution]
Write OMAG outputs

Update local variables
Write outputs to Black-board (messages for other xviDSML monitors, events and shared values)
Update simulation interface rendering

Iterate to ER 2 until STOP or execution is halted by user or T>=Tmax

bject.authorisesScenariosAndConfigurations.defaultConfigur
ation)/] where:

- P3.1::=A default operational scenario OS is associated to
the operational mode describing the default expected behavior
of the SoI when considered in this mode i.e.

P3.1 ::=
[thisEObject.authorisesScenariosAndConfigurations.defa

ultOperationalScenario->size()=1 /]
- P3.2::= A default configuration of the SoI C is associated

to the operational mode describing the default expected
configuration of the SoI when considered in this mode, i.e.

P3.2 ::=
[thisEObject.authorisesScenariosAndConfigurations.defa

ultOperationalConfiguration->size()=1/]

Example of dynamic model properties: informal and
formal definitions of such Model Properties are hereafter
simplified to facilitate comprehension. It can be verified by
using a model transformation developed with ACCELEO then
allowing stakeholder to use formal properties proof (applied
then essentially to dynamic model properties) allowed by
UPPAAL tool [32] as it has been proposed in [33].

Fig. 9: xviDSML engineering and use: methodological overview

First of all, a static property MP2 must be checked prior
to any other verification and using then same proof
mechanism as it is done MP. This property is:

- MP2::=There is a priori one and only one crossable
transition (static determinism) in the OMAG graph (the
crossing conditions and the events associated with each exit
transition of a mode that has been selected are to be compared
and differentiated) i.e.

MP1∷=∀OperationalMode, M/M.isSelected=
true,∀OperationalModeTransition

Ti∈M.outputTransitions ⇒XOR(Ti.condition)=true

Then MP3, MP4 and MP5 dynamic properties are to be
formalized using UPPALL syntax then checked:

- MP3::=At any time t<>t0, there is a priori one and only
one crossable transition (dynamic determinism) in the OMAG
graph (the crossing conditions and the events associated with
each exit transition of a mode that has been selected are to be
compared and differentiated) i.e.:

MP3∷= ∀OperationalMode M/M.isSelected=
true,∀OperationalModeTransition

Ti∈M.outputTransitions ⇒XOR(Ti.condition(t))=true
- MP4::=At time t0 there is one and only one active mode

i.e.
∃! OperationalMode M Ú M.isSelected= true and

M.isActive=true

- MP5::=At any time t<>t0 there is one and only one
active mode (confirm dynamic determinism) i.e.

MP5∷=∃! OperationalMode M Ú Ú M.isSelected= true and
M.isActive(t)=true

IV. CONTRIBUTIONS: METHODOLOGICAL AND TECHNICAL
ASPECTS

First of all, engineering and using such xviDSML follows
a process summarized in Fig. 9 making appear two phases
focusing respectively on:

- xviDSML design time i.e. modelling language
construction, verification and validation being conform to a
meta meta model called then xviCORE;

- xviDSML runtime consisting to create, verify, and
validate as much as possible the model of a SoI (model design
time being then conform to the xviDSML definition), then use
the resulting model (model run time) to check SoI.

Technically, intending to equip this xviDSML approach
has been done as proposed in [12] and the meta modelling
pyramid here applied to OMAG xviDSML (Fig. 10).

Fig. 10: xviDSML implementation: example of OMAG

V. DISCUSSION AND CONCLUSION

This article intents first to fix some concepts and
definitions, even not new but expecting a consensual and
common point of view when considering MBSE domain.
Indeed, authors think MBSE remains poorly formalized, even
if numerous DSML, tools and techniques exist actually, with
no real convergence. Second, it proposes a methodology and
an equipped environment, at least a proof of concept to
demonstrate the interest of both contributions.

The goal is now to generalize and to focus on system
model level i.e. to formalize federation and composition
mechanisms allowing then stakeholders to dispose of and
share without ambiguities a more complete representation of
the SoI, then to converge on Digital Mock-Up concept and
promote system early V&V [15].

VI. REFERENCES

[1] ISO/IEC 15288:2015(E) / Systems and Software
Engineering - System Life Cycle Processes. Geneva,
Switzerland: International Organization for

Phase I: xviDSML design time (designing the
DSML)

Phase II: xviDSML run time (using the DSML to
model a system point of view)

well-constructed DSML?

Ite
ra

tio
n

(m
od

el

al
te

rn
at

iv
e

/ v
er

sio
ni

ng
)

Phase II.2:
xviModel run
time

well-constructed
Model?

Phase II.1:
xviModel design
time

Model Properties
checking (static)

Abstract Syntax
Concrete Syntax.es
Operational Semantic
Model properties
specification

Model Properties
checking (dynamic)
Direct simulation:
interpreting model by
executing Operational
Semantic

Ite
ra

tio
n

(D
SM

L v
er

sio
ni

ng
)

Standardization (ISO)/International Electrotechnical
Commission (IEC)/Institute of Electrical and Electronics
Engineers (IEEE).

[2] Final report of Model-Based engineering subcommittee,
NDIA, Feb 2011 (available on https://www.ndia.org/-
/media/sites/ndia/meetings-and-events/divisions/systems-
engineering/modeling-and-simulation/reports/model-
based-engineering.ashx, last visited June 23th, 2022)

[3] INCOSE, Survey of Model-Based Systems Engineering
(MBSE) Methodologies, Model Based Systems
Engineering (MBSE) Initiative from International Council
on Systems Engineering (INCOSE), June 2008

[4] INCOSE Systems Engineering Vision 2020, 2007

[5] Dave Kaslow, INCOSE Model-Based Systems
Engineering (MBSE) CubeSat Modeling Efforts, Space
Systems Working Group (SSWG) - GSFC Systems
Engineering Seminar - June 2015

[6] Model Based-Engineering MBSE 101 - INCOSE IW
January 30th, 2016, moderated by Elyse Fosse (available
on
https://www.omgwiki.org/MBSE/lib/exe/fetch.php?media
=mbse:2016_iw-mbse_101.pdf, last visited June 23th,
2022)

[7] Gianni, D., D’Ambrogio, A. and Tolk, A. (eds) (2018)
Modeling and Simulation-Based Systems Engineering
Handbook, CRC Press, doi:10.1201/b17902

[8] ISO/IEC 29110:2015, Software engineering - Lifecycle
profiles for Very Small Entities (VSEs), 2015

[9] IEEE Std 1471-2000 Recommended Practice for
Architectural Description of Software-Intensive Systems,
2000

[10] B.Combemale, J.Deantoni, B.Baudry, R.France, J.-M.
Jezequel et al., Globalizing Modeling Languages.
Computer (IEEE), 2014, pp.10-13

[11] ISO/IEC/JTC 1/SC 32. ISO/IEC 19502:2005, Information
Technol-ogy - Meta Object Facility. Multiple. Distributed
through American National Standards Institute, 2007

[12] Nastov, B., Contribution to a tool-based method for the
design of interoperable, analyzable and provable business
modeling languages for Model Based System Engineering.
University of Montpellier, 2016 [in English, accessible on
https://hal.archives-ouvertes.fr/tel-01809000, last accessed
June 30th, 2022]

[13] Natalia Sidorova, Master course on Process Modelling
(available on
https://www.win.tue.nl/~sidorova/pm/index.html, last
visited May 10th, 2022)

[14] ISO/IEC CD 24641:2020(E, Systems and software
engineering, Methods and tools for Model-based systems
and software engineering

[15] Vincent Chapurlat, Blazo Nastov, Deploying MBSE in
SME context: revisiting and equipping Digital Mock-Up,
6th IEEE International Symposium on System
Engineering, 6th IEEE ISSE 2020, Vienna, Austria,
October 12th-14th 2020

[16] J.-M. Penalva et al., Le systémographe - la méthode
SAGACE, version 1.0, CEA, 2000 [in French]

[17] Friedenthal et al. 2009 - Friedenthal, S., A. Moore, and R.
Steiner, A Practical Guide to SysML: The Systems
Modeling Language, Needham, MA: OMG Press, 2009

[18] Functional Mock-Up Interface (FMI/FMU), see
https://fmi-standard.org/ (last accessed: June 2020)

[19] David Gouyon, Stéphane Chaigneau, Jean-Marc Quiot,
Nicolas Veaux, Vincent Chapurlat, A notation to measure
and improve efficiency with regards to Integration:
Integration Verification Validation Assessment Notation
(IV²AN), 13th IFAC Symposium (INCOM '09), Moscow,
Russia, June 3-5, 2009

[20] Pesola, J-P., Building Framework for Early Product
Verification and Validation”. Espoo 2010. VTT
Publications 736, (2010)

[21] Chapurlat V., UPSL-SE: A Model Verification Framework
for Systems Engineering, Computers in Industry,
Computers in Industry 64 (2013), pp. 581–597

[22] ISO/IEC/ IEEE 42010:2011 Systems and software
engineering - Architecture description, International
Organization for Standardization, Geneva, Switzerland

[23] GEMOC Initiative (available on http://gemoc.org/ with a
set of related publications, last accessed June 2020)

[24] Adrian Pop, Peter Fritzson, An Eclipse-based Integrated
Environment for Developing Executable Structural
Operational Semantics Specifications, Electronic Notes in
Theoretical Computer Science 175 (2007) 71–75

[25] Nastov, B., Chapurlat, V., Dony, C., Towards V&V
Suitable Domain Specific Modeling Languages for MBSE:
A Tooled Approach, 26th Annual INCOSE International
Symposium, Wiley pub., 2016

[26] Vincent Chapurlat, Nicolas Daclin, Proposition of a guide
for investigating, modeling and analyzing system
operating modes: OMAG, , International Conference on
Complex System Design and Management CSDM 2013
December 2013, Paris

[27] OMG, 2015a. Meta Object Facility (MOF) Specification
2.5.1, (available at: https://www.omg.org/spec/MOF, last
accessed on June 27th, 2002

[28] Ecore metamodel (accessible on
http://www.kermeta.org/docs/org.kermeta.ecore.document
ation/build/html.chunked/Ecore-MDK/ch02.html, last
accessed June 30th, 2022)

[29] OBEO Designer (accessible on
https://www.obeosoft.com/en/, last accessed June 30th)

[30] ACCELEO (accessible on
https://www.eclipse.org/acceleo/, last accessed June 30th,
2022)

[31] Claudius Ptolemaeus editor, System Design, Modeling,
and Simulation using Ptolemy II, 2014

[32] UPPAAL, integrated tool environment for modeling,
validation and verification of real-time systems (accessible
on https://uppaal.org/, last accessed June 30th, 2022)

[33] S.Mallek, Contribution au développement de
l'interopérabilité en entreprise : vers une approche
anticipative de détection de problèmes d'interopérabilité
dans des processus collaboratifs, PhD Thesis University of
Montpellier, 2014 [In French] (accessible on
https://hal.archives-ouvertes.fr/tel-00666099, last accessed
June 30th, 2022)

