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Abstract: The virus that causes COVID-19 changes over time, occasionally leading to Variants of
Interest (VOIs) and Variants of Concern (VOCs) that can behave differently with respect to detection
kits, treatments, or vaccines. For instance, two vaccination doses were 61% effective against the
BA.1 predominant variant, but only 24% effective when BA.2 became predominant. While doses still
confer protection against severe disease outcomes, the BA.5 variant demonstrates the possibility that
individuals who have received a few doses built for previous variants can still be infected with newer
variants. As previous vaccines become less effective, new ones will be released to target specific
variants and the whole process of vaccinating the population will restart. While previous models
have detailed logistical aspects and disease progression, there are three additional key elements to
model COVID-19 vaccination coverage in the long term. First, the willingness of the population to
participate in regular vaccination campaigns is essential for long-term effective COVID-19 vaccination
coverage. Previous research has shown that several categories of variables drive vaccination status:
sociodemographic, health-related, psychological, and information-related constructs. However, the
inclusion of these categories in future models raises questions about the identification of specific
factors (e.g., which sociodemographic aspects?) and their operationalization (e.g., how to initialize
agents with a plausible combination of factors?). While previous models separately accounted for
natural- and vaccine-induced immunity, the reality is that a significant fraction of individuals will be
both vaccinated and infected over the coming years. Modeling the decay in immunity with respect
to new VOCs will thus need to account for hybrid immunity. Finally, models rarely assume that
individuals make mistakes, even though this over-reliance on perfectly rational individuals can
miss essential dynamics. Using the U.S. as a guiding example, our scoping review summarizes
these aspects (vaccinal choice, immunity, and errors) through ten recommendations to support the
modeling community in developing long-term COVID-19 vaccination models.

Keywords: agent-based model; COVID-19; SARS-CoV-2; vaccine acceptance; variants

1. Introduction

Most Americans have come to agree that “we will never be rid of COVID-19 in our
lifetime” [1]. Although vaccines and the ongoing development of antiviral drugs are great
achievements [2,3], COVID-19 has continued to wreak havoc in several ways. During
the first half of 2022, more than 170,000 individuals died from COVID-19 in the U.S.,
amounting to over a million deaths since the emergence of the virus [4]. In addition,
COVID-19 continues to exert a significant toll on the economy through disruptions in the
workforce. As COVID-19 has exacerbated existing systemic challenges, the temporary
matter of sickness-related absences in the early days of COVID-19 [5] is now amplified by
broader issues manifested through waves of resignation. For example, many nurses or
teachers are leaving the profession [6,7], with departures being even more pronounced in
places that already experienced staffing shortages before COVID-19 [7]. This phenomenon,
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“The Great Resignation”, is not limited to healthcare or academia, and is the theme of
dozens of articles that document labor shortage across occupations [8–10]. As a result,
several efforts are underway to transition to a post-pandemic future, such as shifting work
arrangements with a growing part of remote work [11].

Despite our logistical preparedness, there are reasons to be concerned when we
account for two phenomena. First, and most importantly, the effectiveness of our vaccines is
decreasing against new strains, which leads to (re)infections. Indeed, many Americans have
already had COVID-19 multiple times [1] and the spread of immune-evasive subvariants is
fueling the growth of reinfections. For instance, California went from 1 in 20 reinfections
cases at the beginning of 2022 to 1 in 7 by July [12]. Currently available COVID-19 vaccines
were developed for a prototype strain, but variants such as Omicron have more than
30 mutations in the spike protein of the prototype strain, which is essential for infection as
it initiates the host cell entry [13]. Consequently, “available FDA-approved and -authorized
COVID-19 vaccines are less effective against currently circulating virus variants than
against previously circulating strains of virus” [14]. This effect is demonstrated since most
infections in the U.S. as of June 2022 are attributed to two Omicron sublineages (BA.4 and
BA.5) [14]. Second, the problem is compounded by our shifting responses and attitudes
to the pandemic. A survey in June 2022 reported that half of U.S. adults wear a face mask
“when away from home, the lowest since the start of the pandemic” [15]. Another survey
showed that the proportion of people bothered when others do not mask in public fell
to an all-time low, at 18% among Republicans and 52% among Democrats [16]. On the
one hand, we see a diminishing use of face masks, lower vaccine effectiveness, and a
lower intended receipt of COVID boosters [17]. On the other hand, we likely need annual
vaccine composition updates [18]. Surveys in Jordan show that less than 1 in 5 persons
would take an annual booster [19], while about 2 in 3 Canadians [20] and more than 4 in
5 German-speaking adults would be willing [21]. Results in the U.S. are mixed, as surveys
were conducted across sub-populations with different profiles [22].

The Modeling & Simulation (M&S) approach of Agent-Based Modeling (ABM) has
been used to model COVID-19 since the second half of 2020, because of the approach’s
ability to track individual agents who can have different attributes, different decision-
making processes, and be exposed to different environments [23]. This ability to implement
heterogeneity is indeed essential for COVID-19 since it is found in individual risk factors
(e.g., age, hypertension, diabetes), contact patterns (e.g., social networks in the community
or work settings), behaviors (e.g., willingness to be vaccinated), and spatial aspects (e.g.,
access to healthcare) [24–26]. Although ABMs for COVID-19 have been extremely varied in
purpose and design [27], their design broadly followed three stages in the pandemic [28]:
ABMs started with a handful of stages (e.g., susceptible, exposed, infected, recovered) and
examined which non-pharmaceutical interventions would have the strongest effect [29–31],
then ABMs were created to support vaccine-related studies (e.g., who should be vaccinated,
where to place the centers and how to staff them) [32–34] and lastly, the current wave of
studies where repeated boosters account for waning immunity [35,36].

Truszkowska and colleagues provided one of the first models in which immunity was
totally and gradually lost over the course of six months [35]. This approach included vac-
cine hesitancy, which was captured by assuming that only a percentage of the population
would get vaccinated [35]. More recently, Kelly et al. proposed a comprehensive model that
accounts for the waning vaccine induced immunity and naturally acquired immunity, as
well as seasonal patterns in infection, and the emergence of annual or biannual variants [36].
Again, vaccine hesitancy was modeled population-wide by assuming either a high booster
intake (85% to 98%) of individuals 50 years of age or higher with comorbidities, or modeled
with a reduced intake of 50%. These models concluded that a high adherence to frequent
booster doses is necessary to avoid future outbreaks and prevent a burden on the healthcare
system—a conclusion shared by studies using differential equations [37,38]. Since adher-
ence to frequent boosters is the key but it was only modeled by assuming a percentage
across wide sub-populations, it is important for future ABMs to address this research gap
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by detailing how individuals decide to get vaccinated as a function of sociodemographic,
health, psychological, and information-related variables.

Several open-source COVID-19 ABMs can be reused and extended by the research
community, including COVASIM [39], OpenABM-COVID19 [40], and COMOKIT [41].
These packages and other individual-based epidemiology simulation kits [42,43] allow us
to create a virtual population that reflects several demographic indicators (e.g., age, sex)
and their impact on disease spread (e.g., age-linked disease progression and mortality).
Packages such as COVASIM also embed each individual in several networks (home, com-
munity, work, school) based on age (e.g., children go to school, adults to work). Through
revisions, the current version (3.1.2 from 16 January 2022) also captures “co-circulating
variants, imperfect immune memory, and multiple vaccines” [44], tracks the properties of
variants (relative transmissibility compared to wild type, relative severity, relative immu-
nity, variant-specific protection of vaccines), and allows users to add custom variants. The
popularity and reuse of such packages is demonstrated by their applications to multiple
settings such as Australia [45–47], the UK and/or US [48–50], Vietnam [51], or Italy [52], at
both the country- and city-scale [53]. Our scoping review thus emphasizes elements that
are commonly missing across these packages in order to have a broad representation of the
current technical capabilities in the field.

The main contribution of our scoping review is to support the development of the next genera-
tion of ABMs by examining three aspects: vaccine hesitancy, joint occurrence of natural- and
vaccine-induced immunity, and the inclusion of human errors in decision-making. Specifically,
we synthesize the current evidence base and identify research gaps, leading to 10 recom-
mendations on aspects to include in future models, alongside their operationalization. The
recommendations are featured prominently (as R1, R2, etc.) throughout the sections.

The review is organized as follows. Section 2 starts with the concept of immunity
and its representation in models. Then, Section 3 summarizes the evidence base regarding
strong drivers of vaccinal choice. We cover the last dimension in Section 4 by explaining
how individuals are not perfect and can engage in several types of errors during their
decision-making processes. The last two aspects have received less attention in modeling
packages, hence these two sections include detailed suggestions for inclusion in future
models. Finally, Section 4 discusses a list of limitations inherent to the modeling process
and limited current knowledge on variants and individual choices.

2. Immunity: Variants, Waning Effect, and Hybrid Cases

Early models of COVID-19 that included vaccines were developed to help plan ahead.
For instance, models would determine the most effective locations to setup vaccination
centers or prioritize certain sub-populations that should be first administered vaccinations.
In the simulated timespans of these models, it was adequate to consider that individuals
would have a constant level of immunity once recovered or vaccinated, and that the domi-
nant strain at the time was the only one. As we transition into a more long-term perspective,
we need to account for changes in the level of immunity, including the cumulative effect of
vaccination and recovery (particularly since most Americans have had COVID-19 [54]), as
well as the ongoing emergence of variants.

As shown in Table 1, recent models have handled immunity differently. Most models use
a gradual decay, with arguments in favor of a Gamma distribution rather than an exponential
one (to reflect that the initial immunity remains at a high level for several weeks instead
of declining immediately). This is represented either by the direct use of a fitted Gamma
distribution, or by the ‘linear chain trick’ which consists of use a sequence of exponentially
distributed decays (e.g., agents go through stages V1, . . . , V5 back-to-back) [55,56].
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Table 1. Handling of variants and (temporary) immunity in recent COVID-19 models.

Handling of Immunity

Ref Variants Natural Vaccine Hybrid

[35] Delta variant only Lasts 180 days

Impact on 5 parameters (e.g., death, infection,
hospitalization, transmission, asymptomatic)
defined via piecewise linear functions. Peak

reached 2 weeks after one shot, remains
constant for 8 months, then linear decay for

6 months. The level of immunity for each linear
segment depended on the vaccine used. Booster

restores peak vaccination benefit in 1 day.

Exists but
unspecified

[36]
Emerge ahead of the

winter, every 6 or
12 months

Initial peak at 95%,
exponential decay to

20% in 600 days

Initial peak at 85%, exponential decay to 15%,
half-life 105 days. Higher peak after a booster,

but same decay.
None

[57]
Randomly appear

4/6/10 months after
past variant

2-part exponential decay, with half-life and duration parameters fit to data.
Neutralization level depends on variant and vaccine. None

[58] Omicron variant only Gamma distribution set either to 9 months (shape 7 and scale 39.11) or one
year (shape 3.7 and 98.65). None

[59] Omicron variant only

Protection against same
variant has exponential

duration of mean
1/900, then no

protection

After an average of 6 months since the second
dose or a booster, individuals transition into a

‘waned vaccine effectiveness’ status.

Exists but
unspecified

[55] Unspecified (2021 data) Delayed gamma-distributed temporary immunity with mean 350 (for
vaccines) and 242 days (for recovery) None

[56] Delta variant only

Full immunity for
entire duration of
simulation (March
2020–Nov. 2021)

10% of individuals do not lose immunity, 10%
have little protection, the remaining 80% get
temporary protection by moving through a

series of compartments instead of a single one
(which would cause an exponential decay)
hence using a Gamma distribution with peak

efficacy of 92% and decay to 35% over 6 months

None

The models either did not account for the synergistic effect of natural infections to-
gether with vaccinations, or created a dedicated stage without specifying the corresponding
transitions. For example, a model considered that a vaccinated person who became in-
fected lost the vaccine-induced immunity and only gained natural immunity upon recovery,
hence making the two forms of immunity mutually exclusive [58]. However, the hybrid
case resulting from natural infection and vaccination confers the most robust and durable
immunity [60–62]. Studies on immunology on different variants and various countries
have found that hybrid immunity was protective against reinfection and severe disease
outcomes [63–66]. As summarized by Bates and colleagues, “the additional antigen ex-
posure from natural infection substantially boosts the quantity, quality, and breadth of
humoral immune response regardless of whether it occurs before or after vaccination” [67].
Newer models are starting to include this effect, for example by assuming that a prior
infection counts as a single vaccination, hence the ‘actual’ vaccination has the effect of a
booster [68]. A recent retrospective cohort study in Sweden [69] confirmed several of the
numbers in the OpenCOVID model and sheds light on the effect of the synergistic effect of
hybrid immunity. The study showed that natural immunity conferred a 95% lower risk of
infection and 87% lower risk of hospitalization for up to 620 days, which closely aligns with
OpenCOVID. The study further established that hybrid immunity provided an additional
58% (for one dose) or 66% (for two doses) reduction in infection compared to natural immu-
nity, and lasted up to 9 months with mixed findings on attenuation. Although numerous
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knowledge gaps remain [70], findings are starting to emerge regarding mediating factors in
the immune response created by receiving a vaccine after a natural infection. In particular,
a study using the U.S. Military Health System further suggested that the timing between
a prior infection and vaccination was highly predictive of immune response, while prior
disease severity did not play a role [62].

The prevalence of hybrid immunity is rising quickly; a cross-sectional study of blood
donors in the U.S. found an increase from 0.7% of blood samples with hybrid immunity in
January 2021 to 18.9% by December [71]. A review by Bhiman and Moore listed several
scenarios as potential consequences of this ongoing increase in the hybrid immune popula-
tion [72]; the inclusion of such scenarios in future computational models may improve our
ability at forecasting population-wide trends.

Few models examined the continuous emergence of new variants. For example, in the
OpenCOVID model [36], each new variant retained the same severity and was assumed to
be 25% more infective as well as 25% more able to evade immunity than its predecessor.
Another model considered that new variants would be 3.5-fold as virulent compared to the
wild-type [55]. Although models assumed a regular emergence of new variants, illustrative
examples [73] explain that the emergence depends on the number of circulating cases (I)
and susceptible individuals (S) as well as the rate of infection (β) and the chance of each
infection to create an escape variant by mutation (µ). Thus, the time until the first escape
mutation appears is approximated as an exponential of mean

1
SIβµ

(1)

Based on sensitivity analyses on the models, scholars determined that the primary
effect of vaccines was to block infections (80%) and secondarily of avoiding severe disease
outcomes (the remaining 5%) [36]. Simulation results from COVASIM [55] on vaccine
design further suggest that, going forward, creating a broadly neutralizing vaccine would
be more beneficial (40% reduction in death) than a more durable vaccine (10% reduction in
death). However, the effect would be highly reliant on releasing the vaccine at the right
time, hence the preferred solution would be a vaccine that is both durable and broadly
neutralizing (65% reduction).

Given the evidence base, we recommend that future models include:
(R1) a gradual decay in immunity by using a Gamma distribution, for instance through

the creation of intermediate states (i.e., the ‘linear chain trick’).
(R2) hybrid immunity, which confers the most robust and durable immunity; this may

be approximated by counting a prior infection as having the effect of a booster dose.
(R3) the ongoing emergence new variants that partially evade immunity, with a timing

depending on circulating cases rather than at fixed time intervals.

3. Vaccinal Choice
3.1. Drivers of Vaccinal Choice

Numerous studies have been conducted to identify socio-demographic factors related
to an increased or decreased willingness to take vaccines. Using the U.S. population as
a guiding example, sample studies relevant to this context are listed in Table 2. Note
that models of COVID-19 have not yet accounted for the many drivers of individual
vaccination choices, instead opting to either use a population-wide percentage of vaccinated
individuals [35] or account for age [33,52]. This occurred even in highly configurable
frameworks where agents execute detailed plans based on their health, demographic, and
organizational roles [74]. Two models accounted for the level of caution (rising with case
numbers), sense of safety (rising with vaccination), or perceived vaccination risk, but at the
population-level rather than via individuals [75,76]. Given Table 2, we recommend that
future models include:
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Table 2. Propensity of U.S. individuals in specific socio-demographic categories to get vaccinated or
not, and strength of the effect as reported in the references. We counted a reduction in refusal as being
equivalent to an increase in acceptance.

Determinant Category Get Vaccine Effect Strength References

Age

18–29 No

Strong

[77,78]

30–49 Yes

[79]50–64 Yes

65+ Yes

Sex Male No [77]

Ethnicity

Non-Hispanic White Yes [79]

Non-Hispanic Black No
[77,80,81]

Hispanic No

Asian/Pacific Islander Yes [80]

Other No [79,80]

Employment
Unemployed Yes Weak

[77]
Employed (full or part time) No

Strong

Education level
Bachelor’s degree or more Yes [79,80,82]

No college degree No [80,82]

Annual income
<25,000 No [81]

≥70,000 Yes
[80]

Comorbidities Yes Yes

Political party
Republican No

[79]
Democrat Yes

Prior COVID-19 infection Yes Yes
[77]Know someone who died Yes Yes

Religion Catholic No Weak

(R4) multiple socio-demographic factors (e.g., age, sex, race and ethnicity, annual income,
college degree, key comorbidities, political party) that were found to strongly predict
vaccinal choices.

3.2. Capturing Drivers in a Model: The Role of Data and Sequential Agent Initialization

When agents possess multiple traits, the values may not be initialized independently,
one at a time (Figure 1a). Indeed, values can be correlated: for instance, comorbidities tend
to raise with age. Multiple correlations can exist, as is the case with the dependency of
annual income both on employment and on educational attainments. Considering that
every factor may depend on all other factors would be infeasible, as it leads to circular
dependencies. Even a scheme where each factor depends on all those previously initialized
can be practically infeasible, since it would be arduous to find a nationally representative
dataset that covers all factors (Figure 1b). Consequently, an initialization scheme will have
to retain some of the dependencies based on the data available [83] (Figure 1c). In this
subsection, we illustrate how these considerations can be addressed by using U.S. data.

Consider that we aim to create a virtual population of agents with multiple target socio-
demographic factors. To start, we identify a data source that contains as many as possible
of the important attributes together. In our case, the US Census Current Population Survey
(CPS) 2019 [84] can serve to create a pool of agents who are jointly assigned an age, income,
race and ethnicity, and sex. That is, all four attributes can be assigned simultaneously, thus
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capturing their interdependencies in the population. Then, additional data sources will
need to be found to cover the remaining aspects. Note that these sources need to also
include some of the previously initialized attributes, otherwise dependencies cannot be
adequately reflected. For example, if a dataset contains the prevalence of prior COVID-19
infection based only on data per county, then there would be no way to link the data to
individuals characterized by age, race and ethnicity, annual income, or sex. In the case of
the U.S., several data sources can be used as shown in Table 3.
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Finally, there can be a gap between the factors used in studies on social determinants
of health and the content of national surveillance systems. For example, studies reported
that comorbidities were a strong determinant of vaccinal choice (Table 2), but different
surveillance systems may track different types of specific comorbidities, hence there will be
a need to translate a high-level concept into specific conditions and work across additional
sources. A pitfall for modelers is to misunderstand the notion of comorbidities. Since
comorbidities refer to other diseases present in a patient, death reporting systems may
show pneumonia as a prevalent comorbidity, hence modelers could (erroneously) use
pneumonia as an agent’s attribute for comorbidity. However, pneumonia is a complication
of COVID-19, rather than an underlying medical condition that increases the risk profile of
a person if they get infected. It is thus important to carefully translate high-level constructs
into specific ones given the context. In this example, comorbidities as risk factors may
include hypertension and diabetes since they are commonly found in patients hospitalized
with COVID-19 worldwide [85,86], while noting that the evidence-base is weaker for
hypertension once we control for other risk factors such as age [87]. Dependencies matter
across comorbidities as well, since diabetic agents have an elevated risk for hypertension;
Table 3 thus initializes diabetes and then hypertension.

In sum, a satisfactory initialization of several attributes in the agents will require:
(R5) the identification of several data sources that share factors to allow data linkages.
(R6) an initialization scheme that satisfies multiple core dependencies between factors by

initializing them in a specific batch order.
(R7) a careful contextual translation from high-level constructs onto specific variables

offered in different surveillance systems and reports.
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Table 3. Creation of a large pool of agents by first initializing four attributes together, then determining
the remaining five by accounting for several interdependencies.

1st Wave of Initialization of Four Categorical Features Jointly [80]

Ref Factors Age Income Race and
Ethnicity Sex

2nd wave of
initialization

[88,89] Bachelor’s
degree
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benefiting from updates in future package releases. Consequently, we recommend: 

(R8) to build on top of existing modeling packages whenever possible, so that future 
releases (e.g., an optimized COVASIM) can be conveniently used by the team 

Expanding the characteristics of agents without altering a package’s initialization 
process can be achieved by matching, illustrated in Figure 2 for COVASIM. First, the mod-
eling package would follow its normal procedure to initialize a set S of agents of the de-
sired size. In parallel, modelers would create a larger pool P of agents with their required 
characteristics and dependencies (Section 3.2). Second, we augment the characteristics of 
each agent in S by finding a similar agent (i.e., a ‘match’) in P. This requires efficient data 
structures, as poor implementations could significantly slow down the process of agent 
creation. For example, an inefficient approach for an agent in S would be to scan the entire 
population P, each time computing the distance with an agent in P, then finally selecting 
the most similar one. Once a match in P has been found, it must be removed, which should 
also be done carefully to avoid triggering massive data movements. Research in discrete 
simulations has often used hierarchical data structures (e.g., two or three tiers) to optimize 
operations [96]. In this case, we need a structure that allows fast lookups to identify a 
match, hence the attributes offered by the package (e.g., age, sex) can be used as keys in a 
dictionary (Figure 2). We also need a structure that supports quick removals of an individ-
ual to move onto the next one, hence a queue.  
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dictionary (Figure 2). We also need a structure that supports quick removals of an individ-
ual to move onto the next one, hence a queue.  
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sired size. In parallel, modelers would create a larger pool P of agents with their required 
characteristics and dependencies (Section 3.2). Second, we augment the characteristics of 
each agent in S by finding a similar agent (i.e., a ‘match’) in P. This requires efficient data 
structures, as poor implementations could significantly slow down the process of agent 
creation. For example, an inefficient approach for an agent in S would be to scan the entire 
population P, each time computing the distance with an agent in P, then finally selecting 
the most similar one. Once a match in P has been found, it must be removed, which should 
also be done carefully to avoid triggering massive data movements. Research in discrete 
simulations has often used hierarchical data structures (e.g., two or three tiers) to optimize 
operations [96]. In this case, we need a structure that allows fast lookups to identify a 
match, hence the attributes offered by the package (e.g., age, sex) can be used as keys in a 
dictionary (Figure 2). We also need a structure that supports quick removals of an individ-
ual to move onto the next one, hence a queue.  
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eling package would follow its normal procedure to initialize a set S of agents of the de-
sired size. In parallel, modelers would create a larger pool P of agents with their required 
characteristics and dependencies (Section 3.2). Second, we augment the characteristics of 
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dictionary (Figure 2). We also need a structure that supports quick removals of an individ-
ual to move onto the next one, hence a queue.  
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‘undecided’), then we subdivide agents into Democrats and Republicans based on sex, race and ethnicity. 2

Hypertension is created after agents have been assigned a level of diabetes, to ensure that diabetic agents have
twice the risk for hypertension [93].

Note that a model is necessarily a simplification and data availability may govern some
of these simplifications. For example, a modeling team may not have access to data for
some of the strong drivers of vaccinal choice (Table 2), hence agents may not possess the
corresponding attributes. For instance, sociodemographic information may not include
occupations, hence a model may lack the notion that certain professions are at higher risk
(e.g., medical professionals) or face specific obligations (e.g., annual vaccine).

3.3. Extending an Existing Package: Example in COVASIM

Although COVID-19 modeling packages are often open source, it may not be desirable
to alter their initialization of agents by changing the code to add several factors and
dependencies. Indeed, editing the source code of a package (known as ‘forking’) results
in creating a new local version for a modeling team, which complicates the possibility of
benefiting from updates in future package releases. Consequently, we recommend:

(R8) to build on top of existing modeling packages whenever possible, so that future
releases (e.g., an optimized COVASIM) can be conveniently used by the team

Expanding the characteristics of agents without altering a package’s initialization
process can be achieved by matching, illustrated in Figure 2 for COVASIM. First, the
modeling package would follow its normal procedure to initialize a set S of agents of the
desired size. In parallel, modelers would create a larger pool P of agents with their required
characteristics and dependencies (Section 3.2). Second, we augment the characteristics of
each agent in S by finding a similar agent (i.e., a ‘match’) in P. This requires efficient data
structures, as poor implementations could significantly slow down the process of agent
creation. For example, an inefficient approach for an agent in S would be to scan the entire
population P, each time computing the distance with an agent in P, then finally selecting
the most similar one. Once a match in P has been found, it must be removed, which should
also be done carefully to avoid triggering massive data movements. Research in discrete
simulations has often used hierarchical data structures (e.g., two or three tiers) to optimize
operations [96]. In this case, we need a structure that allows fast lookups to identify a
match, hence the attributes offered by the package (e.g., age, sex) can be used as keys in a
dictionary (Figure 2). We also need a structure that supports quick removals of an individual
to move onto the next one, hence a queue.
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4. Human Errors in Decision-Making
4.1. Limitations of Observations and Reflections

There is a broad tendency to create ABMs with highly rational agents [97], which is
even more the case in COVID-19 research as models are often grounded in compartmental
techniques designed for epidemiology. However, humans are neither mechanical objects
nor omniscient, hence individuals neither form homogeneous responses to vaccines (e.g.,
with a set percentage of the entire population taking vaccines) nor engage in a comprehen-
sive inventory of all relevant parameters to achieve an optimum (e.g., by maximizing a
utility pay-off). Reusing the analogy of Giubilini and Savulescu, refusing vaccination is
similar to refusing the use of seat belts when driving [98]: given the balance of extremely
rare side effects and the cost of delayed or absent vaccination [99], this decision would
not happen if individuals used the evidence-base to maximize their own benefits. In-
deed, cognitive sciences show that humans only capture a small portion of the available
information [100], sometimes making errors in storing this information, and ultimately
interpreting it based on their own heterogeneous beliefs [101]. Prior works in modeling
COVID-19 [28,29,33] and perceptual uncertainties in ABMs [102] have already accounted
for some of these aspects when creating cognitive social simulations [103] that reflect the im-
perfect, heterogeneous decisions that individuals make on vaccination. While some works
introduce the notion of imperfect decisions in COVID-19 by accounting for uncertainty
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about individual health states [104], research shows that there are at least three sources of
individual errors to reflect that individuals use social information sub-optimally [105] when
observing their peers (with respect to infection, vaccine choices, or death). That is, an
agent may only observe some of its peers (insufficient samples) and/or pay attention to only
some of their information (superficial observations) and/or does not sufficiently reflect on the
evidence collected (limited ability). Consequently, we recommend to:

(R9) shift from purely rationale/mechanistic COVID-19 models of human decision-
making onto cognitive social simulations that account for imperfection in information
capture, its storage, and its use for behavior change.

4.2. Operationalizing Human Errors in a Model: The Role of Machine Learning as a Filter

At each simulation tick, each agent can observe the behavior of its peers (e.g., whether
to wear a mask, engage in social distancing, wash hands, vaccinate) along with their
characteristics. Conceptually, the set of observations can simply be reduced to account
for insufficient samples and superficial observations, as shown in Figure 3. However, the
main technical difficulty is to ensure that an agent can change based on these observations.
The development of such adaptive skills requires a learning mechanism. As we recently
discussed [106], hybrid agent-based models can deal with adoption behavior in different
ways, such as by giving their observations as input to a machine learning model. That
is, an agent observes by gathering a data table, reflects by deriving a machine learning
model (e.g., why do my friends wear masks?), and acts by applying the model to its own
characteristics (e.g., my friends with comorbidities wear a mask and I have comorbidities
hence I will wear masks). We thus recommend to:
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Figure 3. Each agent observes the vaccination decision and attributes of its peers. The initially perfect
observations are altered by perceptual limitations and errors, thus producing an observation set with
fewer peers and/or fewer attributes. Icons from User Insights and Coronavirus at icon-icons.com, CC
Attribution license (CC BY 4.0).

(R10) enable agents to change behavior not only in response to policies (e.g., lockdown)
or instincts (e.g., disease avoidance), but also by learning from their individual contexts.
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5. Discussion
5.1. Overview

In the absence of global vaccination, simulation experts have predicted continuous
waves of COVID-19 infections [107]. This is now a reality, and most Americans understand
that COVID-19 is here to stay [1]. As mutations and natural selection continue to occur,
new variants emerge and vaccines need to be continuously redeveloped [14] and adopted
by the population [17–22]. In the U.S., the federal government has purchased 66 million
doses of bivalent boosters that target BA.4 and BA.5 Omicron subvariants [108]. Although
the Omicron subvariant BA.5 has been called ‘the worst version’, Bruce Y. Lee explained in
a popular piece that “it’s the worst version of what’s been getting progressively worse, and
you never know when another even worse version will emerge” (emphasis added). [109]
Since COVID-19 precautions are going away [15,16], the virus will continue to spread and
subvariants will emerge. Expecting the problem to just disappear by believing variants will
get gradually weaker may amount to wishful thinking, “like expecting different animal
and plant species to get weaker over time.” [108]

Since Agent-Based Modeling has been the dominating approach for COVID-19 in
recent times [110], our scoping review sought to guide the development of future ABMs by
examining three dimensions that are essential to effectively pivot into a long-term view.
We covered emerging considerations on immunity (e.g., decays, hybrid cases), the growing
evidence base on determinants of vaccinal choice and the ability to use them in simulation,
and the possibility of shifting towards cognitive social simulations to better capture human
decision-making. While recent reviews and recommendations have targeted national
health systems and governments [111,112], our ten recommendations are directed at the
community on modeling and simulation.

However, ongoing discussions in the scientific community and changes in the evidence
base may lead to additional considerations, as discussed below.

5.2. Limitations

Our scoping review stressed the importance of psychological and information vari-
ables, suggesting that they can be included through a sequential initialization process or by
engaging in hybrid modeling (e.g., by using machine learning to create adaptive agents).
However, COVID-19 models may ultimately become too complex, given the pursuit to
“covering the full behavioral and social complexity of societies under pandemic crisis” [113]
through an ever-expanding set of rules and states. The design of COVID-19 models going
forward may thus benefit from a shift from a monolithic piece onto a set of integrated sub-
models. This shift would come with its own challenges, as risks for model integration have
been discussed extensively elsewhere [114]. However, it may be simpler to develop and
reuse dedicated modules, since many COVID-19 models have significant overlaps [115].
For example, this would facilitate the integration of a sub-model dedicated to capturing the
perceived utility of certain actions (e.g., getting a vaccine) for an agent, such as modeling
vaccination as a function of personal beliefs (e.g., via the Theory of Planned Behavior [116])
or through an emphasis on government accountability [117].

This paper focused on improving models of COVID-19. However, the actions taken
to prevent COVID-19 will also impact other diseases. For instance, facemasks and social
distancing can reduce other airborne diseases, while the prioritization of hospital resources
for COVID-19 impacts other operations [118]. In addition, there is a growing interest in
coinfection, particularly for coinfections of COVID-19 and bacteria [119], such as tuberculo-
sis [120]. Consequently, COVID-19 cannot always be designed or expected to be utilized
in isolation. Emerging models have started to include COVID-19 alongside another dis-
ease [121]. Future COVID-19 models may thus have to be integrated alongside modules for
other diseases. Given this requirement, there may be a tradeoff between the sophistication
of a COVID-19 model and the ability to integrate it alongside other disease models.
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