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Abstract. Multi-modality 3D medical images play an important role in
the clinical practice. Due to the effectiveness of exploring the comple-
mentary information among different modalities, multi-modality learn-
ing has attracted increased attention recently, which can be realized by
Deep Learning (DL) models. However, it remains a challenging task for
two reasons. First, the prediction confidence of multi-modality learning
network cannot be guaranteed when the model is trained with weakly-
supervised volume-level labels. Second, it is difficult to effectively ex-
ploit the complementary information across modalities and also preserve
the modality-specific properties when fusion. In this paper, we present
a novel Reinforcement Learning (RL) driven approach to comprehen-
sively address these challenges, where two Recurrent Neural Networks
(RNN) based agents are utilized to choose reliable and informative fea-
tures within modality (intra-learning) and explore complementary rep-
resentations across modalities (inter-learning) with the guidance of dy-
namic weights. These agents are trained via Proximal Policy Optimiza-
tion (PPO) with the confidence increment of the prediction as the reward.
We take the 3D image classification as an example and conduct exper-
iments on a multi-modality brain tumor MRI data. Our approach out-
performs other methods when employing the proposed RL-based multi-
modality representation learning.

Keywords: Multi-modality Learning - 3D Medical Images - Reinforce-
ment Learning - Classification.
1 Introduction

Multi-modality images, e.g., different MRI, are widely used in medical applica-
tions [2,18]. Integrating the strengths of multiple modalities by exploring their
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rich information and discovering the underlying correlations among them is an
effective manner to improve the diagnosis and prognosis tasks. In other aspects,
many medical images involve 3D format, therefore, multi-modality 3D image
classification is important in medical image computing field. However, it is chal-
lenging to develop such multi-modality learning algorithms for several reasons.
On the one hand, for learning within a single modality (i.e., intra-modal learn-
ing), since obtaining slice-level labels of a 3D volume via manual labeling is
tedious and time-consuming [6]; it is difficult to identify features containing
modality-specific information without precise instructions. On the other hand,
for learning among different modalities (i.e., inter-modal learning), since the
underlying correlations among them are unclear, exploiting complement yet dis-
criminative representations from each modality is also non-trivial.

Recently, an increasing number of studies have been investigated for multi-
modality learning. As an example, to obtain complementary features of different
modalities, Canonical Correlation Analysis (CCA) [3] projects the features of
each modality to a new robust space. Multiple Kernel Learning (MKL) [7] uti-
lizes a set of predefined kernels from multi-view data to integrate these modalities
using the optimized weights. In addition, there are several works that applied DL
networks for multi-modal learning [20,11,15,13,9]. These methods can be roughly
categorised into two branches: 2D-based methods [19,10] and 3D-based meth-
ods [5,8,14]. For the first line of methods, 3D volumes are firstly projected into 2D
images and then are integrated for the final prediction. However, these meth-
ods are insufficient in capturing the complicated spatial characteristics of 3D
volumes. In contrast, 3D-based methods can work well in capturing spatial rela-
tions between different volumes for learning more complementary multi-modality
representations. However, there still exist several limitations for 3D-based meth-
ods. First, the particular use of the 3D fusion models can only be supervised by
the volume-level labels with limited information, which leads to high uncertainty
prediction [1]. While the risk-sensitive tasks, like medical diagnosis, require high
prediction confidence for the purposes of avoiding critical mistakes. Second, to
explore complementary representation in multi-modality learning, the weighted
fusion method with fixed weight is widely applied in these 3D fusion researches.
However, it is unreasonable to merely assign specific weights to different modal-
ities, besides, the weights should be dynamically allocated by data-driven rather
than artificial.

In this paper, a novel Reinforcement Learning (RL) driven approach for effec-
tive multi-modality 3D medical image analysis is presented, where two RL-based
agents are learned for dynamical intra-modal and inter-modal features enhance-
ment to learn latent modality representation and underlying correlations among
different modalities. Specifically, to enable such intra-modal and inter-modal fea-
ture enhancement, we explore two key techniques based on the characteristics of
multi-modality medical images. (1) We propose an iterative hybrid-enhancement
network to integrate intra-features and inter-features, where the enhanced intra-
features in each iteration are regarded as the state of two designed agents which
generate strategies for intra-enhance and inter-enhance in the next training iter-
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Fig. 1. Illustrations of the proposed method: given a group of 3D volumes in different
modalities i.e., T1, Tlce, T2, FLAIR, the model iteratively processes a sequence of
multi-modality images with intra-learning and inter-learning modules. The proposal
agents (intra-agent and inter-agent) are supervised by the reward function designed as
confidence increment of the outputs. Hidden states hi"*"® and hi"**" of both agents
help them exploit information from previous inputs and produce promising actions for
intra-modality learning and inter-modality learning, respectively.

ation. (2) We take the prediction confidence increment as the supervision of the
agents, which encourages the agents to customize the enhanced strategies that
can promote the prediction confidence. Finally, the whole framework is trained
in an end-to-end manner for hybrid multi-modality learning.

2 Method

The detailed architecture of our proposed framework is shown in Fig. 1. Given an
input volume, in order to capture intra-modality representations, a 3D convolu-
tion layer in the modality-specific network is first employed to generate shallow
modality features which are enhanced by the RL-based intra-learning module to
focus on the salient part. Then, modality-specific features are passed to another
RL-based inter-modal learning module to conduct multi-modality learning for
prediction promotion. Specifically, the output of the agent is taken as the state
of the intra-agent and inter-agent to determine actions (enhancement weights)
for intra-/inter- modality learning in the next iteration. The increments of the
softmax prediction are used as reward function to train the agents for facilitating
the agents to propose actions that enable the network to produce correct predic-
tions in high confidence. The detailed design of RL-based intra-/inter- modality
learning process is introduced in the following subsections.
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2.1 RL-Based Intra-modality Learning

In the proposed method, the RL based intra-modality learning is an alternating
decision making process. Specifically, at the beginning of a training iteration, 3D
volumes sized in Bx1xdxwxh are sent to individual 3D convolution layers to
get the modality-specific primary representations sized in B xXcxdXw X h, respec-
tively. The B, ¢ denotes the batch size and channel number, while d, w, h indi-
cates the depth, width and height of the input 3D volumes, respectively. Intra-
modality learning is then implemented by multiplying the intra-modality en-
hancement weights Wg,tGRB *¢ with modality-specific primary representations,
where ¢ denotes the number of iterations.

We extract the feature from the shallow layer of the modality-specific network
to conduct intra-modality learning with the assumption that these features keep
the modality-specific spatial relationship. Moreover, different modalities share
the same intra-modality enhancement weights determined by the intra-agent
whose initial state is designed as the sum of different high-level modality-specific
representations, i.e., fr1 € RB*8¢ i cRBx8¢ f,cRBx8¢ {1 reREx8e
aiming that the proposed intra-enhancement action can facilitate sharing of
intra-modality spatial relationships among different modalities. In our experi-
ments, intra-modality enhancement weights W ; in the first iteration are initial-
ized as 1, and updated by the intra-agent in the following iterations.

2.2 RL-Based Inter-modality Learning

In inter-modality learning, different high-level modality-specific representations
fr1, frice, fr2, frrarr are fused to generate a B x 32¢ feature forwarded to
two independent RNN termed intra-agent and inter-agent. Inter-modality en-
hancement weights Wy, €RP*1 k€(0,1,2,3) are involved in the inter-modality
learning which can be formulated as:

Frusion = Concat(fr1 X Wi o, frice X Wraa, fra X Wiaa, froarr X W), (1)

where the Concat represents the concatenation operation, and Wy .o, Wi 1,
W 2, Wy s are different weights for different modalities. Same as intra-modality
enhancement weights W ;, the inter-modality enhancement weights Wy ., are
also set as 1 when ¢t = 0, and subsequently updated by the inter-agent.

With the fusion feature frysion, a Fully Connected (FC) layer is adopted
to generate a primary fusion representation. The primary fusion representation
includes comprehensive features of all modalities, which is suitable to be set as
the initial state of the inter-agent. While if we split the fusion feature ffysion
into individual modality-specific features and add them together, the voting
information of each modality-specific feature for the current predicted state can
be synthesized to the greatest extent, without harming characteristics specific
of each modality, which can be regarded as states of the intra-agent. with the
initial states, the intra-agent and inter-agent will be triggered to propose the
new W, and Wy, k€(0,1,2,3) for next iteration procedure.
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Note that several iterations are conducted in a training epoch. For each
iteration, the hidden state h{™"® and hi"**" which aggregates the information
of past states are maintained within intra-agent and inter-agent, respectively.
In addition, modality-specific logit outputs Or1, O71ce, Or2 and Opparrg, i.e.,
the output of each modality-specific network followed a FC layer and a soft-max
layer, with modality fusion logit O¢ysion are saved in a memory bank until the
end of the epoch. These sequential logit outputs will be used for calculating
reward of the agents and the training loss.

2.3 Reward Function and Training Procedure

Operating under the intuition that the normalized prediction probability (i.e.,
normalized from 0 to 1) reflects model confidence of the prediction. In this study,
we define the reward as increments of the soft-max prediction probability on
the ground truth labels for the optimization of two agents. Specifically, the re-
ward function to train the agent is designed as r; = p; — p;_1, where p; is the
soft-max prediction probability with the ground truth label at the t** iteration
process, which is derived from the #** logit outputs. Then both the inter-agent
and intra-agent are trained simultaneously by maximizing discounted reward
Tl = Zle ~t=1.r, where the v is set to 0.1.

The network of our RL-based multi-modality learning model includes two
components: modality-specific network consisted of four cascaded 3D encoders
which are used for representation extraction of each single-modality, and a RL
module includes two agents for intra-/inter- modality enhancement weights pro-
posal. Each 3D CNN extractor contains six 3D blocks followed the avgpool layer
and FC layer. Besides, the inter-agent and intra-agent share a similar struc-
ture including a RNN followed a FC layer, but the FC layer has different nodes
number which is set as ¢ for intra-agent and 4 for inter-agent, respectively.

To optimize the whole framework, we collect modality-specific logits and
fusion logits of each iteration to calculate the training loss. Subsequently, the
total loss of our approach can be computed as:

3

L= Z Lopit+Logicet + LOorot + Loppapt + A Lofus'ionat’ (2)
t=0

where Lo ; denotes loss calculated by cross entropy loss at the t*" iteration and
Loy, Logyees LOrs, s LOpparr, @and Loy, . Tepresent the loss calculated
between outputs of each iteration and the labels. The A is set to 4 as a trade-off
parameters to balance the influence of modality-specific loss and fusion loss. In
the test phase, we only keep the sum of the outputs of the last iteration as the
final outputs which can be denoted as Outputs = Ori13 + Ori1ce,3 + O12,3 +
OrrAIRr,3 + Ofusion,3-
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Table 1. Quantitative results (meantstandard deviation) of different methods on
BraTS18.

Method Acc Precision Recall F1 score

2D CNN 0.613+0.178  0.617£0.259  0.58140.190  0.555+0.224

TPCNN [17] | 0.63640.000 -

M?Net [19] 0.664+£0.061  0.574+£0.141  0.613+0.075  0.58940.102

3D CBAM [16] | 0.650+0.087  0.603+0.082  0.516+0.077  0.518+0.084

3D MFB [18] 0.575+0.018  0.586£0.022  0.54040.017  0.521%0.037

Ours 0.692+0.189 0.675+0.251 0.648+0.205 0.622+0.242

3 Experiment
3.1 Experiment Setup

Datasets. Experiments are carried out on the BraTS 2018: a multi-modality
MRI dataset in which each patient includes T1, Tlce, T2 and FLAIR volumes.
In this study, we also focus on the overall survival prediction task defined in [19],
finally, we have 165 subjects with survival information for this dataset. Our
prediction task is constructed following [19], in which patients are divided into
three classes: (1) low survival risk, (2) middle survival risk, (3) high survival risk.

Implementation Details. For experiments of BraTS 2018, we first locate the
tumor region according to the tumor mask and extract an image volume that
is centered on the tumor region. Then we resize the extracted image volume of
each subject to a predefined size (i.e., d = 64, w = 64, h = 64). Three individual
Adam optimizers are taken to train the feature extraction backbone and two
agents, respectively. The learning rate of the feature extraction backbone is set
as le-4 while the learning rate of agents is set as 1le-2 and the weight decays are
set to le-5. In every training epoch, the agent will iterate three times (t=3). The
batch size is set to 10 and we adopt a 10-fold cross-validation and report the
average performance of 10 folds. For each fold, we further divide the data (the
other 9 folds) into training set (80%) and validation set (20%) and take the best
model on validation part for evaluation.

Evaluation Metric. We evaluate our method with Accuracy (Acc), Precision,
Recall and F1 score. The precision and recall are calculated with one-class-

Fl = 2x PrecisionxRecall
~  Precision+Recall

versus-all-other-classes and then calculate F1 score (

3.2 Experimental Results

Comparisons with the State of the Art. The proposed method is also
compared with other fusion methods, results are reported in Table 1. For com-
parisons, we choose the following methods: 1) 2D CNN fusion: we project the
input 3D volume onto 2D images along the vertical axis by averaging the sum
of all slices for each modality. Then, we use the ResNet34 [4] (replace the input
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Table 2. Quantitative results (meantstandard deviation) of ablation studies on
BraTS18.

Method Acc Precision Recall F1 score

Baseline 0.631+0.081  0.546+£0.087 0.546 £0.043  0.5744-0.088

Ours w/o Inter | 0.681+ 0.194 0.666+0.259 0.660+0.210 0.627+0.234

Ours (1 modal) | 0.600+0.071  0.4624+0.095  0.4294+0.063  0.364+0.033

Ours (2 modal) | 0.614 £0.065 0.5584+0.026  0.4964+0.015  0.4314+0.035

Ours (3 modal) | 0.650+0.079  0.620+£0.062  0.5754+0.019  0.528+0.039

Ours 0.692+0.189 0.675+0.251 0.648+0.205  0.6224+0.242

channel from three to one) as the modality-specific feature extractor, and then
fuse the outputs using the concatenation operation. 2) TPCNN [17]: this method
uses a CNN model to extract features from multi-modal data and then employs
XGBoost to build the regression model. 3) M2Net [19]: a multi-modal shared
network to fuse modality-specific features using a bilinear pooling model, exploit-
ing their correlations to provide complementary information. 4) 3D CBAM [16]:
using the CBAM [16] module to adaptively generate enhancement weights for
intra-/inter- modalities. 5) 3D MFB [18]: a hybrid-fusion network with Mixed
Fusion Block (MFB) to adaptively weight different fusion strategies. We retain
the encoder of the modality-specific network with the MFB block in [18] to
match our classification task. T1 and FLAIR modalities are taken as inputs.
Note that we have the same setting as the TPCNN and M?Net, and take the
results reported in [19]. As shown in Table 1, the 3D CBAM [16] which fuses
features under channel attention mechanism in the training process, achieves
worse performance than the proposed method. In addition, the 3D CBAM shares
the same baseline network with ours, indicating that the accuracy boost is due
to the RL-agent module not the increasing of backbone size. Moreover, we find
that the agent tends to pay more attention to the FLAIR modality from the
learned weights for inter-modality fusion. It proves that the proposed RL-based
hierarchic multi-modality learning method can provide more effective feature
enhancement weights by iteratively learning from previous actions aim to achieve
higher prediction confidence, further promoting the classification accuracy.

Ablation Study. We first conduct ablation experiments to validate the design of
our proposed different components. We compare the following different settings.
(1) Baseline: the 3D network described in Section 2.3 without agent modules.
We train the model with Loss = Loy, + Loy + Lors T Lopparr T4 X Loy ion
and the prediction is produced as Outputs = O71 + O11¢e + O12o + OFparr +
O fusion- (2) Ours w/o Inter: the proposed method with RL-based intra-learning,
while the modality-specific features are concatenated without inter-learning. (3)
Ours (1 modal): the proposed method using one modality, i.e.T1, without inter-
learning. (4) Ours (2 modal): the proposed method using two modalities, i.e.T1
and FLAIR. (5) Ours (3 modal): the proposed method using three modalities,
i.e.T1, T2 and FLAIR. (6) Ours: the proposed method with RL-based intra-
/inter- modality learning using four modalities.
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Table 3. Evaluations (mean + standard deviation) of proposed methods on LNDb.

Method Acc Sen Spe F1 score

Baseline 0.7184+0.007  0.507£0.013  0.480+0.006  0.47340.006

3D CBAM [16] | 0.732+0.027  0.496+0.019  0.498+0.021  0.490+0.020

Baseline w/ ia | 0.744+0.012 0.520+0.019 0.502+0.010 0.496+0.010

Table 2 shows the ablation results. It is observed that the proposed method
improves the performance of classification by adopting the proposed RL-based
intra- /inter- modality learning. Especially, RL-based intra-modality learning
contributes an accuracy improvement of 5% as the input 3D volumes are en-
hanced by the RL-based proposed weights, while the RL-based inter-modality
enhancement gets an improvement of 1.1% in accuracy on this dataset. It is
worth noting that our method has better performance than other attention-
based fusion methods (compared to 3D CBAM [16] and 3D MFB [18]), which
demonstrates that our design of RL-based modality enhancement is better. In
addition, from the results, it can be seen that the prediction performance of our
method improves when using more modalities, which also verifies the effective-
ness of multi-modality learning. We adopt the T1 and FLAIR for Ours (2 modal)
and 3D MFB [18] to demonstrate that our method can get better performance
using the same modalities.

Validation of the RL-based Enhancement. To demonstrate the effective-
ness of our method, we further explore the performance of RL-based intra-
modality learning on LNDb [12] which contains a total of 229 lung nodule CT
images from the training set and distinguish lung nodules into three texture
classes (solid, sub-solid, and GGO). For experiments of LNDb, we first extract
96 x 96 x 96 cubes from the whole CT scans according to the given center lo-
cation of a lung nodule. Only one agent is used for intra-modality learning in
the LNDb classification model. The batch size is set to 4 and we adopt a 5-fold
cross-validation strategy for performance evaluation.

As shown in Table 3, RL-based enhancement also promotes the classification
accuracy of LNDb by about 2.6% compared to the baseline, which demonstrates
the efficiency of our method on another imaging data. Moreover, we also compare
the performance of CBAM [16] on the intra-modality learning on the LNDDb,
proving that the proposed method helps the model to learn better intra-modal
representations with higher metrics.

4 Conclusion

This paper innovatively introduces the RL strategy into the intra-modality learn-
ing and inter-modality learning and proposes a novel hierarchic feature enhance-
ment framework for multi-modality learning. With the purpose of exploiting com-
plementary inter-modality features while preserving intra-modality features, the
multi-modality learning problem is modeled as a dynamic hierarchic feature en-
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hancement issue. In addition, the proposed RL-based multi-modality learning
method is general and has great potential to boost the performance of various
medical image tasks. Our future work will focus on different more effective train-
ing strategies and extend our framework to other multi-modality medical image
analysis problems.

Acknowledgement. This work was supported by the National Key Research
and Development Program of China (2019YFE0113900).
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