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Abstract—Due to the variety of sensors and portability of
mobile phones, an increasing amount of mobile apps are released
for the purpose of health monitoring. To design a new health
monitoring app, a conventional approach is to define a goal
model with the intervention of stakeholders. As there are a large
number of apps in this domain, many of them have similar
features, which can be exploited to reduce the time consumption
of requirements elicitation, improve their quality and help the
requirements prioritization. In this paper, we propose a novel
requirements engineering approach by analysing similar apps.
In this approach, we identify similar apps and analyze their
descriptions, user reviews, Android APK and source code for the
construction and enrichment of a Domain Feature Model. This
model will be used as a support for the requirements engineers
in different phases of requirements engineering.

I. INTRODUCTION

The proportion of senior citizens in the population is grow-

ing as people worldwide are living longer. The effects of aging

are significant in the area of functional independence. From

a motor point of view, aging is active on all of the functions

on which stabilization, locomotion and grip capacities depend.

Digital devices are a privileged means of evaluating behavior

and proposing adapted and individualized solutions [1]. For

the purpose of health monitoring of seniors, we are going to

develop a system including a mobile app. It is not easy to

develop such an app from scratch, while similar apps can be a

good reference for the requirements engineers. Requirements

of similar apps can be extracted and reused for the production

of a new app. However, the System Requirements Specifica-

tions (SRS) of these apps are usually not publicly available due

to the organizational privacy policies. The external researchers

can hardly access and explore these documents. As alternative,

we identify similar apps from app stores and GitHub, and

analyse the descriptions, user reviews, Android APK and the

source code to support the requirements engineering of an app.

Analysing similar apps can help the requirements engineers

gain a domain knowledge, identify common features, bugs and

usage scenarios, know the users’ reaction to existing features

[2] and conduct a competitor analysis [3].

In this paper, we define similar apps as apps with similar

features. The similar apps can be found at app stores and

GitHub. Online app stores, like Google Play, Apple Store,

provide useful data resource for analysing product features:

for one thing, app descriptions introduce the main features of

the users; for another, the app user reviews show the reaction

of user on existing features. We will evaluate our approach

using Google Play, as there were 3.48 million apps in 2021,

which makes Google Play the app store with biggest number

of available apps1. GitHub is another source for identifying

similar products, as of May 2022, GitHub reported over 401K

open source repositories related to iOS2 and 1.29 million

repositories that relate to Android3. The code and documents

on GitHub is another resource for requirements reuse.

Faced with so many apps, it is difficult for the requirements

engineers to find useful information. To illustrate the problem,

consider the following scenario. Jay is a requirements engineer

of GoldenAge, a mobile app for health monitoring of seniors.

He wants to use a prototype to conduct the discussion with

stakeholders, but the construction of such a prototype is

time consuming. An alternative is to use similar apps as

prototypes, the features of these apps can inspire more ideas

while brainstorming. The user reviews of these similar apps

can also help the requirements prioritization. In this process,

he encounters at least four difficulties:

1) How to find the similar apps from millions of apps?

The app stores and GitHub provide search function,

and most app stores have categorized the apps, but it

is hard to get similar apps through search engine and

categorization.

2) How to extract features from these apps? The manual

extraction of features from the app descriptions is te-

dious. Is it possible to extract also the User Interface

(UI) and source code of corresponding features?

3) How to get user reactions for existing features? Due to

the large number of user reviews, manual analysis can

be hardly finished in an acceptable time.

1https://www.statista.com/statistics/276623/number-of-apps-available-in-
leading-app-stores/

2https://github.com/search?q=ios
3https://github.com/search?q=android



Fig. 1. Excerpt of the Goal Model of GoldenAge

4) How to present the extracted information? The ex-

tracted information can be chaotic, and difficult to com-

prehend by human mind. Jay wants them to be readable

to facilitate his communication with team members.

In this paper, we propose an approach to analyze the data

(app descriptions, UI, user reviews and source code) in app

stores and GitHub for supporting the design of Jay’s product.

Data extracted from similar apps are formalized into a Domain

Feature Model (DFM). The constructed DFM can be served for

the analysis of strengths and drawbacks of existing features in

similar apps, inspiration of new ideas, requirements validation

and requirements prioritization. Matching the DFM with a goal

model will help us identify our original features.

This paper is structured as follows: Section II presents the

target app; Section III describes our proposed approach in

detail; Section IV presents the related work and finally, a

conclusion is provided at the end of paper.

II. OUR TARGET APP

As in a conventional approach of requirements engineering,

the first step is collecting, examining and synthesising the

information related to the system for background study. Then

the requirements engineers conduct interviews with selected

stakeholders, which include end users, clients, managers, etc.

[4]. In this phase, brainstorming is used for exploiting new

ideas and prototypes are used to deal with uncertainty [5].

Then different models are constructed for the abstract descrip-

tions of the elicited requirements. The object model describes

what constitutes the environment and the system-to-be, the

operation model presents how the system operates and the

goal model focuses on why the system is wanted. Finally, the

requirements engineers write the SRS based on these models

and improve the SRS according to the stakeholders’ feedback.

We consider the development of an application for the

health monitoring of seniors by gerontologists in a controlled

environment. For the first requirements elicitation and require-

ments analysis phase, we still apply the conventional method

to develop a goal model. A goal is an objective that the system-

to-be should achieve. A goal model is a graph, whose nodes

are goals. It is built by asking ‘for what purpose?’ and ‘in
what way?’ from a root node [6]. For our app, we use the

KAOS method [7], supported by the objectiver tool, for the

construction of the goal model.

The Fig. 1 shows an extract of our goal model. Note that

in the diagram, goals only appear with their title, but a more

precise description is associated (definition, category, pattern).

The root goal of this model is to collect seniors’ activity data.

One of the activities is walking. The obstacles of acquiring

walking exercise data are the injury of the subject, bad climatic

conditions and interruption of the program. To acquire walking

exercise data, we suppose that the subject does not carry any

bag while walking, has not performed intensive activity and

has not eaten too much (these two assumptions are more

precisely defined in the goal model, indicating for instance that

last meal has been taken more than two hours ago, and that no

activity during more than 1h30 at 80% of intensity has been

performed in the last 24h), because these actions would impact

the performance during walking exercise. Then, the goal of

acquiring walking data is refined into four sub-goals, ensuring

data quality, measuring physical data, calculating exercise

data and measuring physiological data. The data quality is

declinated into accuracy, precision and sensitivity goals, and

it assumes that all subjects use the same model of devices.



Fig. 2. Overview of our proposed approach

Meanwhile, for the three other sub-goals, different data types

and the devices/specialists that collect these data are specified.

In the health and aging domain, it is appropriate to enrich

this approach by analysing existing applications for the follow-

ing reasons: there are more than 120 thousand health & fitness

apps in Google Play4, which is a rich source for mining health

related app features; the seniors are more fragile, an analysis

of user reviews can reduce the potential risk (e.g. the risk of

physical exercises) of health related apps; seniors may have

difficulties with new technologies, hence analysing the reviews

is a way for enhancing non functional requirements. The SRS

obtained in the conventional approach will be used as the input

of our proposed approach for the identification of similar apps.

III. OVERVIEW OF THE PROPOSED APPROACH

The goal of our research is to develop a new paradigm of

data driven requirements engineering for health aging. In our

approach, requirements engineers can easily construct a DFM

with our provided tool, and apply the model for requirements

elicitation, requirements analysis and requirements validation.

As shown in Fig. 2, it contains five steps: I. initialization,

which corresponds to the conventional approach using KAOS

presented above, A. identifying similar apps, B. constructing

DFM, C. enriching DFM and D. integrating into requirements

engineering.

4https://www.statista.com/statistics/279286/google-play-android-app-
categories/

A. Identifying similar apps

We want to find the apps with similar features of our

target app. As the goal is to develop an app for the health

monitoring of seniors, one source of similar apps is the apps

that are categorized as “Health & Fitness” by Google Play or

the projects that contain the keyword “Health monitoring” on

GitHub. However, the apps that belong to the same category

and contain same keywords may be totally different. For

example, the search results for the keyword “walk” on Google

Play include Walk with Map My Walk5 and Walking6. These

two apps are both categorized as “Health & Fitness” by

Google Play, while the former app is for fitness training and

the latter app is used to control walking machines.

As the categorization and the search engine in app stores and

GitHub do not exhibit a good quality in finding similar apps,

we use topic modeling [8]. In Natural Language Processing

(NLP), a topic model is a statistical model used to discover

the abstract “topics” in a series of documents. Latent Dirichlet

Allocation (LDA) is a topic model, which can give the topics

of each document in the document set in the form of a

probability distribution. A topic is identified as a set of terms

that describe a theme. The result of running LDA on a set of

documents is the probability of relevance of each document

to each generated topic and the distribution of each topic

over a set of terms in the corpus. Many researchers used this

5https://play.google.com/store/apps/details?id=com.mapmywalk.android2
6https://play.google.com/store/apps/details?id=com.walking.ble



Fig. 3. Example of a Domain Feature Model

algorithm to generate the topic distribution of app descriptions

and measure the similarity between apps [9]–[11].

After background study and interviews with stakeholders,

a first draft of SRS for the app-to-be is written. We thus

apply LDA on the SRS and get the topic distribution. Then

we use LDA on the descriptions of collected apps and get the

topic distribution of each app. Finally, we calculate the cosine

similarity of the topic distribution between our SRS and the

collected app descriptions, the top n apps are considered as

similar apps.

B. Constructing a domain feature model

Our Domain Feature Model (DFM) is a graph that repre-

sents the existing features of similar apps, unlike the feature

framework of Liu et al. [11] which contains only Function

Related Features (FRF), DFM contains two tree structures,

one for the FRF, the other for Non-Function Related Features

(NFRF). The model presents the domain knowledge mined

from the similar apps. An example of DFM is shown in Fig. 3.

As the Non-Functional Requirements (NFR) are common in

different categories of mobile apps, we use the classification

of Jha et al. [12] for the construction of the NFRF tree of

the model. The first level of NFRF tree is a root node, while

the second level contains usability, dependability, performance

and supportability.

The construction of FRF tree comprises two steps: 1) feature

extraction and 2) feature integration.

POS pattern Extracted Features

NOUN NOUN distance tracker
VERB NOUN lose fat
ADJ NOUN indoor workout

TABLE I
EXAMPLES OF POS PATTERNS

2) Feature Integration: The next step is to integrate the

extracted features into the DFM. As shown in Fig. 3, the FRF

tree contains three levels. The first level is a root node. The

second level is the feature level highlighting high level features

built from the top n most frequent noun parts of extracted

features. The third level is a specific level. It is the extension

of the second level obtained by searching features that contain

the second level nouns.

C. Enriching domain feature model

The DFM constructed in the previous step is not very

helpful for the requirements engineers as it includes only the

feature name without any detail. For example, a node of DFM

is “step count”. From this name, we cannot know the details,

the implementation, the UI nor the user preferences of this

feature in different apps. However, it is the backbone leading

the subsequent analysis.

1) App description: The app descriptions often contain

some details about the features. For example, in the description

of app Step Counter — Pedometer, MStep7, the feature “step
count” is described as follows: “This step counter uses the
built-in sensor to count your steps”, “You can pause and start
step counter at any time to save power”. These sentences can

be extracted automatically via keyword based search. Each

node of the third level of DFM tree is used as keyword of

search.

2) User reviews: The user preference towards certain fea-

tures are expressed via the rating and the content of user

reviews. It is an important indicator for requirements prior-

itization. The user reviews can be classified automatically into

several classes [15], including user experience and bug report.
These two classes contain the praise or criticism towards the

app features. As in the analysis of app description, we use

the third level nodes of the DFM tree as keyword to search

feature related sentences from the user experience and bug

7https://play.google.com/store/apps/details?id=pedometer.steptracker.
calorieburner.stepcounter

          
          

        
          
          

          
         

          
          

         
   

          
          

        
          
          

          
         

          
          

         
   

 1) Feature Extraction: This step aims at extracting feature 
related text from the app description. Johann et al. [13] 
proposed the SAFE approach, which contains 18 Part-of- 
Speech (POS) patterns and 5 sentence patterns that denote app 
features. Liu et al. [11] used keyword-based linguistic rules to 
extract features from release text. Wu et al. [14] introduced 
KEFE to identify key features from user reviews. KEFE 
extracts features via a textual pattern-based filter and a deep 
learning classifier.  In our approach,  we use POS patterns to 
extract FRF from the app descriptions. Three examples are 
shown in Table I.



Fig. 4. Example of a node in Enriched Domain Feature Model

report. Then, the feature and the feature related sentences for

each app is mapped. Sentiment analysis is an NLP method, it

can be used to quantify the opinion of the user reviews [16].

The result of running sentiment analysis method to a text is

the polarity and subjectivity. Polarity shows if the text is a

positive of negative statement, while the subjectivity indicates

whether the text is a personal opinion or a factual information.

With the combination of user rating, polarity and subjectivity,

we can calculate the user preference score towards a feature.

3) User interface: Most app features are associated with

UI. The UI of similar apps can inspire the elicitation of new

requirements while brainstorming with stakeholders. Chen et

al. [17] proposed an approach for recommending app features

base on UI comparison. Android app reverse engineering tools,

such as Apktool8, can convert the executable source code to

a human-readable form [18]. For each similar app, we apply

Apktool to extract the UI elements from the Android APK.

Then for each feature, the related UI can be identified by

comparing the UI textual elements and the feature name.

4) Source code: Code reuse is beneficial for code quality,

coding efficiency, and maintenance [19]. GitHub is the biggest

open source platform where we can find many similar apps.

However, we can hardly find apps on GitHub that exactly meet

our needs. To tailor the similar apps on GitHub to our need,

we first need to identify the location in the source code that

corresponds to a specific functionality, which is known as fea-
ture location [20]. The input of feature location is the source

code and the textual description of a feature. Among feature

8https://ibotpeaches.github.io/Apktool/

location techniques, the output of running feature location are

portions of source code at different levels of granularity (files,

classes, methods or functions, and statements).

D. Integrating into requirements engineering
The Enriched Domain Feature Model (EDFM) constructed

in the previous steps can be served in different phases of

requirements engineering. Here are some scenarios for usage:
1) Requirements elicitation: The EDFM contains a rich

domain knowledge, it is a good reference for the background

study. By showing the features of similar apps during brain-

storming, the stakeholders will get inspired.
2) Requirements analysis: With EDFM, we can identify

the strengths and drawbacks of existing features in similar

apps. The EDFM can also be matched with the goal model

of system-to-be, in order to help the requirements engineers

to identify which features are original and which features

are widespread in similar apps but have not been considered

before.
3) Requirements validation: Validating whether natural lan-

guage requirements meet the needs of the stakeholders is often

difficult and error-prone. Prototyping is an effective way for

requirements validation [21]. However, the construction of

prototypes is time consuming and costly. With EDFM, the

requirements engineers can find the feature related UI or code

easily and use them for the discussion with stakeholders.
4) Requirements prioritization: Satisfying all requirements

may be infeasible given budget and schedule constraints, and

as a result, requirements prioritization may become necessary

[4]. Although user feedback does not reflect preferences for

features that do not exist in similar apps, the user preference

score is still an important indicator for the requirements

prioritization.
The SRS updated during these phases will be used again as

the input of similar apps identification.

IV. RELATED WORK

To support the development of mobile apps, many re-

searchers mine various data from similar apps. Liu et al.

[11], [22], [23] mined descriptions and user reviews of similar

apps for background study, support of feature updating and

functions comparison. Jiang et al. [24] proposed SAFER

to recommend new features by inspecting the descriptions

of similar apps. Malik et al. [25] presented a methodology

to aid users and developers to compare the features across

multiple apps by analyzing user reviews. Assi et al. [26]

introduced a review analysis method called FeatCompare,

which identifies high-level features mentioned in user reviews

and creates a comparison table summarizing users’ perceptions

of each identified feature in competing apps. Chen et al. [17]

proposed an approach to recommended app features through

UI comparison of similar apps. The above work proves that

data from app stores can provide valuable information for

requirements elicitation, while other phases of requirements

engineering are paid less attention. Our work analyzes various

data from app stores and GitHub, and apply it throughout the

whole requirements engineering process.



V. CONCLUSION

Mobile devices are widely used for the health monitoring

of seniors, a great number of apps in this domain can be

found in app stores. In this paper, we propose an initial

design of an approach for boosting requirements engineer-

ing by analysing similar apps. In our approach, we identify

similar apps automatically by calculating similarity between

app descriptions and the software requirement specifications

that we wrote for our health monitoring app. Then, a Domain

Feature Model (DFM) containing the features of similar apps

is constructed based on the descriptions. Finally, the DFM

is enriched on four aspects: feature descriptions from app

descriptions; user preference towards features; UI associated

to features; and code snippets corresponding to features. The

enriched DFM can be used in different phases of requirements

elicitation, requirements analysis, requirements validation and

requirements prioritization.

Our future work will be focused on the development of

a tool to support our approach and integrating it into the

requirements engineering process of health monitoring mobile

apps. At the first stage, we work on the construction of DFM

and the integration of user reviews. In our previous work

[27], we proposed a model which classified automatically user

reviews from health monitoring apps into feature request, bug
report, user experience and rating. The main challenge lies in

the automatic determination of relationships between the app

features in the DFM.
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Santos, J. Dos Santos Nolêto, M. Teles de Oliveira Gouveia, and
L. Tolstenko Nogueira, “Technologies that promote health education for
the community elderly: Integrative review,” Revista Latino-Americana
de Enfermagem, vol. 27, 2019.

[2] A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra, and M. Harman, “App
Store Effects on Software Engineering Practices,” IEEE Transactions on
Software Engineering, vol. 47, no. 2, pp. 300–319, 2021.

[3] F. Dalpiaz and M. Parente, “RE-SWOT: From User Feedback to
Requirements via Competitor Analysis,” in Requirements Engineering:
Foundation for Software Quality (E. Knauss and M. Goedicke, eds.),
(Cham), pp. 55–70, Springer International Publishing, 2019.

[4] A. Bennaceur, T. Than Tun, Y. Yu, and B. Nuseibeh, “Require-
ments Engineering,” in Handbook of Software Engineering, pp. 1–44,
springer, ed., 2019.

[5] B. Nuseibeh and S. Easterbrook, “Requirements Engineering: A
Roadmap,” in Proceedings of the Conference on The Future of Software
Engineering, ICSE ’00, (New York, NY, USA), pp. 35–46, Association
for Computing Machinery, 2000.

[6] A. Van Lamsweerde, “Goal-oriented requirements engineering: A guided
tour,” in Proceedings of the IEEE International Conference on Require-
ments Engineering, pp. 249–261, 2001.

[7] A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley, Jan. 2009.

[8] D. Blei, L. Carin, and D. Dunson, “Probabilistic topic models,” IEEE
Signal Processing Magazine, vol. 27, no. 6, pp. 55–65, 2010.

[9] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking App Behavior
against App Descriptions,” in Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, (New York, NY,
USA), pp. 1025–1035, Association for Computing Machinery, 2014.

[10] A. Al-Subaihin, F. Sarro, S. Black, and L. Capra, “Empirical comparison
of text-based mobile apps similarity measurement techniques,” Empiri-
cal Software Engineering, vol. 24, no. 6, pp. 3290–3315, 2019.

[11] H. Liu, Y. Wang, Y. Liu, and S. Gao, “Supporting features updating of
apps by analyzing similar products in App stores,” Information Sciences,
vol. 580, pp. 129–151, 2021.

[12] N. Jha and A. Mahmoud, “Mining non-functional requirements from
App store reviews,” Empirical Software Engineering, vol. 24, no. 6,
pp. 3659–3695, 2019.

[13] T. Johann, C. Stanik, A. M. Alizadeh B., and W. Maalej, “SAFE: A
Simple Approach for Feature Extraction from App Descriptions and App
Reviews,” in 2017 IEEE 25th International Requirements Engineering
Conference (RE), pp. 21–30, 2017.

[14] H. Wu, W. Deng, X. Niu, and C. Nie, “Identifying key features from
app user reviews,” Proceedings - International Conference on Software
Engineering, pp. 922–932, 2021.
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