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Using global navigation satellite 
systems for modeling athletic 
performances in elite football 
players
Frank Imbach1,2,3*, Waleed Ragheb1,4, Valentin Leveau1,4, Romain Chailan1, Robin Candau3 & 
Stephane Perrey2

This study aims to predict individual Acceleration-Velocity profiles (A-V) from Global Navigation 
Satellite System (GNSS) measurements in real-world situations. Data were collected from professional 
players in the Superleague division during a 1.5 season period (2019–2021). A baseline modeling 
performance was provided by time-series forecasting methods and compared with two multivariate 
modeling approaches using ridge regularisation and long short term memory neural networks. The 
multivariate models considered commercial features and new features extracted from GNSS raw data 
as predictor variables. A control condition in which profiles were predicted from predictors of the same 
session outlined the predictability of A-V profiles. Multivariate models were fitted either per player or 
over the group of players. Predictor variables were pooled according to the mean or an exponential 
weighting function. As expected, the control condition provided lower error rates than other models 
on average (p = 0.001). Reference and multivariate models did not show significant differences in error 
rates (p = 0.124), regardless of the nature of predictors (commercial features or extracted from signal 
processing methods) or the pooling method used. In addition, models built over a larger population 
did not provide significantly more accurate predictions. In conclusion, GNSS features seemed to be of 
limited relevance for predicting individual A-V profiles. However, new signal processing features open 
up new perspectives in athletic performance or injury occurrence modeling, mainly if higher sampling 
rate tracking systems are considered.

Global Navigation Satellite System (GNSS) is one of the gold standard systems in position measurements in field 
sports. Widely used for athlete monitoring  purposes1–11, GNSS permits discriminating the physical demand at 
exercise through objective mechanical parameters, computed from GNSS and Inertial Measurement Units (IMU) 
 signals12. Data collected from these wearable devices provide useful insights for understanding a player’s activity 
and its relationship with performance outcomes or injury occurrences during  practice6,13–16.

In most cases, the information provided by wearable GNSS devices are summarised features over a session or 
a period (e.g. distance covered at different speed intervals, averaged pace for a given interval, acceleration, and 
deceleration counts). Beyond a standard set of simple and easily comprehensible features, extra information of 
mechanical and energetic nature that is derived from the players’ position may be available for customers under 
the manufacturer’s  policy17–19. However, the validity of GNSS sport receivers should be considered regarding their 
technical properties, such as sampling frequency. Despite a lack of accuracy for quantifying exercise demand 
over short distances covered at high speed, including sharp turns, GNSS suffers from error rates according to a 
relatively low GNSS sampling  frequency20,21. The signal quality of receivers also depends on the spatial configu-
ration of satellites locked for recording (i.e. the number of satellites and their geometrical distribution in the 
sky)22. Nonetheless, GNSS with embedded IMU stands of interest and remains prone to further technological 
improvements. Beyond technological aspects, practitioners mostly use summarised GNSS statistics or metrics, 
whereas raw data are seldom considered for player analysis. The usual data fed back from the GNSS units might 
be elementary, while new features extracted from raw data could be more insightful for monitoring the physical 
demand of exercise and the related athlete’s response.
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Using GNSS data for predicting athletic performance in team sports remains challenging. First, it implies 
defining an athletic performance in which interactions with opponents and the environment are sufficiently 
lowered. Usually, assessing athletic performances requires specific testing sessions performed in controlled condi-
tions. It comes with challenging issues due to time and investigation costs, injury exposure, psychological state 
disruptions, and adjustments to training plans. Nevertheless, Morin et al.23 recently proposed a timely method for 
assessing a player’s athletic performance while practicing football without performing any specific tests. In brief, 
the method determines individual acceleration-velocity profiles (A-V) from continuous GNSS measurements 
for in-game and post hoc analysis. Such profiles come with practical meanings, notably for monitoring changes 
in athletic properties (by analogy to force-velocity profiles). They could be used for optimising training plans 
or proceeding to in-game tactical adjustments in case of significant profile impairments. However, determining 
in situ A-V profiles for monitoring athletic performances remains at a proof-of-concept  stage23. It should be 
further validated for athletic performance modeling and injury explanation purposes.

On this basis and according to the literature, the present study considers three research issues: 

1. The predictability of A-V profiles using only related GNSS features
2. The value of common metrics (summarised statistics) and aggregated features that are delivered by GNSS 

sensors manufacturers for predictive applications
3. The use of raw GNSS data for extracting new features for prediction purposes

In order to investigate these issues, we attempted to predict A-V profiles using data from an elite football team 
through different modeling approaches. A baseline approach that only considers A-V profiles and dismisses any 
potential predictors other than historical profiles was carried out. Then, we compared it with two distinct tasks 
that used commercial GNSS features and features extracted from raw GNSS data.

The rest of the manuscript is organized as follows. We introduce the data set that highlights the predictor 
and outcome variables. Next, we introduce the proposed models and their variants. Accordingly, we present the 
obtained results followed by exhaustive discussions of these results before concluding our study in the last section.

Methods
This section introduced a descriptive analysis of the data set used in our experiments. We defined the predictors 
and outcome variables besides the considered problem formulations before elaborating the proposed models. 
For clarification, we provided a pseudo-code of the modeling methodology through Algorithms 1, 2 and 3.

Data set. Population studied. Data from the FC Lucerne football club were collected over a 1.5 season peri-
od (2019–2021). The team evolves in the Superleague division, the highest division in Swiss professional football. 
A total of 196 training sessions and 74 games were stored in a cloud-hosted multi-model database (ArangoDB, 
CA, USA). For each session, raw GNSS data (Fieldwiz V1, CH, with concurrent reception of Global position-
ing system, Galileo, GLONASS, and BeiDou systems) and summarised features (see Appendix A for details) of 
each player were stored in a database as json files. A total of 42 players were initially recorded, including regular 
professional players and young hopes. Participants were fully informed about data collection, and their writ-
ten consent were obtained. The study was performed in agreement with the standards set by the declaration of 
Helsinki (2013) involving human subjects. The protocol was reviewed and approved by the local research Ethics 
Committee (EuroMov, University of Montpellier, France). The present retrospective study relied on the collected 
data without causing any changes in the training plans of football players.

Predictor variables. Predictors are summarised in Appendix 1, Table A1. Let X ⊂ R
d with d ∈ N be the domain 

of definition of the random variable X = {x1, . . . , xd} . The variable X is thus defined as a vector of d dimensions, 
composed of aggregations of the summarised features given by the GNSS software (Fieldwiz, ASI, CH). Aggre-
gated features can take two forms: 

1. The average of summarised features X̄ = {x̄1, . . . , x̄d} , such that: 

2. An exponential weight according to a softmax function (see Eq. 2), such that: 

In Eq. 2, Xd denotes an aggregated feature weighted by a scaling factor wj . wj is determined by a softmax function 
σ(t)

β
j  in which t  is a time vector describing the distance of events to the game of interest and β denotes a scale 

parameter that sets the sensibility of the exponential decay weighting function.
For both aggregation methods, we arbitrarily set a window L of size L = 5 . It refers to the summarised pre-

dictor sets given by the GNSS software that are pooled according to the last L sessions (either training or game) 
preceding the game of interest. Since the frequencies of sessions are heterogeneous, the number of days preceding 
the game to be predicted may differ over the weeks.

(1)X̄i =
1

N

N
∑

j=1

Xi,j , 1 ≤ i ≤ d

(2)Xd =
∑

j

wjXd,j where wj = σ(t)
β
j =

e−βtj

∑K
k=1 e

−βtj
∀j ∈ {1, . . . ,K} .
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Outcome variables. In order to investigate the effect of training on athletic performances, we relied on A-V pro-
files such as provided  by23 but in a slightly different way. Individual A-V profiles were modeled for each games. 
From the raw velocity V and a sampling frequency ω , we derived an acceleration A such that

Here, we consider a signal x(t) → x[n] with x[n] = x(nT) being the discrete formulation of x(t).
Then, a first-order Butterworth filter was applied to the acceleration signal with a cut-off frequency of 1 Hz. 

Velocity observations were binned into 0.1m.s−1 width bins in which the maximal acceleration values were 
retained. Hence, we modeled A-V profiles over velocities superior to 3m.s−1 using a linear regression between 
acceleration and velocity (see Fig. 1). A total of 1032 profiles were modeled, for an average of 25.80± 20.37 per 
player. The large standard deviation is related to occasional players (e.g. young players) who only played a few 
games through the season.

The performance definition is given by 
{

Ya,Yb
}

∈ Y such that Ya and Yb refer to the corresponding slope 
and the intercept of individual A-V profiles, respectively. Therefore, each observation in the ensemble 
{

yaj,t , y
b
j,t

}

∈
{

Ya,Yb
}

 is related to both an athlete j and the day of realisation t. A sample of fitted coefficients is 
presented in Figure 2. To formalize, letting X × Y ∼ f  with a density function f, the built data set is a sample 

S =

{

(

xj , y
p
j

)

}

j≤n

∼ f n .

A descriptive analysis of A-V coefficients reported mean values and standard deviation as a noise estimate. 
Accordingly, we have µa = −0.533± 0.078 and µb = 4.721± 0.483 for Ya and Yb , respectively.

Definition of models and multivariate approaches. Time‑series forecasting. Time-series forecasting 
problems are dominant in sports, applied to game  outcomes24–27 generally intended to tipsters or bookmakers, 
sports  popularity28, or performance  monitoring29. In our study, we first consider that the auto-regressive com-
ponent of the target variable may be influential in the prediction of individual athletic performances. Therefore, 
we started the modeling by defining baseline prediction performances from time-series forecasting, only using 
games observations (excluding training sessions).

In time-series forecasting, models without covariates use a restricted data set in which predictors are merely 
time information. The forecasting is deduced from the information in trend and seasonality components. In 
order to find the most performing models for time-series forecasting, we proceeded with a model selection 
using a simple holdout procedure, according to a split ratio of 0.8 between the training and testing data set. We 
can righteously expect a linear relationship between changes in theoretical maximal acceleration and maximal 

Ai(nT) = Vi(nT)− Vi−1(nT) , T = 1/ω and ω = 10Hz .

Figure 1.  Example of A-V profile modeled for a given player and a randomly selected game. Only plain dots 
(velocities above 3 m  s−1) were used for fitting the linear regression.
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running velocity. Consequently, the ensemble {Ya,Yb} was predicted in two different ways: sequentially (uni-
modal forecasting) and concurrently (multi-modal forecasting).

Afterwards, we benefited from the selected forecasting models by combining them into a weighted average 
ensemble for better performances than a randomly selected single model on average.

Ridge regularisation. Then, we addressed the problem of predicting the acceleration-velocity profile from 
GNSS summarised features. Changes in A-V fitted parameters were investigated using a predictive regression 
approach. For this, a linear model (a ridge regularisation) used features pooled according to the two aforemen-
tioned aggregation methods (see Eqs.  1 and 2) and were compared to a Long Short Term Memory (LSTM) 
neural network, a particular case of recurrent neural networks (RNN).

Using a ridge regularisation was motivated by the high dimensional context that may lead to unsteady mul-
tivariate linear models, excessively sensitive to an expanded space of solutions. Accordingly, ridge regularisation 
reduces the space of solutions while solving collinearity problems, which remains common in  sports30–32. It thus 
prevents biased estimates through penalising estimates of correlated  features33,34. According to the two aggrega-
tion methods, the multivariate linear models mridge : Xp → Y and mridge∗ : Xp∗ → Y take the general formulation

where x ∈ Xp denotes the pooled predictors according to the mean function (see Eq. 1) and x ∈ Xp∗ refers to the 
pooled predictors according to the exponential weighting function (see Eq. 2) for mridge and mridge∗ , respectively. 
Also, β ∈ R

d denotes the parameters of the model and ǫt the random error term.
In addition, we defined a control task in which we attempted to predict 

{

yaj,t ,Y
b
j,t

}

 from X j,t . Using commercial 
features of the day of A-V profile realisation should be, in theory, the simplest regression task and provide the 
lowest error rates in prediction.

Long short term memory neural network. Recurrent neural network is the class of neural networks that consid-
ers past information to be used as inputs while preserving the hidden states. Let us consider a multidimensional 
vector X of fixed length l and dimension d, which includes unpooled summarised features as the model’s input. 
Basically and from a l × d matrix, a recurrent unit successively combines the current values of X t of size d with 
the predicted value at time t − 1 to return an output ht , defined by a function f (X t , ht−1) (see Fig. 3a). This 
procedure is repeated as many times as the number of training sessions preceding a game in a multi-layered 
structure. However, RNN suffers from short-term memory due to a vanishing gradient problem. Nevertheless, 
used for updating neural network weights, a gradient that shrinks as it back propagates through time stops the 
learning of layers. These layers may thus cause a loss of past information, particularly with long sequences.

Introduced by Hochreiter et al.35, LSTM neural networks are designed to conserve long-term information 
through extended internal mechanisms. LSTM architecture benefits from a cell state and various gates that 
regulate the flow of information. As shown in Fig. 3b the cell state maps the previous cell state Ct−1 to a new cell 
state Ct in which all the relevant information is carried throughout the sequence and where gates add or remove 
information to/from it. More details about LSTM dynamics in handling recurrent sequences are available in the 
original  reference35. In sports, the use of LSTM remains quite recent with applications among action and activity 
 recognition36–40, game  outcomes41 and sports related  concussion42.

Multivariate modeling approaches. Using commercial features. In order to investigate the effect of 
training sessions on changes in athletic performances, a multivariate analysis that includes data from training 
sessions is required.

(3)y
(ridge)
t = x

t
tβ + εt ,

Figure 2.  Evolution of A-V profiles fitted intercept and slopes over the 1.5 season period. Three players are 
randomly selected.
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We aimed at predicting {Ya,Yb} using two sets of aggregated predictors Xp and Xp∗ from the original fea-
tures displayed in Appendix A, Table A1. Since models rely on several predictors, we consider the multivariate 
modeling approach.

For multivariate models, we performed a feature selection based on F-statistics and p-values converted from 
the cross-correlation between each feature of interest and the target through univariate sequential linear regres-
sion tests. Accordingly, we held the ten most meaningful features for making further predictions.

Extracting new features from raw global navigation satellite system data. In the previous formulation, the player 
position was recorded by GNSS at a sampling frequency of 10 Hz. Timestamp, player position (i.e. latitude, lon-
gitude), and velocity were available. Since commercial features were computed from the raw velocity vector V 
and its derivative A , we proposed to extract new features directly from V.

First, we consider V being a stationary time-series (Xt)t∈R . Formally, a time series is stationary if the 
law L of a generated vector (Xt1 , . . . , tn) is time translation invariant. That is, we consider a law L such as 
L(Xt1 , . . . , tn) = L(Xt1+h, . . . ,Xtn+h), ∀(t1, . . . , tn) ∈ R

n and h ∈ R with t being a time value and R being 
a set of real  numbers43. The stationary of time-series was checked using a Dickey-Fuller  test44.

Several features were extracted from the time series in both time and frequency domains through Discrete 
Fourier Transform. For this purpose, we used the tsfresh Python  module45. The feature extraction from both 
domains provided categorized 779  features46. A feature selection like performed during the previous tasks let us 
retain only the ten most relevant features, according to their significance level (F statistic and p value).

In summary, pseudo-code of the algorithms used in the methods is provided in Appendix 1, Section A.3.

Statistical analysis. In prediction, model performances were characterised by the mean absolute percent-
age error (%, MAPE) computed on test data sets. Repeated measures analysis of variance (ANOVA) and post-
hoc analysis highlighted the significance of differences in MAPE distribution between models. Depending on 
a reference model for comparison, Tukey’s or Dunnett’s p value adjustment was used. The marginal mean dif-
ference βdiff  was reported along with 95 % confidence intervals. Partial η2 (or η2 for one-way ANOVA) values 
were reported as a measure of effect size in ANOVAs. The significance level was set at p = 0.05 and consistently 
reported within the analysis.

Results
Predicting A-V profiles from games: reference models. The first baseline prediction was described 
by error rates observed in the control task. Using a set of predictors to predict A-V coefficients of the same 
session using a ridge regularisation returned an average MAPE of 0.066% and 0.102% for intercept and slope, 
respectively.

As shown in Fig. 4, we observed likely different MAPE values between intercept and slope predictions of A-V 
profiles. For this reason, we considered linearly re-scaled coefficients due to range and variance differences (aver-
aged range = 0.325 and range = 3.98; σ 2 = 0.006 and σ 2 = 0.246 for the slope and the intercept, respectively). 
Accordingly, a two-way repeated measure ANOVA showed a slight trend in favour of an easier prediction task 
on A-V intercept ( βdiff = −0.011 ∈ [−0.07, 0.003] 95%CI , p = 0.122).

Average ensembles were built following a model selection of a large set of time-series forecasting models 
Mts . In the uni-modal approach, the forecasting models which provided the lowest MAPE in prediction were 
 Prophet47, Theta,  FourTheta48, and Fast Fourier Transform based. As expected, the combination of these mod-
els into an averaged ensemble provided the best performances (see Fig. 5 for examples). In the multi-modal 

Figure 3.  Simplified diagram of (a) a RNN cell and (b) a LSTM cell.
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approach, the retained forecasting models were  VARIMA49, RNN-LSTM, and auto-regressive encoder-decoder 
 Transformer50. In this case, RNN-LSTM and the averaged ensemble provided the best performances for predict-
ing A-V slopes and intercepts, respectively. However, multi-modal averaged ensembles provided only a slight 
trend for a greater accuracy and were not significantly more accurate than univariate ensembles models on aver-
age ( βdiff = −0.004 ∈ [−0.012, 0.020] 95%CI , p = 0.541 ). Overall synthesis of the selected forecasting models 
and their performances are presented in Table 1.

In comparison to the simplest scenario in which A-V profiles coefficients are predicted from a set of com-
mercial features from the day of A-V realisation ( 

{

yaj,t ,Y
b
j,t

}

 , the control task), averaged ensembles forecasting 
models tended to be less accurate ( βdiff = 0.013 ∈ [−0.002, 0.028] 95%CI , p = 0.095).

Time series forecasting models are considered as a reference for further performance predictions and model 
comparisons.

Figure 4.  Distributions of MAPE regarding multi-modal and uni-modal ensemble forecasting models.

Figure 5.  Example A-V profiles slopes forecasting using the uni-modal averaged ensemble. (a) represents the 
best prediction, (b) is the median prediction. Note that the red line represents the prediction made on the testing 
data set.
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A multivariate modeling using data from past training sessions and games. Anal-
ysis of re-scaled MAPE a lower error rate when predicting the intercept coefficients 
( βdiff = −0.013 ∈ [−0.021,−0.005] 95%CI , p = 0.002, partial η2 = 0.06 ∈ [0.01, 0.15] 95%CI ). Post-hoc 
comparisons showed that multivariate LSTM and ridge regression that used data from past training and games 
sessions provided a higher error rate than the ridge regression of the control scenario. However, no signifi-
cant differences in MAPE were observed between multivariate time-series forecasting models and regularised 
regression (LSTM and ridge regularisation). On average, individually fitted models did not provide lower pre-
diction errors than those fitted on the group (p = 0.381). Except for univariate time-series forecasting models 
which only considered data from games and multivariate LSTM, there was no advantage of using the expo-
nentially weighted aggregation (refer to Eq.  2 for details) over a simple aggregation according to the mean 
( βdiff = 0.001 ∈ [−0.010, 0.012] 95%CI , p = 0.844).

No significant difference was reported between averaged intercept and slope predictions in models that used 
features extracted from raw data. Only a slight trend for a lower MAPE was imputed to intercept predictions 
( βdiff = −0.012 ∈ [−0.027, 0.002] 95%CI , p = 0.09 ). In addition, individual and group computed LSTM pro-
vided similar performances in terms of accuracy (p = 0.775). That discarded any advantage of building models 
per player for predictions.

An overview of model performances showed that in average, the control task (the prediction of A-V profiles 
from commercial features of the same game) provided a lower error rate than any modeling task using past 
data ( βdiff = −0.019 ∈ [−0.031,−0.008] 95%CI , p = 0.001, η2 = 0.03 ∈ [0.01, 0.08] 95%CI ). In addition, 
neither models that used commercial features, nor models that considered new features extracted from raw data 
outperformed the time-series forecasting ensembles (p = 0.124, see Fig. 6). No significant differences in error 
rate distribution were found between the source of features (p = 0.453).

Table 1.  Average MAPE for each selected model. Significant values are in [bold]. a Additive seasonality. 
b Multi-modal models required longer time-series. We limit the study of these models to time-series larger than 
40 observations.

Models MAPEslope MAPEintercept Multi-modalityb

Prophet 0.134 0.095 ×

Theta 0.150a 0.096 ×

FourTheta 0.120 0.085 ×

FFT 0.161 0.121 ×

Ensemble 0.115 0.081 ×

VARIMA 0.162 0.127 ✓

RNN-LSTM 0.111 0.099 ✓

Transformers 0.120 0.075 ✓

Ensemble 0.113 0.072 ✓

Figure 6.  Distributions of models’ MAPE.
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Discussion
This study compared two multivariate modeling approaches that use commercial features and features extracted 
from GNSS raw data to a time-series forecasting approach. We considered the last as reference models that 
account for past events for predicting the A-V profiles of the next game. Beforehand, predictions made using 
predictors of the game of A-V profile realisation (i.e. control models) informed their predictability in ecological 
conditions.

Concerning the reference models, performing multi-modal forecasting might provide better results, but it 
also requires a larger sample size than uni-modal forecasting methods to estimate model parameters correctly. 
Accordingly, we filtered out players who performed less than 40 games for computing multi-modal forecasting 
models. Only nine players (out of 42) were retained for prediction, whereas the uni-modal task included data 
from a larger population (19 players). Therefore, the sample size heterogeneity should be considered when 
interpreting the forecasting results since a larger sample size might reasonably provide different, if not better, 
forecasting performances.

A practical limitation of univariate forecasting models is that we only consider game data for prediction. 
Hence, interpretations drawn from each forecast are restricted to the effect of preceding games on the next game, 
and the contribution of training sessions preceding a performance remains unclear. Accordingly, technical and 
medical staff around players should exploit multivariate models for detecting key performance indicators (KPIs) 
of A-V changes, or any other  outcome51.

Being based on commercial summarised statistics (i.e. returned by the manufacturer, see Appendix 1, 
Table A1) or features extracted from the velocity vector, it was likely easier for the model to predict A-V profiles’ 
intercepts than the slopes. A greater variance allocated to this parameter may reasonably explain that finding, 
easing the estimation of the coefficient regarding a random error. In practice, a small change in the A-V profile 
may result in a substantial modification of the theoretical normalised force output (i.e. the acceleration) at the 
onset of maximal locomotor activities.

When comparing multivariate to reference forecasting models (uni-modal and multi-modal), no significant 
differences in error rates suggest that features describing past sessions were not informative enough to improve 
predictions. Accordingly, time stands as a significant predictor variable of subsequent events.

In addition, ridge regularisation used pooled features according to a simple aggregation by the mean or 
exponential smoothing. However, changing one pooling method to another did not lower prediction error rates. 
At first glance, that indicates either a limited relevance of the explanatory features used in the model or a lack 
of A-V profile predictability. However, the low error rates of predictions provided by control models allow us to 
support a reasonable A-V profile predictability.

In a small sample context, using a larger population may lead to more robust estimates of parameter coef-
ficients. One possible way could be to build models over a group of players instead of a model per  player32. Our 
results did not confirm such benefits since there is no benefit to using player-specific models for predicting A-V 
profiles with the current data.

An overall analysis and model comparison highlight that despite slight differences between top and bottom 
model ranking (see Table 2), no significant differences in prediction errors were reported. Accordingly, neither 
commercial, new features extracted from time and frequency domain analysis nor the pooling methods and 
model framework (time-series forecasting or multivariate regressions) led to significantly better prediction of A-V 
parameters. Once again, it questions the relevancy of GNSS-based features for modeling physiological adapta-
tions to  training52 or their value for explaining outcomes under a substantial opponent influence. It is essential 
to point out the lack of information for the GNSS signal quality. As mentioned in the introduction, GNSS signal 
accuracy relies on time/frequency and spatial parameters. The receiver manufacturer used in our study (Fieldwiz 
V1, CH) did not store any spatial accuracy factor such as horizontal dilution of precision. Therefore, we recom-
mend the manufacturer to report signal quality details for practical use and research  purposes53,54. Nevertheless, 
using features not based on expert hypotheses but fully extracted from signal processing methods appeared to 
be as valuable as the commercial ones. It leverages information that could be drawn from GNSS data and opens 
the way to future works on data mining and knowledge discovery in the sports field. However, this perspective 
comes with feature interpretability issues, particularly those related to the frequency domain.

Features retained for regression after the feature selection procedure reveal KPIs of A-V profile changes. 
Based on a top ten representation (see Appendix 1, Table A2), we could state that the distance covered at high 
intensity is not necessarily the highest value when regarding other variables, such as the number of accelerations 
and decelerations for specific intensity bands. Such KPIs should help guide field and resistance training regarding 
individual objectives. However, since multivariate models suffered from explanatory power regarding reference 
models (i.e. univariate forecasting models), interpretation of the selected features for practical application should 
be made with caution.

Finally, when considering re-scaled MAPE, prediction errors varied between 7% and 10%. We believe this 
is an acceptable accuracy since the A-V profile depends on unmeasured and uncontrolled factors, namely the 
opponent activity, then any psychological, environmental, or nutritional aspects. Therefore, GNSS wearable 
sensors could stand of value, though limited, for prediction purposes and more generally included in athlete 
monitoring systems while estimating external training  loads9. Regardless, in light of the above limits, monitoring 
processes should be carried out under a more data-informed than the data-driven approach in which external 
training indicators are monitored along with internal markers, and environmental  factors55.

In our study, we provided a simple estimation of the A-V predictability through the control task, which benefits 
from the relationship between the commercial features and the modelled profiles of a given game. However, a 
deeper analysis of the A-V estimator noise and heteroscedasticity of the outcome variables should be carried 
out in a future study.
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Beyond predictive applications, A-V profiles provide relevant insights regarding the theoretical maximal 
isometric force of hip extensors (i.e. through the profile intercept) and the capacity to produce a significant 
level of horizontal force at high velocities (i.e. according to the slope of A-V relationship). These mechanical 
factors may be key determinants of soft-tissue injury  occurrence56, short sprint  performances57 and could guide 
individual training prescription.

The technological rise provides higher sampling frequency systems (e.g. IMU and motion capture systems) 
as compared to GNSS devices, intended for discriminating exercise and its demand in ecological conditions. A 
physiological representation of the responses to exercise may be therefore extracted. Besides, going through raw 
data recorded by these systems may contribute to solving the enigma of injury occurrence, which remains a hot 
research area in sports science with major economic  repercussions58,59.

Conclusion
In this study, we aimed at modeling coefficients of individual A-V profiles. For this purpose, we first considered 
time-series forecasting models, which used data from games only as the baseline of models’ performances. 
Then, multivariate modeling approaches were compared to these baseline models with a regression task using 
a regularised linear regression (ridge) and a neural network architecture (RNN-LSTM). Two distinct functions 
were employed to aggregate training sessions predictors; a mean and an exponential weighting function (both 
of them are defined in Eqs. 1 and 2). Finally, we extracted new signal processing features from the GNSS raw 
data and assessed their contribution to the modeling process. We recall that except for time-series forecasting, 
models were fitted either per player or over the group of players. Overall, no method showed significant better 
performances in prediction than the time-series forecasting. Global navigation satellite system features seemed 
to be of limited relevance for predicting individual in-situ A-V profiles. However, time-domain and frequency-
domain features extracted from the raw data outlined the potential of signal processing methods for extracting 
new information. That opens up new perspectives in athletic performance or injury occurrence modeling, using 
IMU and movement tracking systems concurrently.

Key points

• Global navigation satellite systems are valuable for modeling in-situ A-V profiles. However, its predictability 
using GNSS-derived features from training sessions remains limited.

• Multivariate modeling highlights key performance indicators of A-V changes among commercial, training-
related features. Alternatively, signal processing methods pave the way to new modeling perspectives of 

Table 2.  Summary of models performances according to intercept and slope coefficients. MAPE represents 
the averaged MAPE over individuals and validation folders. The population represents either models computed 
over the group of players (G) or individually computed models (I). Significant values are in [bold].

Model Target Population Aggregation MAPE

Multi-modal Ensemble Intercept I N/A 0.076

LSTM (raw) Intercept G N/A 0.077

Ridge Intercept G Exponential 0.080

Ridge Intercept G Mean 0.080

Uni-modal Ensemble Intercept I N/A 0.080

LSTM Intercept G Exponential 0.084

LSTM Intercept G Mean 0.084

Ridge Intercept I Mean 0.085

Ridge Intercept I Exponential 0.085

LSTM (raw) Intercept I N/A 0.088

LSTM Intercept I Mean 0.089

LSTM Intercept I Exponential 0.090

LSTM Slope G Mean 0.114

LSTM Slope G Exponential 0.114

Uni-modal Ensemble Slope I N/A 0.115

Multi-modal Ensemble Slope I N/A 0.116

RIDGE Slope G Mean 0.116

RIDGE Slope G Exponential 0.116

LSTM (raw) Slope G N/A 0.119

LSTM (raw) Slope I N/A 0.121

LSTM Slope I Mean 0.126

RIDGE Slope I Mean 0.128

LSTM Slope I Exponential 0.128

RIDGE Slope I Exponential 0.129
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performance and injury modeling, mainly if applied to measurement systems with higher sampling rates 
(e.g. IMUs).

• A-V time-derived features are likely as relevant as GNSS-based features for explaining changes in A-V pro-
files. It emphasizes the necessity for multidimensional modeling while considering the opponent’s activity, 
psychological and environmental factors.

Data availability
The data sets generated during and/or analysed during the current study are not publicly available due to property 
of FC Lucerne but are available from the corresponding author on reasonable request.
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