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Abstract. Transformer models achieve state-of-the-art performance on
a wide range of NLP tasks. They however suffer from a prohibitive lim-
itation due to the self-attention mechanism, inducing O(n2) complexity
with regard to sequence length. To answer this limitation we introduce
the LSG architecture which relies on Local, Sparse and Global atten-
tion. We show that LSG attention is fast, efficient and competitive in
classification and summarization tasks on long documents. Interestingly,
it can also be used to adapt existing pretrained models to efficiently ex-
trapolate to longer sequences without additional training. Along with
the introduction of the LSG attention mechanism, we propose a PyPI
package to train new models and adapt existing ones based on this mech-
anism.

Keywords: Attention mechanism · Long sequences · Extrapolation

1 Introduction

Transformer models [33] are nowadays state-of-the-art in numerous domains,
and in particular in NLP where they are used in general language models, and
to successfully tackle several specific tasks such as document summarization,
machine translation and speech processing to cite a few [13,26]. The corner-
stone of Transformer models is the Attention mechanism used to iteratively
build complex context-dependent representations of sequence elements, e.g. to-
kens, by dynamically aggregating prior representations of these elements. Using
self-attention, a popular Attention flavour, this is made by computing full at-
tention scores defining how each prior element representation will contribute to
building the new representation of an element. Considering a sequence of n ele-
ments, the computation of the attention scores is therefore of complexity O(n2)
which is prohibitive dealing with long sequences. Since a large number of models
based on full attention have been trained on various datasets and tasks, we are
therefore interested in extrapolating those models to long sequences by simply,
post training, substituting the full attention trained on shorter input sequences
by new attention mechanisms adapted to longer sequences. Common pretrained
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models (e.g RoBERTa) are indeed known to underperform when extrapolated
to sequences of length exceeding the 512 tokens considered during training. This
is due to the nature of the attention mechanism which largely impacts extrap-
olation capabilities: full attention usually fails to extrapolate, even considering
post hoc adaptations, e.g. using a relative positional embedding [30] or duplicat-
ing the positional embedding [3]. Defining new attention mechanisms that can
efficiently substitute full attention in pretrained models that are not originally
capable of handling long sequences would avoid the costs induced by training
large language models from scratch. The main contributions of this paper are:

1. LSG (Local Sparse Global) attention, an efficient O(n) approach to ap-
proximate self-attention for processing long sequences.3

2. Results demonstrating that LSG is fast, efficient and competitive on clas-
sification and summarization tasks applied to long documents. It is also shown
that LSG can adapt and extrapolate existing pretrained models not based on
LSG, with minimal to no additional training.

3. A procedure and a PyPI package to convert existing models and check-
points (e.g. RoBERTa, DistilBERT, BART) to their LSG variant.4

Compared to several contributions aiming at reducing the complexity of self-
attention introduced hereafter, a specific focus is given in our work on the ex-
trapolation of existing Transformer models, i.e. reuse, to longer sequences.

2 Related works

Several contributions have been devoted to the optimization of the Attention
mechanism. Four categories of approaches can be distinguished in the literature:
(i) recurrent models such as Transformers-XL [12] and Compressive Transform-
ers [25] which maintain a memory of past activation at each layer to preserve
long-range contextual information; (ii) factorization or kernels aiming at com-
pressing attention score matrices, such as Linformer [34] or Performer [9]; (iii)
models based on clustering such as Reformer [21] that dynamically define eligible
attention patterns (i.e. where attention may be made); and (iv) models based
on fixed or adaptative attention patterns, e.g. Longformer [3] or Big Bird [37].

Recurrent approaches iteratively process the sequence by maintaining a mem-
ory to enable long-range dependencies. They generally suffer limitations induced
by specific, slow, and difficult to implement forward and back propagation pro-
cedures. Alternatively, one of the main line of study for reducing the complexity
of Attention is thus to perform sparsity by limiting the number of elements on
which new representations will be based, i.e. reducing the number of elements
with non-null attention scores. This approach is motivated by the observation
of global or data-dependent positional patterns of non-null attention scores de-
pending on the task [7]. The sparsity of attention scores in the traditional At-
tention mechanism is indeed documented in the literature. It has for instance
been shown that in practice, full attention tends to overweight close elements

3 Checkpoints and datasets are available at https://huggingface.co/ccdv
4 https://github.com/ccdv-ai/convert checkpoint to lsg

https://huggingface.co/ccdv
https://github.com/ccdv-ai/convert_checkpoint_to_lsg
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in average, in particular for MLM, machine translation, and seq-to-seq tasks in
general [10]. Moreover, according to analyses on the use of multi-head full at-
tention on specific tasks, e.g. machine translation, numerous heads learn similar
simple patterns [27]. Such redundant patterns may be hardcoded implementing
fixed-positional patterns, eventually in a task-dependent manner.

Two main approaches are discussed in the literature for implementing spar-
sity: fixed or adaptative patterns based on whether attention scores are com-
puted considering (1) predefined fixed elements based on their location in the
sequence, or (2) elements selected from a given procedure. As an example, [35]
have shown that fixed O(n) convolutions can perform competitively on machine
translation. Longformer proposes an alternative O(n) approach based on sliding
and global patterns [3]. In the context of image, audio, and text processing, [7]
propose sparse Transformer, an O(n

√
n) model based on sparse factorization of

the attention matrix relying on specific 2D factorized attention schemes. Those
approaches however prevent the use of task-dependent dynamic patterns. Con-
sidering adaptative patterns, [35] also introduced dynamic convolutions as an
O(n) complexity substitute to self-attention. Kernels defining the importance of
context elements are specified at inference time rather than fixed after training.
Another example is Reformer [21], an O(n log n) approach based on locality-
sensitive hashing (LSH) based on random projections.

In a transverse manner, several authors, explicitly or implicitly motivated
by the compositional nature of language have studied structured approaches
in which subsequences (i.e. blocks) are processed independently and then ag-
gregated. This aims at implementing a local or global dynamic memory for
considering close to long-range dependencies. Some approaches use a block-
wise approach to reduce the quadratic complexity induced by large sequences in
encoder-decoder architectures [4]. Other propose a chunkwise attention in which
attention is performed in a blockwise manner adaptively splitting the sequence
into small chunks over which soft attention is computed [8]. This idea is also
used in Transformer-XL [12]. Masked block self-attention mechanism in which
the entire sequence is divided into blocks, to further 1) apply self-attention intra-
block for modeling local contexts, to further 2) apply self-attention inter-block
for capturing long-range dependencies, as also been proposed [31]. Such an ap-
proach enables implementing some forms of connectivity between all positions
over several steps without being restricted by full attention limitations. This can
also be achieved by factorization techniques, e.g. [7]. More recently authors have
proposed global attention mechanisms encoding information related to blocks on
which attention is based [1,39,16].

This paper presents LSG (Local, Sparse and Global) attention based on block
local attention to capture local context, sparse attention to capture extended
context, and global attention to improve information flow. Contrary to prior work
mostly focusing on defining new models, the proposed LSG Attention mechanism
is model agnostic and aims to facilitate adapting existing (pretrained) models
for them to be used on long sequences.
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3 LSG: mixing Local, Sparse and Global attentions

LSG assumes (1) that locally, a token needs to capture precise low level informa-
tion using dense attention, (2) as the context grows, higher level information is
sufficient, i.e. a limited number of tokens specifically selected are sufficient. LSG
therefore relies on block local attention to capture local context, sparse attention
to capture extended context, and global attention to improve information flow.

Local Attention. LSG takes advantage of a block-based processing of the input.
The sequence is split into nb non-overlapping chunks of size bt. For a given block,
each token attends to the tokens inside the block, as well as to those in the
previous and next blocks. The local attention window is asymmetrical since a
token can connect up to 2× bt − 1 tokens on the left or on the right.

Sparse Attention. Sparse connections are used to expand the local context
by selecting additional tokens. These tokens can be directly selected based on
a specific metric or using some computation such as a pooling method. In the
proposed approach, each attention head can process different sparse tokens in-
dependently. Sparse attention also relies on a block structure where the sparse
selection is done inside each block. Five alternative criteria can be used in LSG.

1. Head-wise strided: Each attention head attend to a set of tokens following a
specific stride defined as the sparsify factor. Figure 1 shows the selection pattern.

2. Head-wise block strided selects consecutive tokens, see Figure 2.

Head 1

Head 2

Block

Sequence

Fig. 1. Head-wise selection (stride 2).

Head 1

Head 2

Block

Sequence

Fig. 2. Block selection (stride 2).

3. Average pooling: sparse tokens are computed using average pooling on blocks.
For a block of size bt and a sparsify factor f , pooling is applied to each block
with a window of f and a stride of f to produce bt/f tokens.

4. Max norm: selects tokens that are most likely to have high scores. Find-
ing those keys efficiently is difficult in practice so we use a simple and deter-
ministic heuristic selecting inside each block and each head bt/f tokens with
the highest key norm. Indeed, note that for a query and a key q,k ∈ Rd,
qk⊤ = cos(θ)∥q∥∥k∥. If cos(θ) is positive and ∥k∥ is high, the key will likely
dominate the softmax regardless of the query.

5. LSH Clustering: non deterministic approach relying on the LSH algorithm [2].
For each block, bt/f clusters are built using a single round LSH. To get c = bt/f
hashes and for an input x ∈ Rd, a random matrix R ∈ Rd×c/2 is generated, such
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that h(x) = argmax([xR;−xR]) with [a; b] the concatenation of two vectors.
Using the key matrix as input, each token inside the block gets a cluster index
from h(x). Tokens inside a cluster are averaged.

a b

Sparse context Sparse context

a b

Sequence

Local context

Fig. 3. Local and sparse contexts with a block size of 2 and a sparsity factor of 4.
Queries a and b will attend to 6 local keys and 4 sparse keys.

Global Attention. Global tokens improve the flow of information inside the
model. They attend to every tokens across the sequence and all tokens attend to
them. Rather than picking a subset of tokens, additional tokens are prepended
to the sequence and trained using their own embedding matrix (their number
is an hyperparameter). When a model is converted to its LSG version, the first
global token is initialized as the sum of the [CLS] token and the first position
from the positional embedding. The other global tokens are initialized as the
sum of [MASK] token and the other positions from the positional embedding.
Thus, they can be trained and fine-tuned independently.

Positional Embedding. It is necessary to modify the positional embedding
matrix to reuse existing models to process long sequences. In LSG, instead of
randomly initializing the new positions, the original matrix is duplicated and
concatenated until the desired max sequence length is reached.

4 Experiments

We evaluate LSG in the context of model extrapolation by replacing full at-
tention by LSG attention in various architectures. The official RoBERTa-base
checkpoint for classification tasks and BART-base checkpoint for summarization
tasks are extrapolated using LSG attention. All metrics are reported for the test
set except in the case where only the validation set is available – datasets are all
available on the HuggingFace hub. We use a batch size of 32, a linear decaying
learning rate, a dropout rate of 0.10 and Adam (0.9, 0.999) optimizer [20] for
classification and summarization experiments. An experiment comparing several
attention approximations to extrapolate RoBERTa in an MLM task is first dis-
cussed; it is used to limit the number of tested alternatives, and therefore reduce
the cost of the proposed evaluations. All experiments are conducted on NVIDIA
Quadro RTX 8000 48Gb GPUs.
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4.1 RoBERTa extrapolation on MLM

A test on a MLM task is performed to question the ability of an attention mech-
anism to extrapolate a model to longer sequences without additional training.
A RoBERTa-base model is here considered and two experiments are conducted.
First, the full attention is substituted by different kinds of attention (kernel, fac-
torization, local, fixed pattern) and each model is evaluated on sequences of the
same length as those considered during RoBERTa initial training (512 tokens).
In the second experiment, their ability to extrapolate to 4096 tokens sequences
without additional training is tested (positional embedding duplicated 8 times).

A random sample from Wikipedia + BookCorpus + CC News is used; BPC
and MLM accuracy are in Table 1. RoBERTa’s author report a 1.880 BPC loss;
we obtain a comparable loss of 1.881 on this random sample.

Only Longformer, Big Bird and LSG obtain competing BPC while processing
sequences of the same length as those considered during the original RoBERTa
training. Other approaches such as Linformer, Performer or Reformer require
additional MLM fine-tuning to leverage an existing checkpoint. It can be seen
that RoBERTa fails to extrapolate to longer sequences (+2.454 BPC), which
highlights that full attention is not suitable for extrapolation. Longformer and
Big Bird are able to perform some form of extrapolation. Therefore, we restrict
our comparison to these two approaches in order to limit experimentation costs.

Attention
512 length 4,096 length

BPC Accuracy BPC Accuracy

RoBERTa (full) [23] 1.881 0.732 4.335 0.359

Linear Attn. [19] 11.324 0.061 11.474 0.058
Efficient Attn. [32] 21.022 0.102 20.574 0.097
Performer [9] 10.382 0.107 10.556 0.102

Linformer (128 proj.) [34] 22.176 0.098 20.386 0.032
Reformer [21] 17.602 0.003 18.608 0.002

Longformer (512) [3] 1.929 0.726 2.051 0.708
Big Bird (64) [37] 1.881 0.732 2.439 0.659

LSG-Norm (128/2) (block size / sparsity) 1.919 0.727 2.032 0.712
LSG-Stride (128/2) 1.938 0.724 2.046 0.710
LSG-BlockStride (128/2) 1.940 0.724 2.048 0.709
LSG-Pooling (128/2) 1.968 0.720 2.064 0.706
LSG-LSH (128/2) 1.969 0.719 2.065 0.705
Table 1. BPC and MLM accuracy of RoBERTa-base with various Attention.

4.2 Classification Tasks

We compare LSG to Longformer [3] and Big Bird [37], two approaches able to
process long sequences with a similar number of parameters. Tests are performed
considering sparse attentions with a block size of 128 and a sparsify factor of 4.
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Datasets. Standard NLP datasets are used. IMDb [24]: binary sentiment anal-
ysis classification task from movie reviews. ArXiv [17]: set of documents from
ArXiv where the objective is to predict a topic from 11 available classes. Because
there is no official split, a random one is made of 28K, 2.5K and 2.5K documents
for train, validation and test. Patent [29]: subset of the Big Patent summariza-
tion dataset. The task is redefined as a classification task where the objective
is to predict the patent category using the full document (9 classes, random
split of 25K, 5K and 5K documents for train, validation and test). Some specific
domains are highly dependent on processing long sequences, e.g. legal domain
in which sentences tend to be long and complex. To demonstrate the ability of
LSG to leverage pretrained models in such cases, the following three datasets
are chosen from LexGlue [6], a benchmark focused on legal documents. Tasks
where the input is on average significantly longer than 512 tokens have been
selected. Scotus: given a court opinion, the task is to predict the relevant issue
area among 14 choices. ECtHRa and ECtHRb: the objective is to predict which
articles of the European Court of Human Rights (ECHR) have been violated (if
any) from case description: multi-label task (10 + 1 labels).

Training setup and architecture. To make a fair comparison between models
and architectures, fine-tuning is done with the same learning rate, number of
steps and batch size. To show that LSG is compatible with different architectures,
the LexGlue tasks are also run with an LSG version of LEGAL-BERT [5].

Results. Micro and Macro F-1 (Table 2) show that LSG outperforms most of the
time Longformer and Big Bird models with input sequences up to 4096 tokens
long. A major difference lies in the implementation itself since the LSG variant
is twice as fast to train on these lengths with no additional memory cost.5

IMDb Arxiv Patent Scotus ECtHRa ECtHRb

Epochs 3 3 3 7 5 5
Learning rate 2e-5 5e-5 2e-5 1e-4 1e-4 1e-4

RoBERTa (512-length) 95.5 87.2/86.8 66.6/61.8 69.4/60.8 62.9/58.2 72.0/65.9
Longformer 95.9 88.2/87.9 69.8/63.8 72.9/62.6 68.3/59.7 78.9/72.2
Big Bird ETC 95.4 85.9/85.5 69.4/63.9 69.4/58.2 68.3/60.3 80.0/70.6

LSG-Local (256/0) 96.0 87.5/87.1 69.9/64.8 73.3/63.7 68.8/63.7 79.9/73.4
LSG-Stride (128/4) 95.6 88.2/87.9 69.2/64.0 70.5/60.0 69.5/62.3 79.3/71.6
LSG-BlockStride (128/4) 95.7 87.7/87.4 69.6/64.1 72.5/63.1 69.1/58.6 79.5/71.8
LSG-Norm (128/4) 95.7 87.0/86.6 70.0/64.4 71.3/60.8 70.1/61.9 79.4/72.1
LSG-Pooling (128/4) 95.9 87.5/87.3 69.4/64.1 72.6/60.9 70.2/61.4 79.0/73.1
LSG-LSH (128/4) 95.8 88.2/87.9 69.5/64.2 70.3/54.6 71.0/60.3 78.9/71.0

Legal-BERT (512-length) - - - 73.5/60.5 64.2/58.2 73.2/65.9
LSG-Legal-BERT (256/0) - - - 74.5/62.6 71.7/63.9 81.0/75.1

Table 2. Micro/Macro F-1 on classification datasets.

5 See https://github.com/ccdv-ai/convert checkpoint to lsg for a benchmark.

https://github.com/ccdv-ai/convert_checkpoint_to_lsg
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On Patent, ECtHRa and ECtHRb tasks, the ability to process longer se-
quences improves significantly the F-measures compared to a vanilla (full atten-
tion) RoBERTa model. We also observe that Big Bird model is in general slightly
under its counterpart except for the ECtHRb dataset. This probably comes from
the random attention mechanism which may require additional training steps.
LSG-LSH and Big Bird models are affected by randomness during inference,
thus their performance can differ between runs.

Extrapolating LEGAL-BERT with LSG to handle longer sequences improves
predictions.The choice of the sparse attention is likely task specific. Using local
attention only with a large block size is also a viable option. The role of global
tokens is not discussed here since we only use one for all experiments. We show
in the next section with summarization tasks the utility of such tokens.

4.3 Summarization Tasks

We evaluate our models on summarization tasks where the input is significantly
longer than 1k tokens only. The models have been fine-tuned on each dataset.6

Datasets. In both ArXiv and Pubmed [11], the goal is to generate an abstract
using a document as input. MultiNews [14] involves generating human-written
summaries from sets of news documents. MediaSum [40] consists of using inter-
view transcripts from CNN and NPR media to generate a summary.

Models Params.

PRIMERA [36] 447M
LED [3] 460M
HAT-BART [28] 471M
Pegasus [38] 577M
Big Bird-Peg. [37] 577M
Hepos [18] 406M

LongT5-Base [15] 220M
LongT5-L 770M
LongT5-XL 3B

Ours, LSG-BART-base (256/0) 145M
Table 3. Parameters count of summarization models.

Training setup and architecture. The BART-base model [22] is converted
to its LSG version by replacing the full attention in the encoder part and adding
global tokens. The model is then fine-tuned on 4096-length inputs and evaluated.
To reduce computational costs, experiments on 16384-length inputs are warm
started from the 4096-length experiments.The model is then fine-tuned during
a single epoch if necessary using the same training parameters. We propose 3

6 All summarization experiments are run using a 8e-5 learning rate, a 10% warmup,
a length penalty of 2.0 and a beam size of 5 for beam search.
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setups for the 16384-length. First we evaluate the model with pure extrapolation
from 4096-length (no additional training). In the second setup, we extrapolate by
adding 64 global tokens we choose to fine-tune. In the last setup, we extrapolate
by adding 64 global tokens and by fine-tuning the full model. Extrapolation is
done by concatenating 4 copies of the positional embedding matrix (4× 4096).

The tested model - LSG-BART-base - is significantly smaller than common
models from the existing literature (Table 3). An input sequence of 16384 tokens
can fit on a 32Gb GPU (without attention dropout) during training without a
specific memory reduction tool (i.e gradient checkpointing).

Results. LSG-BART is compared to state-of-the-art models by reporting the
results from their respective papers. We use ROUGE-1, ROUGE-2 and ROUGE-
L evaluation metrics as comparison points.

Models R1 R2 RL

Pegasus (1K) 45.49 19.90 27.69
Big Bird-Peg. (4K) 46.32 20.65 42.33

HAT-BART (4K) 48.36 21.43 37.00

Hepos-LSH (7.2K) 48.12 21.06 42.72
Hepos-SKN (10.2K) 47.93 20.74 42.58

LongT5-Base (4K) 47.77 22.58 44.38
LongT5-L (16K) 49.98 24.69 46.46
LongT5-XL (16K) 50.23 24.76 46.67

Ours (4K) 47.37 21.74 43.67
Ours (16K) 48.03 22.42 44.32

+ global tuning 48.12 20.46 44.40
+ full tuning 48.32 22.52 44.57

Table 4. ROUGE on PubMed dataset.

Models R1 R2 RL

TG-MultiSum 47.10 17.55 20.73
PRIMERA (4K) 49.90 21.10 25.9

LongT5-Base (4K) 46.01 17.37 23.50
LongT5-L (4K) 46.99 18.21 24.08
LongT5-L (8K) 47.18 18.44 24.18
LongT5-XL (8K) 48.17 19.43 24.90

Ours (4K) 47.10 18.94 25.22
Ours (16K) 47.30 19.19 25.38

+ global tuning 47.23 19.18 25.29
+ full tuning 47.07 19.04 25.35

Table 5. ROUGE on MultiNews.

Models R1 R2 RL

Pegasus (1K) 44.70 17.27 25.80
Big Bird-Peg. (4K) 46.63 19.02 41.77

LED (16K) 46.63 19.62 41.83
PRIMERA (4K) 47.58 20.75 42.57

HAT-BART (4K) 46.68 19.07 42.17

Hepos-LSH (7.2K) 48.24 20.26 41.78
Hepos-SKN (10.2K) 47.87 20.00 41.50

LongT5-Base (4K) 44.87 18.54 40.97
LongT5-L (16K) 48.28 21.63 44.11
LongT5-XL (16K) 48.35 21.92 44.27

Ours (4K) 46.65 18.91 42.18
Ours (16K) 47.03 20.19 42.69

+ global tuning 48.08 20.42 43.65
+ full tuning 48.74 20.88 44.23

Table 6. ROUGE on ArXiv dataset.

Models R1 R2 RL

BART-Large (1K) 35.09 18.05 31.44
T5-large (1K) 30.68 14.88 27.88

LongT5-Base (4K) 35.09 18.35 31.87
LongT5-L (4K) 35.54 19.04 32.20
LongT5-XL (4K) 36.15 19.66 32.80

Ours (4K) 35.16 18.13 32.20
Ours (16K) 35.17 18.13 32.21

+ global tuning 35.22 18.08 32.22
+ full tuning 35.31 18.35 32.47

Table 7. ROUGE on MediaSum.

As shown in Tables 4, 5, 6 and 7, LSG achieves very competitive results
by enabling adapting existing pretrained models to longer sequences. On the
ArXiv dataset (Table 6), LSG is competitive with every size of the LongT5
model, despite the limited number of model parameters. On the PubMed dataset
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(Table 4), LSG also outperforms Pegasus and Big Bird Pegasus, and is close to
Hepos models. On the MultiNews dataset (Table 5), LSG is close to the large
L and XL LongT5 models. We note that while extrapolation improves metrics,
additional fine-tuning has a negative impact in this case. Since this dataset
is rather small (45K examples, ∼1.4k steps), fine-tuning a single epoch is not
enough for the model to converge properly; longer training is required. On the
MediaSum dataset (Table 7), LSG is close to the LongT5-base model again. This
dataset has the shortest inputs, thus processing a maximum of 16384 tokens has
a marginal impact on performances. These results underline the ability of LSG
to efficiently substitute full-attention mechanisms to process long sequences.

The second surprising and important finding is the ability of LSG to improve
metrics from 4096 to 16384-length inputs without additional fine-tuning. This
is especially true on ArXiv and PubMed datasets which have the longest input
sequences. Fine tuning additional global tokens further improves metrics while
limiting cost and training time compared to a fully tuned model.

5 Conclusion

We have presented LSG attention, a novel efficient O(n) alternative to the full at-
tention mechanism relying on local, sparse and global attentions. Our results on
MLM, classification and summarization tasks show that LSG is a fast and very
competitive full attention substitute for pretrained Transformers to efficiently
extrapolate to long input sequences. We also proposed an optimized implemen-
tation of the LSG attention mechanism on HuggingFace, improving training
speed by a factor of 2 without additional memory cost compared to Longformer
and Big Bird models. By providing a PyPI package conversion tool to leverage
existing models and checkpoints (BERT, RoBERTa, DistilBERT, BART), the
proposed approach removes the need of a costly re-training of existing models
to handle long sequences.7
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