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Abstract— In  order to monitor and assess the spread of 
the Omicron variant of COVID-19, we propose a 
Distributed Digital Twin  that virtually mirrors a 
hemodialysis unit in a hospital in Toronto, Canada. Since the 
solution involves heterogeneous components, we rely on the 
IEEE HLA distributed simulation standard. Based on the 
standard, we use an agent-based/discrete event simulator 
together with a virtual reality environment in order to 
provide to the medical staff an immersive experience that 
incorporates a platform showing predictive analytics during 
a simulation run.  This can help professionals monitor the 
number of exposed, symptomatic, asymptomatic, recovered, 
and deceased agents. Agents are modeled using a redesigned 
version of the susceptible-exposed-infected-recovered 
(SEIR) model. A contact matrix is generated to help identify 
those agents that increase the risk of the virus transmission 
within the unit. 

Keywords—Omicron variant, COVID-19, disease transmission, 

hemodialysis, digital twin, modeling and simulation, agent-based 
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I. INTRODUCTION

SARS-CoV-2 genetic variations continue to substantially 
modify the COVID-19 pandemic landscape. The B.1.1.529 
(Omicron), a reported variant that emerged in late 2021, has 
quickly spread over the world and is currently the dominant 
variant responsible for the majority of COVID-19 cases in 
many countries [1], [2]. Several knowledge gaps exist about the 
Omicron variant, its transmissibility, pathogenicity, and 
severity, as well as the efficacity of the vaccines in preventing 
Omicron infection [1]. In comparison with patients infected 
with the Alpha or Delta variants, Omicron patients have 
required less intensive respiratory support and spent less time 
in the hospital, indicating a lower disease severity [2]. The 
Omicron variant has been found in more than 75 percent of 
COVID-19 positive tests in South Africa as of November 15, 
2021 [3]. The World Health Organization named Omicron a 
variant of concern (VOC) on November 26, 2021. According to 
a study conducted in the Houston metropolitan area, the 

Omicron variant grew three times faster than the Delta variant 
in terms of relative frequency, and the Omicron variant was 
responsible for 98 percent of all new COVID-19 cases 
diagnosed in the Houston Methodist healthcare system by 
January 5, 2022 [2]. According to another study conducted in 
Denmark, Omicron's effective reproduction is 3.19 times 
greater than Delta's under equal epidemiological conditions [4]. 

The Omicron variant raises major concerns due to many 
mutations in the spike protein, which may limit antibody 
neutralization and increase the risk of reinfection. While there 
has been a dramatic increase in the number of Omicron cases 
reported around the world, the efficacy of vaccinations has been 
questioned until now.  

For a variety of reasons, patients on maintenance 
hemodialysis (MHD) are more susceptible to COVID-19 
infection and associated complications [5]. Many hemodialysis 
patients are elderly and have coexisting morbidities such as 
cardiovascular disease, diabetes, hypertension, and lung 
disease, as well as an underlying immune system deficiency [6]. 
In addition, MHD requires frequent physical presence at 
healthcare facilities, as well as physical contact during 
hemodialysis, both of which increase the risk of disease 
transmission. Patients on long-term dialysis are at increased 
risk of COVID-19 infection and mortality. Patients who receive 
dialysis at home have a distinct edge. They do not have to go to 
the hospital, which decreases social interaction and viral 
transmission risk.  

Different modeling and simulation (M&S) methods and 
techniques can be used in order to improve the operations and 
management of hospitals and healthcare services. They can also 
be used to help in the training of existing staff and new hires. 
New simulation and visualization technologies, including 
virtual reality (VR) and digital twins (DTs), could play a critical 
role in the assessment of situations and in making rapid 
decisions to prevent further spread of COVID-19, while 
minimizing the risks associated with direct and field-based 
observations and analysis of various procedures and policies. 
The design of a virtual digital equivalent to a physical product 
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– or DT – was introduced in 2002 by Grieves [7] in connection
with product lifecycle management (PLM). Although the
application of DTs has gained some maturity in the
manufacturing industry, research on the application of DTs in
healthcare management is still young [7]. Nevertheless, digital
assistance in patient pathways and treatment are now a hallmark
and major concern of healthcare system development [8]. The
development of DTs in healthcare management is challenging
due to the complexity of the interactions and the non-uniform
nature of the patient's case. For complex patient-centric
engineering projects, the simultaneous use of models and data
– e.g., model-based systems engineering (MBSE) – should be
considered. Based on this assumption, the contribution of this
paper deals with DTs and simulation for better planning and
security in healthcare settings. In detail, some perspectives on
the interest in the DT approach based on the model of the
product service system are outlined, such as having simulation
ready in the digital world to anticipate the future while
preventing contamination. The relationship between service
twins and ground data, and the connection to the decision level,
is still open to discussion.

In some circumstances, using a traditional simulation 
technique is insufficient, necessitating the introduction of a 
distributed technology. In this study, we provide a Distributed 
Digital Twin (DDT) that virtually mirrors a hemodialysis unit 
in a hospital in Toronto, Canada, in order to monitor and assess 
the spread of the Omicron variant of COVID-19 within the unit. 
To develop this distributed system, AnyLogic was utilized for 
the discrete event and agent-based M&S, while Unity was used 
as a 3D engine to create the virtual reality environment. In order 
to integrate both of the aforementioned heterogeneous tools, the 
IEEE international high-level architecture (HLA) standard was 
applied to address interoperability and distributed simulation 
challenges. This would allow users to engage with the 
simulation and explore/review various hemodialysis unit 
settings and their effects. The rest of this paper is organized as 
follows. Section 2 offers an overview of recent research studies 
as well as pertinent existing literature. The DS system 
architecture, including the simulation models in AnyLogic and 
Unity, as well as their integration and methodology, are 
described in Section 3. The hemodialysis case study is also 
defined in Section 3. Section 4 of the study includes a 
discussion of simulation findings, and Section 5 offers a 
summary and conclusion. 

II. LITERATURE REVIEW

By the 15th of December 2021, in the presence of the 
Omicron VOC, daily infections among healthcare workers in 
South Africa were three times higher than at the Delta VOC 
peak [9]. According to the same research study, Omicron 
infected a higher percentage of healthcare workers aged 18 to 
30, compared to the Delta VOC, which infected mainly 
healthcare workers aged 55 and over. Some 91% of healthcare 
workers who were hospitalized during the Omicron phase 
required general care, 6% required high care, and 3% required 
intensive care [9]. During the Delta phase, 89% needed general 
care, 4% needed high care, and 7% needed intensive care, while 
during the Beta phase, 43%, 7%, and 16% required general 
care, high care, and intensive care, respectively. Although one 
may deduce that the Omicron VOC is less severe than prior 

versions, the concern is that it spreads roughly three times faster 
than Delta VOC [10], which is 87 percent faster than Beta, and 
which, in turn, is 73 percent faster than its preceding variant 
[11]. The widespread infection from the Omicron VOC poses a 
serious threat, particularly in hospitals and among healthcare 
workers. According to a European study, the risk of healthcare 
system saturation is critical, particularly with the Omicron 
VOC, and more refined mitigation strategies and techniques 
that safeguard the most vulnerable people and healthcare 
systems are urgently needed [12]. 

The Omicron variant raises substantial concerns about 
vaccine effectiveness and the increased reinfection risk [13]. 
The Omicron VOC was revealed to escape antibody 
neutralization by the RNA vaccine Pfizer BioNTech. In a study 
conducted in South Africa, scientists discovered a vaccination 
effectiveness of 70% during the Omicron phase, based on data 
collected over the period November 15-December 7, 2021. This 
vaccine effectiveness rate was significantly lower than the rate 
of 93% calculated in the period September 1-October 31, 2021, 
when Delta was the prevalent variant [3]. The Omicron VOC 
has a considerable impact on neutralizing activity against 
mRNA vaccine response. However, after receiving a booster 
dose, the vast majority of individuals maintained neutralizing 
activity against the Omicron variant for at least one month [14]. 
These data back up the necessity for a booster dose to preserve 
neutralizing activity against the Omicron variant [15], [16]. 

For in-center patients on MHD, the requirement for frequent 
visits to the hemodialysis unit, as well as the unavoidable 
clustering of patients during dialysis shifts, enhance the risk of 
viral transmission [17]. Interactions with transportation staff 
and other passengers on public transit systems may be required 
when traveling to hemodialysis centers. Furthermore, the MHD 
unit's everyday activities include a number of patient-patient 
and patient-caregiver interactions that raise the potential of 
COVID-19 transmission [18]. This is due to synchronous 
dialysis schedules, in which patients enter and exit the 
department at the same time, as well as intimate contact with 
healthcare personnel who engage with other patients in a 
similar manner. MHD patients are extremely sensitive to 
COVID-19 infections and vulnerable to their severe 
repercussions, according to early findings from Canadian 
healthcare facilities [18]. According to data collected between 
March and August 2020 in Ontario, Canada, 187 out of 12,501 
dialysis patients were diagnosed with COVID-19 infection. Of 
the 187 who were infected, 117 (62.6%) were admitted to 
hospitals, with a 28.3% death rate [19]. According to another 
study in France between March and May 2020, the mortality 
rate was 40% for peritoneal dialysis patients [20]. As a result, 
adequate preventive strategies and procedures must be 
established in hemodialysis centers in order to protect patients 
from any infection risk [18], [21]. In some in-center dialysis 
facilities, outbreaks involving dialysis patients, nursing staff, 
and physicians have occurred, resulting in clinical staff 
shortages in an already overwhelmed healthcare system [22]. 
To our knowledge, there are currently no modeling studies on 
Omicron VOC dissemination and control in hospital settings, 
particularly in hemodialysis units where COVID-19 susceptible 
patients require special attention. 



Recent technologies have required the design and 
development of DS systems that integrate different 
heterogeneous simulators [23], [24]. Such simulators may be 
running on different simulation environments and utilizing 
different modeling methods such as discrete event simulation 
(DES), agent-based modeling (ABM) and system dynamics 
[25], [26]. Consequently, DS systems have become more and 
more complex in terms of both the level of dynamism and the 
level of heterogeneity within the system. In [24], the authors 
identify four main levels of heterogeneity which may pose 
barriers to integration and interoperability: (1) data, (2) 
middleware, (3) application, and (4) non-functional 
heterogeneities. In order for a DS solution to be considered 
fully interoperable, it must overcome barriers at all four levels 
[28]–[31]. 

In the 1990s, Defense Advanced Research  Projects Agency 
of the Department of Defense (DoD) in the United States (US) 
developed the HLA standard over an entire decade resulting in 
the  US DoD 1.3 HLA standard [32]. The primary goal of this 
standard's development was to address problems with 
reusability and interoperability amongst diverse heterogeneous 
systems. Later, in year 2000, it was named HLA IEEE 1516 
after being adopted by IEEE. It was improved in 2010, resulting 
in HLA Evolved. HLA 4 is a new version now under 
development. This version will encompass new object 
modeling possibilities, as well as new simulation security-
related features [33]. In its current form, HLA is now the most 
popular standard for DS. 

A digital twin (DT) is a digital replica of an object, process 
or system that can be used for various purposes [34]. In this 
work on the propagation of a virus inside the hemodialysis unit, 
it seems necessary to consider an environment to embark the 
users and to allow a better visualization of the contact situations 
and thus better understand the problems encountered. 
Nevertheless, to our knowledge, no DT has yet been developed 
to study the impact of the transmission of the Omicron variant 
inside hemodialysis centers. 

III. MATERIALS AND METHODS

A. DS architecture

The integration of AnyLogic and Unity, two powerful but
heterogeneous technologies, was made possible through the 
HLA standard. For both application platforms, an HLA 
interface layer has been developed in order to enable the 
communication and data exchange (Figure 1). The purpose of 
this research is to use Unity3D as an engine that is synced with 
AnyLogic's process flow, ABM, and DES to have a 
process/simulation-based VR environment. On the one hand, 
AnyLogic is a Java-based engine, with models mapped to Java 
code. On the other hand, C#, JavaScript/UnityScript, and Boo 
are the scripting languages supported by Unity. 

The federated object model (FOM) file, which contains all 
the details about the objects/attributes, interactions/parameters, 
and communication between the two federates (AnyLogic and 
Unity), is attached to both HLA interfaces. With the use of the 
HLA interface, AnyLogic and Unity can both build the HLA 
federation. Once one of the two components has established the 
federation, the other one joins it. AnyLogic and Unity are both 

referred to as the HLA federates. The publish/subscribe (p/s) 
mechanism of HLA serves as the foundation for 
communication between the two components [29]. When one 
of the federates publishes an object or interaction, the other 
federate receives a callback if it has subscribed to that object or 
interaction. 

Figure 1 Distributed Digital Twin architecture 

B. Case Study

In this study, we model and simulate the dialysis unit of the
University Health Network (UHN) which is located at the 
Toronto General Hospital.  The unit operates from Monday to 
Saturday under three daytime shifts (7:30 AM – 12:30 PM, 1:00 
PM – 5:00 PM, and 5:30 PM to 9:00 PM) and one nocturnal 
shift from 11:00 PM to 6:00 AM.  The unit patient capacity is 
308. Of these, 278 patients undergo hemodialysis during
daytime three to six days a week and 30 at nighttime three times
a week. There are a total of 55 dialysis chairs available at the
UHN dialysis unit. Staff consists of nephrologists, nephrology
fellows, nurses, technicians, pharmacists, dieticians, social
workers, and other support personnel.

During a shift, patients are admitted in groups of three or 
four and in a staggered manner. A cohort is admitted 
approximately 30 minutes after the one preceding it. A clerk 
goes into the waiting area and gives each patient a wrist band 
containing the patient’s identification. Patients walk in and 
weigh themselves. They then walk to their assigned station next 
to which a nurse is waiting. The latter helps patients getting 
settled onto the machine, assesses them, and checks their blood 
pressure. While this is taking place, the clerk admits the next 
cohort. Meanwhile, patients are lining up in the corridor outside 
the doorway maintaining a 2 m distance between each other, as 
per protocol.  

After setting up a patient, the nurse calls in the next patient. 
When patients have completed their dialysis, the nurse will take 
them off the machine, decannulate the attached arteriovenous 
(AV) fistula, or central venous catheter, and check their blood 
pressure in both a seated and a standing position. The entire 
process of starting and stopping the dialysis takes between 15 
and 20 minutes for each patient. The following is to be noted: 
(1) nurses are assigned to stations (and not to patients) in a



random manner on the day of the shift, and (2) patients are 
assigned to stations in a random manner (although some of 
them indicate their preference for certain stations over others).  

Hemodialysis assistants (HAs) oversee setting up the 
dialysis machines. The task consists of cleaning and sterilizing 
the machines according to a protocol, putting dialyzers and 
tubing onto them, and ensuring all equipment is available at the 
stations for the nurses and patients to use.  HAs perform the task 
before and between shifts.   

The UHN hemodialysis unit has two wings (east and west) 
operated by 10 different nephrologists available during all 
shifts. The latter are assisted by a nurse practitioner (NP) during 
morning and afternoon shifts.  Nephrologist fellows conduct 
rounds in the unit on behalf of the most responsible physician 
(MRP) who, like the NP, spends between 1 and 2 hours in the 
dialysis unit, once a week, while a nephrology fellow spends 
approximately 1 to 2 hours per shift circulating in both wings. 
NPs or nephrologist fellows leave the unit or wait in their office 
area when not actively seeing patients. 

C. DDT parameters and configuration

Predicting the efficacy of vaccinations and the transmission
of Omicron VOC inside the hemodialysis unit requires the 
collection of a significant amount of data. The first stage 
consists of gathering information about patients and personnel 
who were either vaccinated or not. The vaccinated patients or 
personnel are divided into those who have had one, two or three 
doses of the vaccine. Splitting the patients by age group is 
another interesting information that improves model efficacy. 
Table 1 shows the key parameters used to build the ABM. 
Some of these parameters are collected from the medical staff 
of the hemodialysis unit – such as the length of time spent 
performing each stage of dialysis, the patient’s age group, 
staff/patient walk speed, and others. The likelihood that 
infection spreads among susceptible agents who are in close 
contact with an infected agent is determined by a metric called 
“attack rate”.  

Table 1 Data and parameters of the Agent-Based Model 

Agent Parameter Value Unit 

Staff/Patients Speed 0.16 m/s 

Staff Time spent in the locker room 5-10 minute 

Staff Break time 20-40 minute 

Assistant Required time for setting up station 

materials 

2-4 minute 

Assistant Time spent at the dialysis station 1-2 minute 

Nurse Visiting time at the dialysis station  3-5 minute 

Nurse Time spent to connect/disconnect the 

patient and the machine 

20-40 minute 

Physician Visiting time at the dialysis station 3-5 minute 

Patient Time spent in the screening process 0.5-1.5 minute 

Patient Time spent receiving treatment at the 

dialysis station 

210-270 minute

Patient Time spent in the lobby before leaving 

the hospital 

4-6 minute 

All agents Omicron attack rate 35.4-50.4 % 

All agents Omicron incubation period 2-4 days 

78% of the agents Omicron infectiousness 3-6 days PSO 

16% of the agents Omicron infectiousness 7-9 days PSO 

5% of the agents Omicron infectiousness 10-13 days PSO 

1% of the agents Omicron infectiousness 14 days PSO 

10.7% of the patients Age 18-44 years old 

33.4% of the patients Age 45-64 years old 

25.6% of the patients Age 65-74 years old 

29.7% of the patients Age > 74 years old 

According to seven experiments presented in a recent 
research [35], the attack rate employed in the ABM setup is 
between 35.4% and 50.4%. The time between meeting an 
infected agent and the onset of the first symptoms is represented 
by an incubation period, a metric used in the ABM model. The 
incubation period used in this study is two to four days based 
on recent research [36]–[39]. The Omicron variant's period of 
infectiousness peaks at three to six days post symptom-onset 
(PSO). At 7 to 9 days PSO, up to 16% of infected people may 
still be contagious, compared to 5% at 10 to 13 days PSO and 
1% at 14 days PSO [10], [40]. 

One of the important aspects that affects COVID-19 vaccine 
efficacy is the weeks from vaccination parameter. As seen in 
Figure 2, the vaccination efficacy diminishes weeks following 
the second injection [41]. The vaccine's efficacy peaks at 90-95 
percent during the first three weeks, then drops to about 25% 
after 90 weeks following the second dose immunization. 

Another key factor that influences vaccination efficacy is 
the type of vaccine used. 98% of the patients and staff have been 
vaccinated with Pfizer-BioNTech Cominaty or Moderna 
Spikevax. As a result, the efficacy of Pfizer and Moderna on 
Omicron VOC was of particular interest in the developed ABM. 
In terms of vaccine efficacy, according to the Institute for 
Health Metrics and Evaluation, Pfizer/BioNTech and Moderna 
are quite similar, with both vaccines preventing severe disease 
caused by the Omicron variant by 72-73% and infection by 44-
48% [41]. According to recent studies, the booster dose of 
Pfizer/BioNTech increases the vaccine effectiveness up to 90-
93% against COVID-19 infection [3], [42]. 

All the agents that exist in the DDT are linked to a susceptible, 
exposed, infected, recovered (SEIR) model (Figure 3). In this 
study, we use a redesigned SEIR model that has undergone 
various changes, including the addition of symptomatic and 
asymptomatic states that in turn comprise new states. These 
changes may be discovered in earlier research work [43]. 

Figure 2 Vaccine effectiveness per week after second dose [41] 



Figure 3 Redesigned SEIR model 

IV. RESULTS AND DISCUSSION

We employ two modeling phases to create the hemodialysis 
agent-based simulation model. The first phase consists of 
developing a contact matrix that can be used for comprehensive 
disease modeling and for the analysis of various mitigation 
techniques. Based on previously defined methodology, a contact 
matrix keeps track of, and summarizes, agent interactions [18]. 
The highest risk of viral transmission is between the HAs, as 
seen in Figure 4. Additionally, there is a considerable risk that 
nurses and HAs spread the virus within the unit. This contact 
matrix was crucial for the medical staff's efforts to determine the 
source of viral transmission and limit its spread within the 
facility, especially with the Omicron variant, which has a 
roughly three-fold higher likelihood of transmission than the 
Delta VOC [10]. This created contact matrix is utilized for the 
second stage of M&S, which is defined in the paragraph that 
follows. 

Figure 4 Generated contact matrix 

A primary goal of this study has been to extend previously 
published work [18], [44] by adding vaccination settings and 
parameters as well as Omicron variant parameters. Figure 5 
compares our simulated outcomes of the propagation of the 
original SARS-CoV-2 virus with the spread of the Omicron 
variant inside the hemodialysis unit. One can see that the 
Omicron VOC spreads more quickly to, but has less severe 
effects on, hemodialysis patients than the original COVID-19 
virus, with a death rate that has nearly dropped to 4% as opposed 
to the original virus’ death rate of close to 20%. The fact that 
there was no vaccination available during the original SARS-
CoV-2 (the upper part of Figure 5), however, may also have 
contributed to the higher death rate among hemodialysis 
patients. 

 Until now, the developed DDT performs an offline 
simulation by replaying the situation or anticipating possible 
situations, it embeds users in a role-playing game but it does not 
process the data in real time. 

Figure 5 Original SARS-CoV-2 vs Omicron variant spread inside 
the hemodialysis unit 

V. CONCLUSION

In this paper, we present a DDT system designed for the 
hemodialysis unit of a hospital in Toronto, Canada, to provide 
the medical staff with predictive analytics and visual models 
that aid them in identifying solutions to enhance the efficacy, 
safety, and quality in highly contagious disease environments. 

The IEEE HLA distributed simulation standard has been 
used to resolve the interoperability concerns between 
heterogeneous components. A discrete event simulator has 
been integrated with a virtual reality environment based on 
HLA in order to provide an immersive experience to the 
medical staff in addition to platform showing the number of 
exposed, symptomatic, asymptomatic, recovered, and dead 
agents (patients, nurses, physicians, clerks, and others) during 
the simulation run. A contact matrix has also been generated to 
identify the agents that raise the risk of viral transmission inside 
the unit.  



One of the study's limitations is that the models reported 
here do not yet consider portable equipment (e.g., portable X-
ray machines, mobile dialysis machines, temporary beds). One 
future venue to explore may be the use of an SEIR network to 
model the problem and the application of artificial intelligence 
techniques to predict the spread of the virus. This can be done 
through the use of some neural network architectures or the 
design of heuristics that learn the weights on the network edges. 
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