
HAL Id: hal-03857880
https://imt-mines-ales.hal.science/hal-03857880

Submitted on 17 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The use of the IEEE HLA standard to tackle
interoperability issues between heterogeneous

components
Ahmad Almaksour, Hadi Gerges, Simon Gorecki, Grégory Zacharewicz, Jalal

Possik

To cite this version:
Ahmad Almaksour, Hadi Gerges, Simon Gorecki, Grégory Zacharewicz, Jalal Possik. The use of the
IEEE HLA standard to tackle interoperability issues between heterogeneous components. DS-RT 2022
- IEEE/ACM 26th International Symposium on Distributed Simulation and Real Time Applications,
Sep 2022, Alès, France. pp.175-178, �10.1109/DS-RT55542.2022.9932042�. �hal-03857880�

https://imt-mines-ales.hal.science/hal-03857880
https://hal.archives-ouvertes.fr

The use of the IEEE HLA standard to tackle
interoperability issues between heterogeneous

components
Ahmad Almaksoura, Hadi Gergesa, Simon Goreckib, Gregory Zacharewiczc, Jalal Possika, *

aFGES, Université Catholique de Lille, F-59000 Lille, France
bUniv. Bordeaux, CNRS, IMS, UMR 5218, Talence, France

cLaboratory for the Science of Risks, IMT Mines Ales, Ales, France
* Author to whom correspondence should be addressed.

{ahmad.almosaalmaksour, hadi.gerges@lacatholille.fr}@lacatholille.fr, simon.gorecki@u-bordeaux.fr, gregory.zacharewicz@mines-ales.fr,
jalal.possik@univ-catholille.fr

Abstract—Classical simulation methods become not flexible
and performant enough in complex models, necessitating the use
of a distributed simulation technique to split the load and
heterogeneity into separate sub-components and manage the
simulation time between them. In this type of simulation,
interoperability and reusability issues arise and should be
addressed. The IEEE High-Level Architecture (HLA) standard
for distributed simulation emphasizes federates interoperability
and reusability, as well as time management and advanced data
distribution techniques. This paper presents the methodologies
and techniques used to develop the HLA federates, as part of the
Simulation Exploration Experience (SEE) project, to virtually
recreate a mission on the moon. This project is organized by the
National Aeronautics and Space Administration (NASA) and
the Simulation Interoperability Standards Organization (SISO).
For each SEE component, an HLA interface was developed to
make it compliant with other SEE federates and reusable during
the simulation run. Based on HLA mechanisms, heterogeneous
components with an HLA interface were able to interexchange
objects/attributes and interactions/parameters.

Keywords—Modeling and simulation, HLA, distributed
simulation

I. INTRODUCTION

Modeling and simulation (M&S) are rapidly evolving
approaches that aids in the virtual evaluation of real-world
systems. Using computer-based M&S to simulate various
systems and operational situations is more practical, and less
time/cost-consuming than executing them in real-world
settings. M&S is widely used to identify weaknesses and
issues of real-world systems, as well as to analyze the
repercussions of any changes made in settings. As a
technology that supports learning and training abilities, as
well as decision support and system analysis and evaluation,
the M&S area is gaining traction.

Nevertheless, in complex models, resource-intensive
processing is required, and while scaling up servers and
supercomputers can in part solve the challenge of handling
complicated computations and massive volumes of data, all
performances are still bound by server cores and memory. As
a result of the growth of more advanced models, distributed

technologies are regarded as one of the finest options, aiming
to partition the simulation into sub-components and run them
on linked workstations while taking time management and
synchronization into account. Interoperability concerns
develop at several levels in distributed simulation (DS). First,
at the operating system level, where each component can run
on a different operating system. At the application level,
components can be written in several programming
languages. Then, at the middleware level, where several
communication protocols can be used. Finally, at the data
level, with heterogeneities between variables. In addition,
time management is required when many components run
concurrently. When several components represent a sub-
simulation of the entire system, they must be time-
synchronized for the DS system to work properly.

In this paper, we use the High-Level Architecture (HLA)
standard for distributed simulation created by the Department
of Defense (DoD) in the United States, later adopted by IEEE
as an international standard for DS. As part of the SEE project
organized by the National Aeronautics and Space
Administration (NASA) and the Simulation Interoperability
Standards Organization (SISO) communities, this project
aims at virtually reproducing a mission on the Moon using
HLA standard and simulators to interact with NASA
federates to provide a spacecraft mission in lunar site [3].
This paper provides a detailed explanation of the methods
used to create HLA interactive federates using Java as a main
programming language. The rest of this article is structured
as follows. A summary of recent research and relevant prior
material are provided in Section 2. The methodologies and
distributed simulation architecture are discussed in Section 3.
The results and analysis are discussed in Section 4 while a
summary and conclusion are provided in Section 5.

II. RELATED WORK

Complex industrial processes necessitate methods and
tools for interconnecting a set of heterogeneous components
running on many platforms and operating systems [2], [9],
[12]. Manufacturing modeling and simulation systems are
made up of lots of processes, a set of exchanged data, the

interconnection of services, and supply chain collaboration
that can face interoperability barriers. According to IDEAS
consortium in [8], interoperability is considered if there is a
need of interactions to involve several entities and extends
beyond the bounds of any particular system. As a result,
achieving interoperability involves merging systems and
removing incompatibilities. Our purpose is to address
interoperability issues by identifying barriers
(incompatibilities) that prohibit interoperability from
occurring during a system's dynamic execution. As a result,
modeling languages are required to capture all the system's
components. Yet, to date, M&S for resource collaboration in
complex systems still face interoperability barriers. It is
stated in the proposed Model Driven Service Engineering
Architecture (MDSEA) [7], that the different categories of
resources should be identified at the design phase to enable
better interoperability.

Then, at the time of execution, data interchange
synchronization is required. Interesting contributions to
enterprise modeling, interoperability, and distributed-
simulation standards are detailed in the literature. Distributed
simulation (DS) is a growing research area. One of its
advantages is the distribution of tasks among many
computers, which boosts program productivity. Another
advantage of distributed simulation is the possibility to
combine the strengths of many systems into a potent system
while addressing interoperability concerns [4].
Interoperability is the ability of two or more entities to
interact and collaborate despite differences in
implementation language, data structure and format,
execution environment, or model abstraction [5]. The
synchronization of time is another well-known issue in
distributed simulation. It is crucial to ensure that simulations
deliver data at the appropriate times, in the correct orders, and
without violating any causal constraints [6].

Falcone et al. developed a unified approach to combining
the Functional Mockup Interface (FMI) and the IEEE 1516—
High Level Architecture standard in [13]. To combine the
standards, the authors offer two techniques: The first method
involves constructing a hybrid federate using adapters. A
Functional Mock-up Unit (FMU) is included in the federate,
along with an adapter that manages all interactions between
HLA-RTI and the FMU component. The second solution uses
a mediator layer to coordinate the behavior of the entire
system, which consists of a series of FMUs, an HLA federate
that can use FMU to simulate a specific component, and a
mediator layer.

Taylor et al. [14] proposed adopting distributed-
simulation standards to improve a commercial simulation
tool (commercial-off-the-shelf simulation packages (CSPs)).
The authors demonstrate how a network of HLA federates
allows existing business process models (modeled in BPMN)
to communicate with each other.

In [2], [15], authors propose to use a Business Process
Modeling and Notation modeling and simulation tool to
orchestrate and solve interoperability issues in a complex
system composed of two different distributed simulation
standards (HLA and FMI).

In line with the literature, we can observe that most of the
interoperability challenges across complex heterogeneous
systems are solved using a distributed simulation standard
such as the IEEE HLA standard. We will discuss these
research topics in more detail in the section that follows.

III. MATERIAL AND METHODS

As part of this project, we have developed a Robot
Technician (RT), a rover tasked with looking after other
robots on the virtual moon. In order to provide other robots,
the assistance and support they require, it is connected to
them via the HLA interface. RT receives faults or warnings
from linked robots, analyzes them, and then responds in
accordance with scheduling and priority algorithms. For
example, when two faults are received simultaneously from
two different robots, RT determines the urgency and danger
of both mistakes while taking into consideration the distance
to reach these robots.

The tools used in this project are Pitch Run Time
Infrastructure (pRTI) software for HLA development,
Eclipse IDE for Java programming, and Unity, DON, and
Blender for 3D modeling and development.

The 3D model of the RT was designed using Blender
(Fig. 1). This model has its own objects/attributes and
interactions/parameters to publish/subscribe to the HLA RTI
in order to move on the lunar base and send/receive the
appropriate data during the simulation run. Those settings are
specified and defined in the next paragraphs.

Fig. 1. The 3D model of the RT was designed using Blender

HLA enables the integration of various simulation
components i.e., “federates” that are connected via the Run
Time Infrastructure (RTI), a service bus, which provides
communication by data exchange between federates (Fig. 2.).
The global simulation that brings together all federates by the
RTI to work together is a “federation”. The federation uses a
Federation Object Model (FOM), which is an XML file that
describes objects/attributes and interactions/parameters to be
exchanged between federates (Fig. 2). A federation must first
be created for federates to join before synchronization and
data exchange are possible. Through HLA's
publish/subscribe and time management mechanisms, each
federate must first join the federation to establish connections
between them.

The SpaceFOM used in this project was developed by
SISO in 2015 to provide a practical method for system
integration and facilitate collaboration between space system
simulations [16].

Fig. 1. HLA architecture

Among the various capabilities developed in the RT
federate are the ability to recharge the batteries of other robots
and change their tires. An object class and an interaction class
has been added to the FOM file to define the information that
should be sent/received to/from the RTI.

A master platform has been developed to build the
federation. The starter kit framework (SKF) and pitch RTI
(pRTI) java libraries have been used fo the HLA federates
and establish the connection to the RTI central unit (Fig. 3).

Fig. 3. HLA Federation using pitch prti

An object class has been developed that represents our
federate (Technician Robot), and we created the Federation
Object Model (FOM), which contains the description of the
model. This object has (1) ‘name’, (2) ‘parent_name’, (3)
‘position’, and (4) ‘available’ as attributes.

(1) The ‘name’ attribute refers to the name of the object.
(2) ‘parent_name’ defines the reference frame. In other

words, it specifies where the object is located.
(3) ‘position’ represents the position of the object with

three coordinates x, y, and z.
(4) ‘available’ represents the availability of the object.

In order to exchange necessary information, the object
contains several methods such as getAvailability() and
getPosition(). Before joining the federation, a federate should
be connected to the RTI using the method
connectToRTI(settings_designator). Some parameters have
to be filled out to connect to the RTI, such as the host address
and port number. Following this, we use the method
joinFederationExecution() to join the space master federation
(Fig. 4). In addition, the object should be subscribed to the
Federation using the method subscribeSubject('object class').
To run the experiment, another federate ‘Lunar Rover’ has
been developed to interact with the RT object federate.

Fig. 2. Lunar Rover and Technician Robot federates joining the
space master federation

A ‘communication’ interaction class has been developed,
which has a string-typed attribute, getter and setter methods,
used to interact with other federates and declared in the FOM.
The RT object updates parameter values for the interaction
class using the method updateInteraction("interaction object
class") and publishes the interaction class parameters using
the SKF library's publishInteraction("interaction class")
function. For instance, if the RT receives a request for
assistance from another federate, the RT publishes a message
“I am on the way” or “the repair is complete”. It is important
to remember that the robots must subscribe using the method
subscribeInteraction("interaction class") in order to obtain
the interaction class parameters. Robots will not be able to get
the message otherwise. Following subscription, the federates
get all data transmitted by the “communication” interaction
class.

Another interaction class "HelpRequest" has been
created, this class sends a help request to the RT federate. RT
receives this information and identifies the location of the
robot that is asking for help or repair. An interaction ‘Needs’
has also been developed to define the needs of the object
federates. For example, the Lunar Rover may publish the type
of damage, as an interaction, to the RTI so that the RT
federate, which is subscribed to this interaction, receives this
information and acts accordingly. Fig. 5 provides a quick
overview of how the federates collaborate through the RTI
and the federation to which they belong.

 Fig. 3. HLA environment and methods used for
communication

Blender is used to alter the predesigned 3D model, and the
output file has then been uploaded to the DON directory so
that the model may be seen in a 3D form. The main goal is to
see how the RT 3D model interacts with any other model
(federate) having an HLA interface that is linked to the same
federation.

IV. RESULTS AND ANALYSIS

As a result, the contact between the RT and the Lunar
Rover components was established by resolving
interoperability issues at application, data, middleware, and
OS levels using HLA. As well, RT and Lunar Rover federates
smoothly operates within the space master federation created
by the NASA team. In the SEE scenario, the Lunar Rover
may ask the RT for assistance. In response, the RT
approaches the Lunar Rover and acts accordingly. The arrival
time to the Lunar Rover varies depending on where each
object is located on the moon's surface. When there are
several broken robots, RT responds based on priority. (e.g.,
Recharging a battery versus Fixing an inflated tire). The
distance, processing time, and level of urgency are the factors
that determine the priority ranking. The interest for the
students is to learn how to adjust the parameters to be able to
correct the errors as quickly as possible. Fig. 6 describes an
example of the communication between RT and the Lunar
Rover.

Fig. 4. Example of Communication Between the Federates

V. CONCLUSION AND FUTURE WORK

This paper is written as feedback from the SEE project
organized by NASA and the SISO communities. The main
objective of this project is to get students to face the
challenges of interoperability between heterogeneous
components using HLA as an international standard for
distributed simulation. An explanation of the methods used to
create HLA interactive federates is presented in this paper.
We intend to draw more students into the world of distributed
simulation as part of future development. In particular, work
with the HLA time management mechanism that is not yet
fully implemented. We believe that working in an
international team to discuss the HLA mechanism and how to
control the simulation's progression over time while receiving
an advance grant from the RTI is a worthwhile experience for
students.

ACKNOWLEDGMENT

We thank the Faculty of Management, Economics and
Sciences (FGES) at Lille Catholic University for the financial
support of our research.

REFERENCES

[1] J. Possik, A. D’Ambrogio, G. Zacharewicz, A. Amrani, and B.
Vallespir, “A bpmn/hla-based methodology for collaborative distributed
des,” in 2019 IEEE 28th International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE),
Capri, Italy, 2019, pp. 118–123. doi: 10.1109/WETICE.2019.00033.

[2] S. Gorecki, J. Possik, G. Zacharewicz, Y. Ducq, and N. Perry,
“Business Models for Distributed-Simulation Orchestration and Risk
Management,” Information, vol. 12, no. 2, p. 71, 2021.

[3] P. R. Elfrey, G. Zacharewicz, and M. Ni, “SMACKDOWN:
adventures in simulation standards and interoperability,” in Proceedings of
the 2011 winter simulation conference (wsc), 2011, pp. 3958–3962.

[4] J. Possik et al., “A Distributed Simulation Approach to Integrate
AnyLogic and Unity for Virtual Reality Applications: Case of COVID-19
Modelling and Training in a Dialysis Unit,” in 2021 IEEE/ACM 25th
International Symposium on Distributed Simulation and Real Time
Applications (DS-RT), Valencia, Spain, 2021, pp. 1–7. doi: 10.1109/DS-
RT52167.2021.9576149.

[5] A. D’Ambrogio and D. Gianni, “Using CORBA to enhance HLA
interoperability in distributed and web-based simulation,” in International
Symposium on Computer and Information Sciences, 2004, pp. 696–705.

[6] G. Zacharewicz, N. Giambiasi, and C. Frydman, “Gdevs/hla
environment: A time management improvement,” in the 17th IMACS World
Congress on Scientific Computation, Applied Mathematics and Simulation,
2005, pp. T4-I.

[7] H. Bazoun, G. Zacharewicz, Y. Ducq, and H. Boyé,
“SLMToolBox: an implementation of MDSEA for servitisation and
enterprise interoperability,” in Enterprise Interoperability VI, Springer,
2014, pp. 101–111.

[8] C. IDEAS, “Thematic Network, IDEAS Interoperability
Development for Enterprise Application and Software Roadmaps,” IDEAS
Tech Report Annex, 2002.

[9] J. Possik, “Contribution to a methodology and a co-simulation
framework assessing the impact of lean on manufacturing performance,”
PhD Thesis, Bordeaux, 2019.

[10] J. Possik, C. Yaacoub, S. Gorecki, G. Zacharewicz, and A.
D’Ambrogio, “A Model Based Systems Engineering Approach to
Automated Music Arrangement,” in 2021 Annual Modeling and Simulation
Conference (ANNSIM), Jul. 2021, pp. 1–12. doi:
10.23919/ANNSIM52504.2021.9552105.

[11] W. Guédria, Y. Naudet, and D. Chen, “Maturity model for
enterprise interoperability,” Enterp. Inf. Syst., vol. 9, no. 1, pp. 1–28, 2015.

[12] D. Lee, “Development of Mediator-Based Direct Wokrflow
Simulation System and HLA/RTI-Based Collaborative BPMS Middleware,”
PhD Thesis, Korea Advanced Institute of Science and Technology Daejeon,
Korea, 2010.

[13] A. Falcone and A. Garro, “Distributed co-simulation of complex
engineered systems by combining the high level architecture and functional
mock-up interface,” Simul. Model. Pract. Theory, vol. 97, p. 101967, 2019.

[14] S. J. Taylor, N. Mustafee, S. J. Turner, K. Pan, and S.
Strassburger, “Commercial-off-the-shelf simulation package
interoperability: Issues and futures,” in Proceedings of the 2009 Winter
Simulation Conference (WSC), 2009, pp. 203–215.

[15] S. Gorecki, J. Possik, G. Zacharewicz, Y. Ducq, and N. Perry, “A
multicomponent distributed framework for smart production system
modeling and simulation,” Sustainability, vol. 12, no. 17, 2020, doi:
10.3390/su12176969.

[16] E. Z. Crues, D. Dexter, A. Falcone, A. Garro, and B. Möller,
“SpaceFOM - A Robust Standard for Enabling A-Priori Interoperability of
HLA-Based Space Systems Simulations,” Journal of Simulation, pp. 1–21,
2021.

