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Abstract: Hexagonal boron nitride (h-BN) has recently gained much attention due to its high thermal
conductivity and low electrical conductivity. In this study, we proposed to evaluate the impact of the
modification of h-BN for use in a polymethylmethacrylate/polyamide 6 (PMMA/PA6) polymer blend.
Different methods to modify h-BN particles and improve their affinity with polymers were proposed.
The modification was performed in two steps: (1) a hydroxylation step for which three different
routes were used: calcination, acidic treatment, and ball milling using gallic acid; (2) a grafting step
for which four different silane agents were used, carrying different molecular or macromolecular
groups: the octadecyl group (Si-C18), propyl amine group (Si-NH2), polystyrene chain (Si-PS), and
PMMA chain (Si-PMMA). The modified h-BN samples after hydroxylation and functionalization
were characterized by FTIR and TGA. Py-GC/MS was also used to prove the successful graft with
Si-C18 groups. Sedimentation tests and multiple light scattering were performed to assess the
surface modification of h-BN. Granulometry and SEM observations were performed to evaluate the
particle size distribution after hydroxylation. After the addition of Si-PMMA modified h-BN into
a PMMA/PA6 co-continuous blend, the morphology of the polymer blend nanocomposites was
characterized using SEM. The calculation of the wetting parameter based on the surface tension
measurement using the liquid drop model showed that h-BN dispersed in the PA6 phase. Grafting
PMMA chains onto hydroxylated h-BN particles combined with an adequate sequence mixing led to
a successful localization of the grafted h-BN particles at the interface of the PMMA/PA6 blend.

Keywords: polymer nanocomposites; boron nitride; surface modification; silane grafting; co-continuous
morphology; selective localization

1. Introduction

Polymeric materials make the perfect candidate for application in electronics due to
their properties such as their electrical insulation, being lightweight and easy to process,
and their low cost [1]. As one of the most quickly advancing fields, electronic devices
are continually being improved to enable better performances all while maintaining or
miniaturizing their size and weight. A key factor for enabling this is the ability to control
heat management, as thermal accumulation can lead to the deterioration of the operat-
ing speed, efficiency, and reliability performances of the devices [1–3]. While polymers
are known for their low thermal conductivity (0.1–0.5 W·m−1·K−1) due to their organic
nature [4–6], thermally conductive fillers provide a way to transfer heat by improving
the thermal conductivity of the polymers [7–12]. One of the most promising fillers for
modulating the thermal conductivity of polymers is hexagonal boron nitride (h-BN). This
material is known for its unique properties, combining electrical insulation and thermal
conduction. h-BN is also called white graphite due to its color and its atomic-scale hexag-
onal structure, which is close to that of graphite. B–N bonds are partially ionic due to
the higher electronegativity of the N atom, which differs from the purely covalent C–C

Nanomaterials 2022, 12, 2735. https://doi.org/10.3390/nano12162735 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12162735
https://doi.org/10.3390/nano12162735
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-7608-6491
https://orcid.org/0000-0001-6309-4372
https://orcid.org/0000-0003-1967-9984
https://doi.org/10.3390/nano12162735
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12162735?type=check_update&version=2


Nanomaterials 2022, 12, 2735 2 of 25

bonds of the graphitic structure. Van der Waals-type interlayer interactions make h-BN
more difficult to exfoliate and functionalize than graphite [13]. h-BN is widely used for
cosmetics, electrical insulation, lubrication, and for its microwave-transparent properties.
Due to its layered structure, h-BN exhibits an anisotropic thermal conductivity with val-
ues in-plane of 300 to 600 W·m−1·K−1 and through-plane of 2 to 30 W·m−1·K−1 [4,13,14].
In attempts to improve thermal conductivity, various experimental strategies have been
developed and implemented for the incorporation of h-BN platelets or its exfoliated nano
sheets (BNNS) into polymer matrices. It is reported that many factors, including the filler
structure, orientation, content, shape, and aspect ratio, affect the thermal conductivity of
such composites [12,15,16]. In addition, the processing parameters play a role in the final
properties of the polymer composites. A very high filler content generally leads to an
increase in melt viscosity, which can be detrimental to thermal conductivity because the
higher the viscosity, the greater the porosity of the final material [17,18]. Moreover, the
thermal conductivity of composites is expected to be higher when the concentration of
conductive fillers reaches the percolation threshold. Thus, controlling the particle organi-
zation within the polymer matrix is crucial. Some strategies rely on simply embedding
h-BN particles in thermoplastics by melt compounding [19]. Other approaches consist of
controlling the material morphology by localizing h-BN sheets in a continuous network
and controlling their orientation [20]. Only a few of these studies achieved the targeted
morphology, demonstrating that substantial efforts are still required to improve the thermal
properties of h-BN composites.

The main issue is to reach a suitable dispersion state of fillers within the polymer
matrix. Another important factor is to maintain a strong matrix–filler interfacial adhesion.
Indeed, a strong adhesion ensures a continuous heat transfer and therefore impedes the
formation of an interfacial thermal resistance [4].

Both dispersion state and particle/matrix interfacial adhesion are driven by the filler–
matrix chemical bonds. While pristine h-BN exhibits a limited dispersion in polymers due to
poor affinity, surface modification is considered to be an effective strategy to reduce particle
aggregation and to favor homogenous dispersion in composites matrices. Furthermore, the
percolation threshold is reached at a lower concentration when the particle size is smaller,
explaining why many studies aim to exfoliate boron nitride aggregates.

Chemical functionalization is one attractive method for improving interfacial inter-
actions. It requires the presence of chemically active functional groups on the h-BN sheet
edges such as hydroxyl -OH, alkoxy -OR, amine -NH2, and alkyl -R groups [14,21]. The
latter can further react with a foreign molecule bearing the adequate chemical function.
Among the different functionalization routes, hydroxylation is the most important method
prior to the modification of h-BN materials [22,23]. Hydroxylation is carried out to intro-
duce -OH groups on bore atoms at the edges of h-BN sheets; this could be easily carried
out by methods such as direct oxidization in the air [24,25] and sonication in various
solvents [26,27]. The introduction of these -OH groups at the edges of h-BN promotes its
homogeneous dispersion in solutions and also improves its affinity with polymer matrices.
Cui et al. [25] reported the efficient exfoliation and functionalization of boron nitride via
a thermal oxidization process. His work was an attempt to realize a similar protocol of
hydroxylated graphite oxide (GO) sheets that enables the aqueous suspension of single
sheets in high yield [28]. However, h-BN particles are more difficult to oxidize due to the
lack of active sites onto the sheet’s surface, but only on the edges of the sheets. In addition,
when comparing with graphite, it is more difficult to exfoliate due to strong ‘lip–lip’ in-
teractions between neighboring nanosheet layers. Therefore, the chemistry routes used to
modify graphite are not always efficient for h-BN. However, after thermal treatment, Cui
et al. demonstrated a large amount of hydroxyl groups on the edges of h-BN.

Treatments using strong acids and bases were also reported in numerous works [29–31].
Wu et al. [32] demonstrated the hydroxylation of h-BN by sonicating h-BN particles in
a nitric acid solution. Korycki et al. [33] compared four treatments to select the one that
increased the hydrophilicity of h-BN platelets most significantly and therefore resulted
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in the highest concentration of the -OH groups grafted on sheet edges. As the results
were proximate, the authors selected a thermal treatment that was more environmentally
friendly than the use of strong acids or bases. Ball milling is another promising option for
the modification of h-BN particles [29,34–37]. Ding et al. [38] demonstrated the synthesis of
BNNS with an average thickness of about 2.0 nm and an extremely high production yield
(~98%), as well as highly dispersed particles in water at high concentration (~35 mg·mL−1).
However, it is worth mentioning that most studies showing the reduction and enlargement
of the (002) peak in XRD have interpreted it as an exfoliation phenomenon of h-BN (and
also graphite) platelets [10,39–41], which is not exactly the case. Indeed, this change in the
(002) peak is instead attributed to a breakage of the primary particles leading to the same
interlayer spacing, resulting in a lower number of platelets per particle. Exfoliation should
be defined as the spacing of the particles with a distancing between the platelets, such as in
clay nanocomposites [42]. Ding et al. [38] mixed pristine h-BN with furic acid and grinded
the particles via ceramic balls of different sizes. This option led h-BN edges to functionalize
with -OH groups and simultaneously to separate nanosheets via interaction with aromatic
groups of furic acid.

For further covalent functionalization, silane treatments have been employed on h-
BN particles bearing hydroxyl groups on their edges [32,43–50]. After hydrolysis of the
alkoxysilane groups, the obtained silanols reacted with the hydroxyl groups on the h-BN
edges. The chemical structure of the silane agent was chosen to present a chemical affinity
with either the polymer matrix or the solvent, allowing for a better dispersion either in
the organic or aqueous phase. Yu et al. [45] prepared h-BN/epoxy resin nanocomposites
via the sol–gel method, starting with the hydroxylation of h-BN via a thermal treatment
and using (3-isocyanatopropyl)triethoxysilane as a coupling agent, which enhanced the
thermal oxidative stability. As a result, the functionalization of h-BN with this organosilane
allowed the uniform dispersion of the particles into epoxy resin, as proven by TEM.

In most cases, conventional thermally conductive h-BN/polymer composites need
the incorporation of high quantities of boron nitride particles, up to 60 wt%, to obtain
high thermal conductivity (TC) (>5 W·m−1·K−1) [51]. However, such high filler loading
leads to laborious processing due to the high viscosity and prohibitive cost for the obtained
polymer composites. A few studies proposed an ingenious morphology by aligning
boron nitride sheets within a polymer matrix to obtain a high TC with lower amounts
of h-BN [40,41,52]. For increasingly significant TC of polymer composites, an effective
strategy consists of forming percolated filler networks within the polymer. When reaching
the percolation threshold, the heat transfer will be more efficient while the interfacial
thermal resistance will be minimized [20,24,41,53–60]. This morphology can be obtained
by dispersing the fillers in one of the two co-continuous phases of an immiscible polymer
blend. This was clearly demonstrated for graphene [61], carbon black [62], and carbon
nanotubes [63]. A few recent studies demonstrated the localization of boron nitride particles
in co-continuous polymer blends. Jian et al. [59] reported the construction of a double
percolation structure by controlling the distribution of modified h-BN in the polystyrene
phase in a PS/PP blend. The polymer composite achieved a high thermal conductivity
of 0.45 W·m−1·K−1 at 14.5 wt% loading of modified h-BN. Cao et al. [20] investigated the
selective localization of h-BN in PP/EPDM blends from thermodynamics and the kinetic
aspects of different blending processes. The thermal conductivity of (h-BN/PP)/EPDM
composites (BN being pre-dispersed in PP and EPDM added afterwards) was higher than
that of single matrix h-BN/PP composites. With h-BN particles dispersed in PP phase at
40 wt%, the thermal conductivity of (h-BN/PP)/EPDM composites reached a high value
of 1.37 W·m−1·K−1. The majority of works based on boron nitride selective localization
reached only a relatively weak thermal conductivity, and only a few studies report high
thermal conductivity, such as the work done by Liu et al. [54] where they prepared a ternary
polystyrene/polypropylene/boron nitride (PS/PP/h-BN) composite with 3D-segregated
filler networks by the solution-mixing and hot-pressing methods. The authors reported
that the ternary composite containing 50 wt% h-BN achieved a thermal conductivity of
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5.57 W·m−1·K−1. Even though such morphology enables the composite to reach a high TC,
it still requires a large amount of h-BN since the particles are localized inside one phase of
the ternary polymer blend.

In contrast, in our study, we selectively localized boron nitride at the interface of two
phases into a polymer blend to reach the percolation threshold at low h-BN content. We
selected PMMA/PA6 as the immiscible thermoplastic blend, giving rise to co-continuous
morphology. To date, this strategy has not been explored to obtain thermally conductive
composites. To achieve such controlled morphology, boron nitride particles were modified
via a two-step procedure. In the first step, they were hydroxylated via three different
methods. In the second step, four well-chosen different silane agents were used for the
grafting of the hydroxylated particles. These modifications were assessed using FTIR, TGA,
Py-GC/MS, SEM, sedimentation, and granulometry analyses. Finally, grafted h-BN was
introduced into a PMMA/PA6 polymer blend to investigate the interfacial localization of
the modified particles. The combination of the grafting and a sequence mixing led to the
successful localization of grafted h-BN particles at the interface of the PMMA/PA6 blend.

2. Materials and Methods
2.1. Materials

Hexagonal boron nitride (h-BN) particles (3M Cooling Filler Platelets CFP003F, St Paul,
MN, USA) with an average size of 2–6 µm (d0.5) and a surface area of less than 20 m2.g −1

were provided by 3M Technical Ceramics (Kempten, Germany). Nitric acid solution (HNO3,
68% w/w) was supplied by Prolabo (Paris, France), and gallic acid powder with purity of
98% was purchased from Acros Organics, Geel, Belgium. Silane grafting agents (Figure 1)
trimethoxyoctadecylsilane (named Si-C18) and 3-aminopropyletriethoxysilane (named
Si-NH2) were purchased from ABCR (Lyon, France), while poly(methylmethacrylate-co-
3-(triethoxysilyl)propyl methacrylate) 95/5% mol noted Si-PMMA and poly(styrene-co-
3-(triethoxysilyl)propyl methacrylate) 95/5% mol noted Si-PS were synthesized in the
laboratory using a protocol detailed in a previous study [64]. Polymethylmethacrylate
(PMMA) Altuglas V825T was purchased from Arkema (Milan, Italy), and polyamide (PA6)
Ultramid B33 was purchased from BASF (Ludwigshafen, Germany). All chemicals were
used as received without any purification.
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2.2. Methods
2.2.1. Thermal Treatment

4 g of boron nitride particles h-BN were calcinated in a furnace at 1000 ◦C for two
hours under air. The furnace was heated to 1000 ◦C at a heating rate of 10 ◦C/min and
maintained at that temperature for 1 h 30; the cooling step was done by switching off the
furnace. Hydroxylated boron nitride BNO was then collected. The resulting BNOCal was
washed three times with deionized water and centrifuged to remove any boric acid formed
during calcination treatment. The washed sample was named BNOCal/W.

2.2.2. Acidic Treatment with Nitric Acid

600 mg of h-BN powder was dispersed in 350 mL of HNO3 (68 wt%) and sonicated for
7 h using an Elmasonic sonication bath S100H (Singen, Germany) with an output power of
550 W. The hydroxylated boron nitride was repeatedly washed with water and centrifuged
until obtaining a neutral pH = 7. The sample was noted as BNOHNO3.

2.2.3. Ball Milling Treatment Using Gallic Acid

4 g of h-BN was mixed with 20 g of gallic acid and ceramic balls (sizes of 9 mm,
2–2.5 mm, and 0.6–0.8 mm). The mixture was milled for 2 h 30 min at 80 rounds per minute
using a Retsch S1000 ball mill apparatus (Haan, Germany). The obtained boron nitride was
then washed with deionized water and filtered. The obtained sample was dried using an
Alpha 1–2 LDplus freeze dryer (Osterode am Harz, Germany) in order to eliminate water
and to limit the agglomeration of the h-BN. The sample was noted as BNOBM.

2.2.4. General Procedure for the Grafting of BNO

2 g of modified h-BN (either BNOCal or BNOBM) was mixed with 7 wt% of silane agents
(either Si-C18, Si-NH2, Si-PMMA, or Si-PS) in 100 mL of an ethanol/water (90/10 wt%)
solution (for Si-C18 and Si-NH2) or toluene (for Si-PMMA or Si-PS). The solution was then
heated at solvent reflux for 15 h under stirring. After reaction, the product was centrifuged
to eliminate the solvent and then washed two times with ethanol (or toluene) and two times
with acetone. The obtained product was dried under a vacuum before characterization.
The different samples obtained are listed in Table 1.

Table 1. List of abbreviations for the different products used in this study.

Name Sample

h-BN Hexagonal boron nitride

BNO Hydroxylated boron nitride

BNOCal Hydroxylated boron nitride treated with calcination

BNOCal/W Hydroxylated boron nitride treated with calcination and washed with water

BNOHNO3 Hydroxylated boron nitride treated with nitric acid and sonication

BNOBM Hydroxylated boron nitride treated with ball milling and using gallic acid

Si-C18 Trimethoxyoctadecylsilane

Si-NH2 3-aminopropyltriethoxysilane

Si-PMMA poly(methylemethacrylate-co-3-(triethoxysilyl)propyl methacrylate)

Si-PS poly(styrene-co-3-(triethoxysilyl)propyl methacrylate)

BNOCal/Si-C18 (or BNO-C18) Calcinated boron nitride grafted with trimethoxyoctadecylsilane

BNOCal/Si-NH2 (or BNO-NH2) Calcinated boron nitride grafted with 3-aminopropyletriethoxysilane

BNOCal/Si-PS (or BNO-PS) Calcinated boron nitride grafted with poly(styrene-co-3-(triethoxysilyl)propyl methacrylate)

BNOCal/Si-PMMA (or BNO-PMMA) Calcinated boron nitride grafted with poly(methylemethacrylate-co-3-(triethoxysilyl)propyl methacrylate)
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2.2.5. Melt Extrusion of PMMA/PA6/BN Nanocomposites

The dispersion of grafted h-BN in the PMMA/PA6 polymer blend was realized using
a melt blending process via a microcompounder DSM at 250 ◦C, 80 rpm and for 4 min.
The polymers and the h-BN were vacuum dried at 80 ◦C overnight. A filler of 8 wt% was
used with the 50/50 PMMA/PA6 blend. The different materials were introduced into the
microcompounder simultaneously. To orientate the h-BN platelets that were hydroxylated
by calcination and then grafted with Si-PMMA, the sequence of mixing was changed: the
modified h-BN was first dispersed in toluene that contained the dissolved PMMA granules.
The mixture was then cast, and the film obtained after the solvent’s evaporation was
introduced in the microcompounder before the PA6 granules were added. The extrusion
parameters were the same as those mentioned above.

2.2.6. Characterization of the Modified h-BN Samples

A Fourier transform infrared (FTIR) analysis was performed using a Vertex 70 spec-
trophotometer (Bruker, Paris, France) in attenuated total reflectance (ATR) mode in the
4000–400 cm−1. The resolution was 4 cm−1, and 32 scans were accumulated for an im-
proved signal-to-noise ratio. A thermogravimetric analysis (TGA) was performed on a
PerkinElmer TGA8000 (Groningen, The Netherlands) at a heating rate of 10 ◦C/min under
nitrogen atmosphere, and the temperature range was from 110 to 950 ◦C, with a previous
isothermal step at 110 ◦C for 20 min. The TGA curves shown started after an isothermal
step at 110 ◦C that allowed for the elimination of physisorbed water.

Raw, hydroxylated, and grafted h-BN were dispersed in water to assess the sedimen-
tation phenomenon across time and to characterize the surface modification of h-BN. We
dispersed 0.15 g of raw or modified h-BN into 25 mL of water (concentration of 0.6 wt%).
The suspensions were sonicated with an Elmasonic bath for 1 min to help the dispersion of
particles and were kept for 14 days at room temperature. The kinetics of settling at room
temperature was also studied using the multiple light scattering analyzer TurbiscanLab
from Formulaction (Toulouse, France). Each sample was introduced in a 25 mL glass
(0.075 g of particles in 15 mL of water) cylindrical cell and scanned using a light beam. The
concentration of h-BN in water was 0.5 wt%, and the suspensions were sonicated for 1 min
for each sample. The analysis duration was divided into 3 steps to thoroughly follow the
settling phenomena while avoiding useless data files. In the first step, when the settling
was fast, a scan was recorded every 25 s for 1 h and 10 min. In the second step, a scan
was recorded every 10 min for 2 h and 30 min, and in the last step, a scan was recorded
every 30 min for 20 h. The total scanning duration for each sample was 23 h and 40 min.
The backscattered light was normalized by the initial intensity such that ∆R (%) = R(t)/Ri,
with R(t) representing the intensity registered at each time lap and Ri representing the
intensity at t =0. The particle sizes were analyzed by a laser diffraction granulometer
LSI3320 (Beckman Coulter, Brea, CA, USA)). The conditions were the same as they were for
the sedimentation tests in water: 0.5 wt% of particles in water.

2.2.7. Py-GC/MS

A Pyroprobe 5000 pyrolyzer (CDS analytical, Oxford, PA, USA) was used to pyrolyze
the different h-BN samples under helium. This pyrolyzer used an electrically heated
platinum filament. The samples (<1 mg) were introduced in a quartz tube between two
pieces of rockwool and were pyrolyzed using a coil probe. The samples were heated at
600 ◦C for 15 s, and the gases were then drawn by the GC for 5 min. The pyrolyzer was
interfaced to a 450-GC chromatograph (Varian) by means of a transfer line heated at 270 ◦C.
In the GC apparatus, the initial temperature of 70 ◦C was raised to 310 ◦C at 10 ◦C/min.
The column used was a Varian VF-5ms capillary column (Paris, France) (30 m × 0.25 mm;
thickness of 1

4 0.25 µm). Helium was used as the carrier gas (1 l/min), and a split ratio of
1:50 was chosen for the analyses. The gases were introduced from the GC to the 240-MS
mass spectrometer (Varian, Paris, France) through the direct-coupled capillary column.
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2.2.8. SEM

A scanning electron microscopy observation was performed using Quanta FEI 200
(Czech Republic). Cross-sections of the composite samples were prepared using cryo-
fracture or polishing. For some micrographs, the PMMA phase was solubilized us-
ing toluene.

2.2.9. Contact Angle Measurement

Contact angle measurements were carried out by depositing a liquid drop with con-
trolled volume on the sample surface. The contact angle θ between the liquid and the
substrate was measured using a drop shape analyzer DSA30 Kruss goniometer apparatus
(Kehl, Germany) equipped with a CCD camera. The contact angles were measured on thin,
flat, round disks of 1.5 mm thickness and of 25 mm diameter. Pure polymer disks were
prepared using injection molding with a Zamak Mecrator Mini-press (Skawina, Poland) at
250 ◦C for 3 min with a constant pressure of 5 bars. h-BN and BNOCal/Si-PMMA disks
were made by pressure molding at room temperature using Struers Prontopress (Copen-
hagen, Denmark) at 30 bars for 4 min. Contact angle measurements between the sample flat
surface (polymers or compacted h-BN) and the two solvents (water and diiodomethane)
with different dispersive γd

L and polar γ
p
L contributions were then performed three times

for each sample.

2.2.10. Solvent Etching

Solvent extraction was used to further evaluate the localization of h-BN particles in
the polymer blend. We immersed 150 mg of cylindrical shape samples in 20 mL of toluene
and heated them at 65 ◦C for 48 h to selectively dissolve the PMMA phase. The etched
solid phase was then washed with fresh toluene and acetone and dried for 24 h.

2.2.11. Thermal Diffusivity Measurements

Thermal diffusivity experiments were conducted on disks of 25 mm diameter and
1.5 mm thickness using a Xenon flash analyzer (Linseis XFA 600, Germany). The thermal
diffusivity was calculated through the thickness of the sample by measuring the time
required for the temperature rise. Each sample was measured, and the average was taken,
along with the standard deviation.

3. Results and Discussion
3.1. Hydroxylation of h-BN (TGA and FTIR)

Three hydroxylation treatment methods were performed on h-BN particles in order
to introduce -OH groups on the edges of the platelets (Figure 2). The first method was a
heat treatment at 1000 ◦C. The second treatment used a ball milling step in the presence of
gallic acid. The third procedure combined nitric acid and sonication. Figure 3a shows the
FTIR spectra of BNOCal and BNOCal/W compared with the raw h-BN. Prior to heating, the
spectrum of pristine h-BN exhibited only the characteristic peaks of B-N-B out of the plane
bending observed at 775 cm−1 and B-N in-plane stretching at 1313 cm−1. A huge band
appeared at 3202 cm−1 for BNOCal that was attributed to the presence of boric acid formed
during the calcination. The formation of boric acid during the thermal treatment of boron
nitride was already described [25]. This was confirmed by a TGA (Figure 3b) showing
the thermal degradation of boric acid for BNOCal between 150 ◦C and 300 ◦C, which is in
accordance with the literature [25,45].
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After washing, the obtained BNOCal/W sample showed disappearance of the boric
acid bands, even at 3200 cm−1 (Figure 3a). However, due to the very low amount of
hydroxyl groups compared with the size of the h-BN sheets, the presence of those hydroxyl
groups were not visible with FTIR. This is in accordance with the literature [33]. The TGA
(Figures 3b and 4b) of BNOCal/W also showed a weak weight loss in comparison to h-BN
that confirmed the difficulty of assessing a high hydroxylation rate.
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It is well-known that characteristic bands of hydroxyl groups formed on h-BN platelets’
edges can appear in the FTIR spectrum between 2900 and 3500 cm−1 [25,45]. After hydrox-
ylation by ball milling (BNOBM), a weak band around 3455 cm−1 was seen, which was
attributed to the -OH groups of the h-BN sheet edges, as shown in Figure 4a. Additionally,
in Figure 4b, a steady weight loss was also visible between 200 ◦C and 900 ◦C, which
corresponded to the removal of the -OH group. These results confirm that hydroxylation
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using the ball milling method is more efficient than that of calcination. The last hydrox-
ylation method with the sonication of h-BN in nitric acid (BNOHNO

3) also demonstrated
a successful hydroxylation of h-BN. Indeed, the FTIR showed the clear appearance of
bands around 2900 cm−1 for the ball milling treatment characteristics of the -OH groups.
These signals were more intense, which agreed with the TGA results. Indeed, the weight
loss was significantly higher for BNOHNO3, with a value of about 1% loss up to 500 ◦C.
Moreover, there were two stages of thermal degradation in the TGA for BNOHNO3: the
first one started around 200 ◦C and was probably due to edge-hydroxylation, whereas the
second one (400 ◦C) was due to in-plane hydroxylation [65].

To conclude, the TGA and FTIR measurements confirmed the efficiency of the hydrox-
ylation of h-BN for the ball milling and nitric acid methods. Even if the quantification was
difficult based only on FTIR and TGA, the best results were obtained using the nitric acid
treatment coupled with sonication. The calcination method showed the lowest weight loss,
but it held the simplest procedure to be performed. Moreover, this method treated a larger
quantity of material without using solvent when compared with other methods.

3.1.1. Stability of the Suspensions of Hydroxylated h-BN in Water

The stability of the suspensions of solid particles in a liquid media is mainly governed
by these parameters: the density of each phase, viscosity of the liquid, temperature, particle
size and shape factors, and particle concentration, as well as the particle–liquid interaction
and particle–particle interaction. Suspending solid particles in a liquid is a relevant method
for testing surface treatment modification. Indeed, as the surface treatment affects the
surface chemistry, the particle–liquid and interparticle interactions are modified, resulting
in the slowing down or speeding up of the settling kinetics. Water was chosen by many
authors as the dispersion medium because of sustainability reasons. Most importantly,
depending on the grafted molecules, the high polarity of water makes it possible to in-
teract with polar groups of the grafted part. In the case of boron nitride, several studies
demonstrate the settling variations in water according to the surface modifications [33].

In our study, we aimed to prove the modification of h-BN sheets by the introduction of
hydroxyl groups. The stability of the particles was expected to be longer when the hydroxyl
groups density was higher, stemming from more -OH–water interactions. For this purpose,
sedimentation tests were carried out by taking pictures of low concentrated suspensions
each day for 15 days. As seen in Figure 5a, the raw h-BN started to settle down within the
first day. After 8 days, almost the whole sediment was formed at the bottom of the vial,
and by 15 days, the middle part of the vial became even clearer. Some raw h-BN particles
stayed in suspension even after 15 days in water, which we assumed could be attributed
to the smallest particles. Indeed, the size distribution presented in granulometry results
below of hydroxylated BNO indicates a part of particles whose size was below 1 micron,
for which the gravity force was too weak to fight the thermal agitation kT.

For all the treated h-BN, the sedimentation kinetics was slower, but the difference
between the three treatments was not obvious. Nevertheless, the following trends were
noticed: The sediment height was much thinner than that of h-BN, and the middle part of
the vials was more opaque than that of the h-BN one, even after 15 days. The multiple light
scattering experiments (next section) were performed to go further into the characterization
of the stability of suspension.

Boron nitride hydroxylated by sonication in nitric acidic (BNOHNO3) showed the
thinnest sediment at the bottom of the vial: the particles were more stacked, which could
indicate that the interparticle interactions were weak or at short range. In the case of
BNOCal/W, a supernatant phase was present, stemming from the capillary bridges formed
between the hydrophobic particles entrapped in air bubbles. This phenomenon is generally
related to hydrophobic particles, which have more affinity with air than water.
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The better stability of the treated particles compared with that of raw h-BN was
explained by the hydroxyl groups formed at the edge of the h-BN sheets. The second
hypothesis was a possible exfoliation or otherwise breakage of the primary particles of
h-BN sheets during the treatments, specifically during the ball milling process [38]. These
particles could be more stable in water suspension.

The Turbiscan Stability Index (TSI) is a parameter used to characterize the global
stability of suspensions. Its calculation is based on an integrated algorithm that sums up
the evolution of transmitted or backscattered light at every position measured (h), based
on a scan-to-scan difference, over total sample height (H). It investigates the stability of
suspensions containing the h-BN particles in water by the evaluation of their sedimentation
kinetics. Figure 6 shows the evolution of the global TSI for the different h-BN samples in
water. During the first minutes, the BNOHNO3 particles destabilized very rapidly compared
with the other samples. Over time, all the hydroxylated samples exhibited a TSI curve
below the one of pure h-BN, which corresponded to a better stability in water than that of
raw h-BN. This proved an evolution of the affinity of the h-BN particles with water after the
use of the three hydroxylation methods. After more time, the BNOHNO3 particles seemed
to be slightly more stable than the calcinated and ball-milled particles. More insight on
the stability of water suspensions by Turbiscan is shown in Figure S1 of Supplementary
Materials. This result agrees with the TGA and FTIR results. Indeed, BNOHNO3 showed
the highest weight loss in the TGA and the highest intensity for the OH band in FTIR.
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3.1.2. Hydroxylated h-BN Particle Size Measurements

The microstructure of h-BN and hydroxylated BNO particles was observed using
SEM analysis (Figure 7), and their particle diameters were measured to study the effect
of hydroxylation using the three methods on the size distribution and agglomeration.
Upon the initial observation of the SEM images, we noticed a relative agglomeration for
calcinated particles, as well as some type of wear in the edges of some sheets (Figure 7b).
Ball-milled particles demonstrated the most changes in particle structure, where we noticed
different sizes with especially smaller particles (Figure 7c); this was the result of the ball
milling cleavage of h-BN platelets. One other thing we noticed was the wear of the platelets’
edges, where it seemed that ball milling also resulted in some damage on the platelets’
structure, especially on the edges. Sonicated h-BN demonstrated a more similar structure
or distribution than the original h-BN particles.

To evaluate the size of the h-BN particles, we measured from these SEM images the
diameters of 100 platelets for each sample (Figure 8). Most particles of h-BN were in the
range of 0.1 to 0.5 µm, and a small number of platelets had a diameter greater than 1 µm.
As expected, there was a high difference between the d0.5 given by the supplier, obtained
by laser light scattering in ethanol (2–6 µm), and the sizes obtained here by SEM. The
calcinated samples showed fewer particles of 0.1 µm and more particles between 0.2 and
0.6 µm. Ball milling demonstrated the biggest reduction in size, where more than half of
the particles measured showed a diameter less than 0.2 µm; the second most noticeable
diameter was 0.4 µm. The HNO3 treatment oddly displayed smaller particles at 0.3–0.5 µm
than did the h-BN sample.
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To further study the overall h-BN particle size distribution and to explain the sedimen-
tation observations, we performed particle size measurements using laser granulometry.
The results in Figure 9 display the particle distribution associated with the volume occupied
by the particles. Hence, the biggest particles tended to increase the final mean volume
diameter, explaining the difference between the diameter reported in Figure 9 and the
diameter reported in Figure 8. The h-BN particles demonstrated a single peak with a
general volume diameter of 15 µm, while the calcinated BNOCal/W particles displayed one
peak with a bigger average size of 17.83 µm, which could be the result of the moderate
agglomeration of particles after thermal treatment and washing. This agglomeration was
also noticed in some SEM images. The h-BN sonicated in HNO3 showed an average volume
size of 10.68 µm. The BNOBM showed a different behavior, with three peaks centered on
the diameter values at 0.25 µm, 1.41 µm, and 4.65 µm. This confirmed the formation of
many small fractions upon ball milling. Further analyses on size distribution are provided
in the Supplementary Materials Figures S2 and S3.
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3.2. Grafting of Calcinated BNOCal/W with Four Different Silane-Grafting Agents

As a reminder, calcination, ball milling, and nitric acid treatments are efficient methods
of introducing -OH groups onto h-BN sheets. We attempted to modify the surface chemistry
of h-BN sheets by grafting silane agents from these -OH groups. Next, we present our study
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of the grafting of the particles obtained by calcination. Indeed, the calcination procedure
combined the simplicity of the hydroxylation method and the satisfaction of the hydroxyla-
tion rate. Grafting ball milled h-BN particles was also realized and is demonstrated in the
Supplementary Materials part (see Figure S6). The silane grafting was successful for both
hydroxylation methods: the ball milling and calcination.

Four different silane agents were grafted on hydroxylated BNOCal/W particles using
the same protocol detailed in the experimental section. The silane-grafting agents (Si-C18,
Si-NH2, Si-PMMA, and Si-PS) were chosen to have different affinities with the polymer
matrices. Si-C18 and Si-NH2 are classical silane agents used to modify particles in order to
improve their affinity with polyolefins and polar polymers, respectively. Si-PMMA and
Si-PS are copolymers previously synthesized in our lab. When grafted on particles such
as h-BN, they can improve their affinity with PMMA and PS polymers, respectively. This
type of graft can target the localization of Si-PMMA-grafted and Si-PS-grafted BNOCal/W

in PMMA and PS polymers when they are blended with other matrices such as polyamide.
The four grafting procedures proved to be successful on BNOCal/W. The presence of the
four grafting agents on BNOCal/W particles was confirmed by TGA, FTIR, and py-GC/MS,
as well as by sedimentation tests. The FTIR analyses are presented in Figure 10. Bands
corresponding to the CH2 stretching groups were present in the zone between 2800 and
3000 cm−1 for all grafted samples. BNOCal/W/Si-PS also showed a band at 699 cm−1 that
corresponded to the CH-bending groups of monosubstituted aromatic groups of styrene
units, while the BNOCal/W/Si-PMMA spectrum showed a peak band at 1734 cm−1 that
corresponded to the C=O groups of the methacrylate units.
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In the TGA thermograms of the modified samples (Figure 11a), a significant weight
loss was noted for the BNOCal/W grafted with the four grafting agents in comparison to the
BNOCal/W itself. The weight loss was mostly centered around 350–450 ◦C, which was the
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expected degradation temperature for the organic molecules and macromolecules grafted
on the BNOCal/W particles. The grafting with the Si-NH2 groups exhibited the lowest
weight loss with 1.8 wt%, which was in accordance with the FTIR analysis (Figure 10) that
showed the weakest change in relation to the BNOCal/W spectrum. On the contrary, the
grafting of Si-PS showed the highest weight loss of around 3 wt% for BNOCal/W/Si-PS. It
is noteworthy that the weight loss measured by the TGA was dependent on the molecular
weight and the grafting rate of the silane.
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The stability of the grafted h-BN particles was followed by sedimentation in water
(Figure 5b). Whatever the nature of the grafted chains, a supernatant is visible in Figure 5b
from the beginning of the observations. This upper layer looked thicker for BNO-C18 and
BNO-NH2. After 8 days, the sedimentation looked almost stabilized for all the samples.
The clearest suspension was obtained for BNO-NH2 but with large particles in suspension
in a very clear liquid media. For the other samples, all the suspensions were opaque in
the middle of the vial; the most opaque was the BNO-PMMA. As seen in Figure 5b, the
sediment layer was thicker for raw h-BN, followed by BNO-NH2. Since the settling kinetics
was a balance of several phenomena, a visual observation was not sufficient to confirm
the particles–water affinity. Multiple light scattering was used to follow the evolution of
the transmitted and backscattered light throughout the samples. The curves are shown in
Figure S4 of Supplementary Materials. All the specimens showed similar trends, with a
peak of transmitted light appearing at the top of the vial (h-BN, BNO-PMMA, BNO-PS)
and at the center (BNO-C18). The backscattered light curve represented the opacity of
the sample. The evolution of backscattered light was quite regular with time for h-BN,
BNO-PMMA, and BNO-PS, indicating a continuous settling kinetics. On the contrary, the
distribution of the particles was not homogeneous along the vial for BNO-C18; the particles
were located in the lowest part of the vial. This was explained by the fast sedimentation
of BNO-C18. In the lowest part, where the particle concentration was higher than that of
the other specimens, the evolution was slow. Lastly, the evolution of backscattered light



Nanomaterials 2022, 12, 2735 16 of 25

for BNO-NH2 was very fast in the first 10 min, with a large amplitude motion of particles.
There was almost no change with time. It is worth noting that a supernatant was observed
in the upper part for all these specimens, even if its thickness could not be measured when
there was no change in that part of the vial. Due to the combination of several phenomena,
the stability index (TSI) is preferred to compare the stability of the samples.

The stability index in Figure 11b indicated a very fast destabilization kinetics for BNO-
NH2 during the first 400 min, and then its evolution was slower. BNO-PMMA and BNO-PS
settled quite fast the first 100 min, and then the same slope was measured, indicating a
similar trend for both. Only the BNO-C18 followed a regular increase from the beginning.
According to TSI, the stability classification at 1400 min was as follows: BNO-NH2 < BNO
< BNO-PMMA < BNO-PS < BNO-C18, with BNO-C18 being the most stable. Additional
information can be seen in Figure S4.

Additional suspensions in toluene were prepared to assess the chemical change in-
duced by the various grafting in a nonpolar solvent. The polarity of toluene was 0.1 relative
to 1 for water. The data are presented in Figure S5. The TSI of suspensions in toluene
is shown in Figure 11c. The destabilization was very fast for the three studied samples,
and the evolution was weak after 400 min, contrary to the suspensions in water for which
changes were visible after 1400 min. Since toluene is less polar than water, the particles with
polar groups had less affinity with toluene, and they migrated faster to the bottom of the
vial. Accordingly, the BNO-PMMA were the most stable particles in toluene. When com-
paring BNO-PS to h-BN particles, BNO-PS had less affinity with toluene than non-grafted
h-BN, showing that BNO-PS particles are more hydrophilic than raw particles. Regardless
of the treatment, the difference in settling kinetics proved that the boron nitride particles
were successfully grafted. This grafting step was crucial to tune the surface tension of the
particles in order to control their further localization in the polymer blends.

3.3. Dispersion of h-BN Particles in PMMA/PA6 Polymer Blends

Further applications of this study aimed to obtain highly thermally conductive poly-
meric materials with boron nitride particles. The idea was to use the co-continuous mor-
phology of an immiscible polymer blend to control the localization of the boron nitride
particles. The latter were expected to be situated into one phase or at the interface of
the co-continuous morphology. This concept of double percolation was abundantly de-
scribed in the literature with carbon-based materials (carbon black, graphene, and carbon
nanotubes) [66]. To this day, only a few studies were published about boron nitride local-
ization. Nonetheless, it has already shown promising and interesting results [20,54,59]. By
achieving such particle organization, it is possible to dramatically decrease the percolation
threshold, resulting in lightening materials for the same electrical or thermal conductivity.
Both phenomena result in a percolation threshold created by the conductive particles. In
our case, a PMMA/PA6 polymer blend was chosen because the conditions to obtain a
co-continuous morphology are well-known [67,68].

Before introducing h-BN particles into PMMA/PA6 blends, contact angle measure-
ment was carried out to determine the surface energy of the different components of the
blends. The method is based on the measurement of the contact angle between a liquid
drop and a solid surface by a goniometer. The interfacial tensions of the blend’s compo-
nents are deduced from the contact angles through Young’s theory. Figure 12a,b show
the drop shape pictures on h-BN and BNOCal/W/Si-PMMA flat, thin disks: the two drops
showed a fully different behavior. For the h-BN, an immediate absorption of the water
drop was noticed, and a weak contact angle was registered at first contact between the
water drop and h-BN surface. On the contrary, the boron nitride grafted with polymeric
chains displayed a drastic change in its affinity with the water drop: it became significantly
hydrophobic. In Figure 12b, the water drop made a very high contact angle after coming
into contact with the BNOCal/W/Si-PMMA surface and maintained the same shape after
several minutes. This surface behavior shows the silane grafting from the localization of
boron nitride particles can be controlled in PMMA/PA6 polymer blends.



Nanomaterials 2022, 12, 2735 17 of 25
Nanomaterials 2022, 12, x 18 of 26 
 

 

 

Figure 12. Water drop shape at the surface of (a) h-BN and (b) BNOCal/W/Si-PMMA. 

Wetting parameter calculations: According to thermodynamics law, interfacial ten-

sions between each component of a system containing PMMA, PA6, and h-BN govern the 

localization of h-BN fillers in the immiscible polymer blend. The determination of the wet-

ting parameter (ꞶAB) is possible using the interfacial tensions between the components 

(Equation (1)) [69]. 

 Ꞷ�� =
γ�� − γ��

γ��

 (1)

γij = γi + γj − 
���

���
�

��
����

� −
���

�
��

�

�
�
�

��
�
� (2)

γij =  γi +  γj − 2 �γ�
�γ�

�–  2 �γ�
�

γ�
�
 (3)

Interfacial tensions γij between polymer (A), polymer (B), and solid filler particles (S) 

could be calculated using two different approaches depending on the type of component; 

the harmonic mean equation (Equation (2)) or geometric mean equation (Equation (3)) 

[70,71], where γ�
�and γ�

�
 are dispersive and polar contributions, respectively, to the total 

surface tension of the component γij, were calculated using Owens–Wendt’s and Wu’s 

methods. The wetting parameter of a solid particle (S) into a binary immiscible polymer 

blend (A and B) expresses the solid filler’s most favorable localization in order to minimize 

the blend’s free interfacial energy. As a result, the final localization of the fillers could be 

predicted based on the value of (ꞶAB), as demonstrated in Table 2 [72]. 

Table 2. Localization of particle (S) depending on wetting parameter. 

Wetting Parameter Value Localization of Particle (S) 

ωAB < −1 Polymer B 

−1< ωAB < 1 Interface 

ωAB > 1 Polymer A 

Table 3 summarizes the global surface tension values as well as the dispersive and 

polar contributions for each component, calculated from contact angles measured by the 

goniometer. 

Table 3. Surface tension values of components of the blends. 

Material �i (mN/m) ��
�(mN/m) �

�
�

(mN/m) 

h-BN 70.43 48.17 22.26 

BNOCal/W/Si-PMMA 49.53 45.15 4.38 

Figure 12. Water drop shape at the surface of (a) h-BN and (b) BNOCal/W/Si-PMMA.

Wetting parameter calculations: According to thermodynamics law, interfacial tensions
between each component of a system containing PMMA, PA6, and h-BN govern the
localization of h-BN fillers in the immiscible polymer blend. The determination of the
wetting parameter (řAB) is possible using the interfacial tensions between the components
(Equation (1)) [69].
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Interfacial tensions γij between polymer (A), polymer (B), and solid filler particles (S)
could be calculated using two different approaches depending on the type of component; the
harmonic mean equation (Equation (2)) or geometric mean equation (Equation (3)) [70,71],
where γd

i and γ
p
i are dispersive and polar contributions, respectively, to the total surface

tension of the component γij, were calculated using Owens–Wendt’s and Wu’s methods.
The wetting parameter of a solid particle (S) into a binary immiscible polymer blend (A and
B) expresses the solid filler’s most favorable localization in order to minimize the blend’s
free interfacial energy. As a result, the final localization of the fillers could be predicted
based on the value of (řAB), as demonstrated in Table 2 [72].

Table 2. Localization of particle (S) depending on wetting parameter.

Wetting Parameter Value Localization of Particle (S)

ωAB < −1 Polymer B
−1<ωAB < 1 Interface
ωAB > 1 Polymer A

Table 3 summarizes the global surface tension values as well as the dispersive and
polar contributions for each component, calculated from contact angles measured by
the goniometer.
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Table 3. Surface tension values of components of the blends.

Material γi(mN/m) γd
i (mN/m) γ

p
i (mN/m)

h-BN 70.43 48.17 22.26
BNOCal/W/Si-

PMMA
49.53 45.15 4.38

PMMA 44.38 39.46 4.92
PA6 43.44 35.42 8.03

Table 4 shows the interfacial tensions as well as the wetting parameters calculated
using the surface tensions reported in Table 3. The harmonic mean equation was used
to measure the interfacial tension between polymers (PMMA/PA6), while the geomet-
ric mean equation was used for the polymer/filler interfacial tension. The results in
Table 4 indicate that h-BN particles should be dispersed only in PA6 phase before grafting,
while BNOCal/W/Si-PMMA particles should be dispersed after grafting at the interface of
PMMA/PA6 blend. However, we should note that these predictions remain theoretical and
must be considered with caution due to the uncertainties concerning the surface energies
of both polymers and boron nitride particles.

Table 4. Interfacial tensions and wetting parameter.

Material γBN-PMMA
(mN/m)

γBN-PA6
(mN/m)

γPMMA-PA6
(mN/m)

γBNO
Cal/W

/Si-PMMA-PMMA
(mN/m)

γBNO
Cal/W

/Si-PMMA-PA6
(mN/m)

řAB before
Grafting

řAB after
Grafting

Harmonic
mean

equation
- - 0.96 - - −2.25 0.93

Geometric
mean

equation
6.71 4.55 - 0.23 1.13

Prediction - - - - - PA6 Interface

3.3.1. Microstructure of PMMA/PA6/h-BN Blends

PMMA/PA6 blends were prepared by adding 8 wt% of boron nitride fillers to a
50/50 polymer blend. The various blends are presented in Table 5.

Table 5. Samples composition.

Sample Name Filler Type Filler (wt%) PMMA (wt%) PA6 (wt%)

PMMA-PA6-h-BN h-BN 8 46 46
PMMA-PA6-BNOCal/W/Si-PMMA BNOCal/W/Si-PMMA 8 46 46

(PMMA/BN)-PA6 h-BN 8 46 46
(PMMA/BNOCal/W/Si-PMMA)-PA6 BNOCal/W/Si-PMMA 8 46 46

All the samples exhibited a co-continuous morphology in Figure 13a,b when we
showed SEM images of a polished cross section of the samples. The blend containing
non-treated boron nitride was formed by thin strongly elongated stripes characterized by a
weak interfacial adhesion. As predicted by the wetting parameter, the h-BN particles were
dispersed in PA6 phase. The blend with the PMMA chain grafted h-BN particles showed a
different morphology with a coarser phase structure. Still, despite their functionalization,
BNOCal/W/Si-PMMA were located in the PA6 phase in Figure 13b. Even though the
wetting parameter above 1 predicted their affinity with the PMMA phase, the modified
h-BN particles were not hydrophobic enough to go into the PMMA phase. This could
be explained by the value of the interfacial tension between PA6 and PMMA, which was
rather low.
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Figure 13. SEM images of PMMA-PA6-h-BN 8 wt% (left column) and PMMA-PA6-BNOCal/W/Si-
PMMA 8 wt% (right column). Parallel cross-polished sections (a,b) and perpendicular cryo-fractured
surfaces after PMMA solvent extraction (c–f).

Selective solvent extraction was also used to examine the boron nitride particles in the
polymer blend. The PMMA was dissolved, and during preparation, the solution containing
the solubilized PMMA phase remained transparent. This observation confirmed that the
boron nitride was fully located in the polyamide phase. The SEM image in Figure 13c
clearly shows the h-BN agglomerates within the PA6 phase. When looking more closely at
Figure 13e, one can see these 5 µm diameter agglomerates are composed of boron nitride
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layers. In contrast, in Figure 13d,f, such agglomerates are not visible, confirming that the
BNOCal/W/Si-PMMA-grafted particles were better dispersed in comparison to those of the
non-grafted h-BN.

As a further attempt to localize the boron nitride particles at the interface of PMMA/PA6,
the grafted BNOcal/W/Si-PMMA were mixed with PMMA by mixing the solvent in toluene.
Next, the PMMA/BNOcal/W/Si-PMMA films were mixed with PA6 in a microcompounder.
The SEM images in Figure 14a,c show that non-grafted h-BN particles migrated from PMMA
phase to PA6 after melt mixing, while a great number (or the majority) of PMMA-grafted
particles were localized at the interface of the two phases (Figure 14b,d).
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Figure 14. SEM images of (PMMA+h-BN)-PA6 with 8 wt% of h-BN (left column) and (PMMA
+ BNOCal/W/Si-PMMA)-PA6 with 8 wt% of BNOCal/W/Si-PMMA (right column). Parallel cross-
polished sections (a,c) and perpendicular cryo-fractured surfaces (b,d).

3.3.2. Thermal Diffusivity Measurements

Some thermal diffusivity experiments were conducted on disks of pure h-BN, PMMA/PA6,
PMMA/PA6/BN, and PMMA/PA6/BNOCal/W/Si-PMMA (Figure 15). It is noteworthy
that this apparatus in most cases can only measure the through-plane thermal diffusivity
for low thermal conductive materials such as polymers. Through-plane thermal diffusivity
is expected to be lower than in-plane diffusivity because of the processing method. Indeed,
the platelets are oriented in a planar direction due to shearing. The h-BN thermal diffusivity
was found to be 0.512 mm2/s, and the PMMA/PA6 thermal diffusivity was 0.125 mm2/s.
After introducing 8 wt% of h-BN, the thermal diffusivity reached a higher value of 0.141
mm2/s. However, there was no improvement when the h-BN particles were grafted with
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PMMA chains, which could be due to the extremely low percentage of fillers. Hence, the
grafting could not show its effect on the thermal diffusivity of the ternary nanocomposite.
An increasing of grafted h-BN fillers was made, amounting to 25 wt%, and the thermal
diffusivity was improved to 0.211 mm2/s, almost double that of PMMA/PA6.
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In spite of this improvement, further studies are in progress to ascertain a percolation
of h-BN fillers localized at the interface by alternating multiple parameters, such as the
proportion of the components in the composite, molecular weights of polymers, and
sequence of mixing.

4. Conclusions

In conclusion, we compared different ways to hydroxylate h-BN platelets: ball milling
led to particle breakage, whereas calcination promoted the formation of agglomerates
in water. HNO3 leads to the highest hydroxylated rate. All hydroxylated h-BN were
more stable in water than in h-BN, demonstrating a low but efficient hydroxylation. The
grafting of the Si-C18 molecules onto hydroxylated h-BN was proven by TGA, FTIR, and
Py-GC/MS. Various silane agents were successfully grafted onto the hydroxylated h-BN.
The evolution of surface chemistry according to the nature of silane agents was confirmed
by the surface tension measurement. We then tried to selectively disperse h-BN particles
at the interface of a low interfacial tension blend (50/50 PMMA/PA6). The calculation of
wetting parameter based on the surface tension measurement by liquid drop showed that
the h-BN would disperse in the PA6 phase. The grafting of poly (methylemethacrylate-co-
propyltriethoxysilane) 95/5% mol (named Si-PMMA) onto calcinated h-BN was successful,
and the obtained PMMA-grafted h-BN was predicted to be localized at the interface of the
PMMA/PA6 blend. This BNOCal/W/Si-PMMA combined with an adequate sequence of
mixing was proven to orientate the h-BN platelets at the interface of the co-continuous
PMMA/PA6 blend. Despite the low thermal diffusivity of the blends with grafted boron
nitride, these first results open the way to new, interesting studies investigating the influence
of the interfacial localization of h-BN into a blend on the thermal conductivity.
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results for h-BN and silane-grafted h-BN in water; Figure S5: Multiple light scattering results for
h-BN and silane-grafted h-BN in toluene; Figure S6: Grafting of BNOBM with Si-C18 (a) FTIR spectra,
(b) TGA graph, and (c) Py-GC/MS chromatograms of h-BN and BNOBM/Si-C18. Reference [73] is
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