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Abstract: As a potential replacement for petroleum-based plastics, biodegradable bio-based polymers
such as poly(lactic acid) (PLA) have received much attention in recent years. PLA is a biodegradable
polymer with major applications in packaging and medicine. Unfortunately, PLA is less flexible and
has less impact resistance than petroleum-based plastics. To improve the mechanical properties of
PLA, PLA-based blends are very often used, but the outcome does not meet expectations because
of the non-compatibility of the polymer blends. From a chemical point of view, the use of graft
copolymers as a compatibilizer with a PLA backbone bearing side chains is an interesting option
for improving the compatibility of these blends, which remains challenging. This review article
reports on the various graft copolymers based on a PLA backbone and their syntheses following
two chemical strategies: the synthesis and polymerization of modified lactide or direct chemical
post-polymerization modification of PLA. The main applications of these PLA graft copolymers in
the environmental and biomedical fields are presented.

Keywords: poly(lactic acid); chemical modification; graft copolymers; compatibilization; biomedical
and environmental applications

1. Introduction

Today, bioplastics, compounds derived from sustainable sources, are one of the best
alternatives to petroleum-based plastics. They are natural or synthetic biopolymers, and
include poly(lactic acid) (PLA), which is of great commercial interest due to various factors.
First, PLA is produced by polymerizing lactide, a derivative of lactic acid industrially
produced from plants, making it a biosourced thermoplastic. As such, extrusion, molding,
injection molding, thermoforming, and fiber spinning are largely used to process PLA for
many industrial applications. Lastly, it forms an intrinsically biocompatible system in a
living environment and is biodegradable, with a tunable degradability as a function of its
molecular weight and tacticity, which makes it suitable for many applications in biomedical
and environmental fields such as tissue engineering, drug delivery, “green” packaging,
textiles, etc. [1,2].

Despite these clear advantages, PLA suffers from some limitations. From an econom-
ical point of view, it remains more expensive than many non-biodegradable commodity
polymers. Moreover, regarding its thermomechanical properties, it has a low toughness
and poor impact strength. To overcome these limitations, polymer blends can provide the
desired properties at a low cost through simple physical processes, rather than chemical
approaches such as copolymerization reactions. Polymer blends and composites [3], as
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well as plasticizers [4], are used to improve the mechanical properties of polymers. The
melt blending of dissimilar polymers is a classic method for obtaining new enhanced
properties. Unfortunately, PLA-based blends exhibit an insufficient performance because
the blended polymers are often thermodynamically immiscible, resulting in a poor compat-
ibility between the blended components [5]. This phenomenon is particularly important in
high-molecular-weight polymers commonly found in the field of orthopedics.

In order to circumvent the compatibility problem, compatibilizers have been pro-
posed [6]. Compatibilizers are used to improve the properties of immiscible or partially
miscible polymer blends. They improve the adhesion between the blended polymers. Com-
patibilizers can be “reactive” (they chemically react with at least one of the two blended
polymers) or “non-reactive” (they have secondary interactions with both polymers). More
generally, these PLA compatibilizers may consist of a copolymer comprising the PLA and
the polymer to be compatibilized. PLA-based copolymers can be of a “block” or “graft”
architecture. It is necessary to have at least one reactive function on the PLA to obtain
these blocks or graft copolymers. However, PLA only has reactive functions at its chain
ends, typically alcohol and carboxylic acid functions. Therefore, it is quite easy to pre-
pare block copolymers (di-, tri- or multi-blocks) from PLA. The most common PLA-based
block copolymers are probably the amphiphilic PLA-b-Poly(ethylene glycol) (PEG) di-block
copolymers and PLA-b-PEG-b-PLA triblock copolymers, in which the hydrophobicity of
PLA is decreased and its toughness is improved [7]. There are many review articles on
the formation of PLA-based block copolymers and their applications, especially in the
biomedical field [7–9].

The reactive functions at the chain ends of PLA can also react with the reactive
functions in the chain of certain polymers, such as polysaccharides, to give polymer-g-
PLA graft copolymers in a so-called “classic” structure (Figure 1), where the polymer
backbone is grafted with PLA side chains [10]. The synthesis of “reverse” structures,
i.e., with a PLA main chain grafted with other polymer side chains is more challenging
because, unlike polysaccharides, the PLA backbone is not functionalized. Therefore, it
is necessary to first functionalize the PLA chain before subsequent grafting of polymer
segments onto the PLA backbone. From a theoretical point of view, two methods can be
used to obtain a functionalized PLA backbone: (i) copolymerization of a lactide with a
pre-functionalized lactide and (ii) direct chemical modification of a preformed PLA chain.
It is therefore the aim of the present review to focus on these relatively uncommon reverse
PLA-g-polymer structures.
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Figure 1. Illustration of “classic” and “reverse” structures of PLA-based graft copolymers.

2. Results
2.1. Copolymerization of Lactide with a Functionalized Lactide for the Preparation of PLA
Graft Copolymers

To the best of our knowledge, according to the first method mentioned above, few
functionalized lactides are described in the literature, and only a small proportion of
these substituted lactides has been copolymerized with lactide to yield functionalized
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PLA backbones [11–14]. For example, some lactides functionalized with benzyl, allyl and
propargyl groups have also been prepared and copolymerized with lactide, but no polymer
chains were subsequently grafted onto the PLA backbone [15].

Yu et al. prepared an alkyne-functionalized lactide that was copolymerized with
lactide to give an alkyne-functionalized PLA. An azide-paclitaxel-PEG was then reacted
with the alkyne-functionalized PLA via a Cu(I)-catalyzed azide–alkyne cycloaddition
(CuAAC) click reaction to give a novel graft polymer–drug conjugate (GPDC): PLA-g-
Paclitaxel-PEG (Figure 2) targeting sustained release of Paclitaxel [16]. Zhang et al. prepared
and (co)polymerized a dipropargyloxylactide by ring opening polymerization (ROP) in the
presence of Sn(Oct)2 and TBBA (tertiobutylbenzyl alcohol). An azido-PEG (PEG-N3) was
then grafted via CuAAC click chemistry (Figure 3) [17]. Turbidity, dynamic light scattering
and NMR results suggested that these grafted copolymers exhibit a reversible thermo-
responsive property, with LCST ranging from 22 to 69 ◦C depending on the molecular
weight of the PEG.
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with permission).

In another synthetic method, Castillo et al. prepared a spirolactide–heptene monomer
that yielded a PEG-grafted lactide after reaction with an azido-PEG (Figure 4) [18]. This
PEG-grafted lactide was then polymerized with molecular weights above 10kDa. Typically,
polymerization was carried out in anhydrous CH2Cl2 with 1,5,7-triazabicyclo [4.4.0]dec-5-
ene (TBD)/benzyl alcohol as the catalyst/initiator system. Preliminary biological studies
showed that PLA-g-PEG reduced non-specific protein adsorption and cell adhesion com-
pared to the original PLA.
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American Chemical Society, reproduced with permission).

This limited number of examples illustrates that this approach based on functional-
lactides is time-consuming, requires many steps and often gives low yields. For example,
the global yields of the syntheses are 20% for dipropargyloxylactide [17] and 10% for
PLA-g-Paclitaxel-PEG [16]. These copolymers are therefore expensive, and while this is not
a fundamental problem for biomedical applications, it is a real drawback for environmental
applications that use much larger amounts of product. Therefore, the second method,
chemical modification of a preformed PLA chain, is the most widely used to obtain a
functionalized PLA backbone allowing for the grafting of a second polymer.
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2.2. Direct Functionalization of PLA Backbone: Towards PLA-Based Graft Copolymers

PLA is an aliphatic polyester known for being highly sensitive to chain breakings,
especially in acid or alkaline environments. As a result, unlike poly ε-caprolactone, for
which a general method of chain modification in anionic media is described [19], almost all
substitution reactions on the PLA backbone are carried out under free radical conditions.
In most cases, a functional small molecule is grafted on the PLA backbone to give it
functionality and, in a second step, a polymer chain is grafted through this small molecule.
This grafting can be carried out by polymerization of a monomer from this functional group
(“grafting from”) or by the direct grafting of a polymer chain through its reactive chain
end (“grafting onto”). From an experimental point of view, the functionalization is carried
out in blenders or extruders in the presence of a radical precursor. Very frequently, the
modification of the PLA chain aims to obtain a compatibilizing agent for blends of PLA and
another polymer in order to improve the mechanical properties of the blends. Zeng et al.
described the main basic strategies for the compatibilization of the PLA blends, among
them functionalization of the PLA backbone with a reactive compound [20].

2.2.1. PLA-g-Maleic Anhydride (PLA-g-MA)

The most widely used reagent for functionalizing the PLA chain is maleic anhydride
(MA) due to its good chemical reactivity, low toxicity and good stability to the experimental
synthesis conditions [21–23]. The grafting of MA onto the PLA backbone results in a reactive
compatibilizer due to the presence of the anhydride function. PLA graft copolymers are
therefore obtained by a reaction of the anhydride group with some reactive functions of the
blended polymer.

Functionalization with MA is typically carried out between 120 ◦C and 200 ◦C with stir-
ring at 50–200 rpm in an extruder in the presence of a radical initiators, such as dicumyl per-
oxide (DCP) or benzyl peroxide (BPO). A typical reaction scheme is shown in Figure 5 [21].
The role of different reaction parameters (MA concentration, nature of the initiator, tem-
perature, molar mass of PLA) on the percentage of grafting is also described [23]. It was
found that the molecular weights of PLA decreased during the reaction due to chain scis-
sions. The grafting percentage of low-molecular-weight PLA is greater than that of the
high-molecular-weight PLA because of steric hindrance (Table 1). It should be noted that
the grafting percentage of MA increased with the initial concentration of MA, but remained
low (<1.25%) regardless of the different parameters of the reaction, which shows the low
efficiency of these radical reactions [23]. If one wishes to graft at least two molecules of
anhydride per PLA chain, the molar mass of the latter must be higher than 14,500 g.mole−1

if substitution degree = 1%, which is not always the case. Nevertheless, the results obtained
for the compatibility of various PLA-based blends are significant. Examples of variations
in mechanical properties are shown in Table 2 in blends of PLA/cellulose nanofibers
(CNF) [24].
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Table 1. Variations in molecular weight and grafting percentage during functionalization of PLA by
MA (extract of data from Muenprasat et al. [23]).

PLA
Molecular Weight

PLA-g-MA
Molecular Weight Grafting %

294,000 196,000 0.65

92,000 76,000 1.25

Table 2. Mechanical properties of PLA, PLA/CNF and PLA/CNF/PLA-g-MA (extract of data from
Ghasemi et al. [24]).

Tensile Strength
(MPa)

Strain at Break
(%)

Tensile Modulus
(GPa)

Original PLA 22.4 2.3 1.1

PLA/CNF(5%) 34.8 3.0 1.3

PLA/CNF(5%)/PLA-g-MA (5%) 60.3 5.5 1.5

The following paragraphs show the main PLA graft copolymers obtained from PLA-g-
MA with their principal properties and applications.

PLA-g-Cellulosic Derivatives

Cellulose fibers derived from renewable biomass have attracted interest as microscale
reinforcements in composite materials. Natural fibers have many advantages—low density,
low cost, renewability, biodegradability—that make them excellent candidates for the de-
sign of biodegradable materials. They can advantageously replace mineral reinforcements
in PLA matrices [3,4]. However, a poor compatibility between the fiber and the polymer
matrix leads to materials with poor performances. In particular, nanocelluloses, due to their
polar surfaces, are difficult to uniformly disperse in a non-polar medium. The consequences
of this poor interfacial compatibility between polymer and filler are poor properties of the
final blend. The compatibilization of PLA/cellulosic derivatives blends to improve many
of the blends’ properties, especially mechanical properties, while maintaining a natural
source, are the most widely described in the literature [24,25]. Because PLA-g-MA acts as a
reactive compatibilizer, a PLA-g-cellulose copolymer is formed as a result of the reaction
between the anhydride of PLA-g-MA, and alcohol functions of the cellulosic derivative
(Figure 6) [21]. The presence of a very low percentage of PLA-g-MA (<1%) in the original
blend significantly improved the properties of the blend [24]. Tensile strength, tensile
modulus and strain at break were increased by 55.3%, 15.45% and 30.4%, respectively, over
neat PLA by adding 5 wt.% of cellulose nanofibers (CNFs), and by 169.2%, 36.3% and
139.1%, respectively, by adding 5% of PLA-g-MA to the blend PLA/CNF.
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Many cellulosic derivatives were introduced into PLA matrices in the presence of
PLA-g-MA to improve the mechanical properties of blends such as Luffa [26], flax [27],
coffee grounds [28], wood flour or rice husk [29,30], sisal fibers [31], straw [32], bamboo
fiber [33], cassava starch [34,35], starch [36], and lemongrass fiber [37]. For example, the use
of PLA-g-MA in a PLA/cassava starch blend has a significant impact on elongation at break
but not on Young’s modulus or tensile strength. However, it was noted that PLA-g-MA
with a higher proportion of grafted MA (0.52 wt.%) had a lower molecular weight and
higher dispersity value, showing some degradation of the polymer backbone [34,38].

Many other properties are improved in PLA-g-MA compatible blends, such as mor-
phological, rheological, thermal, tensile and moisture sorption properties as well as thermal
degradation [39–41]. For example, Figure 7 shows SEM micrographs of PLA/TPS (ther-
moplastic starch) blends (70/30 w/w) without (Figure 7a) and with two parts per hundred
rubber (phr) PLA-g-MA (Figure 7b), highlighting the compatibilization of the blend of
PLA-g-starch formed in situ.
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To obtain a PLA-g-starch copolymer, another method is to react maleic anhydride with
starch to obtain a maleated thermoplastic starch (MTPS), which is then mixed with PLA in
the presence of Luperox 101 (2,5-bis(tert-butylperoxy)-2,5-dimethylhexane) in a Brabender
at 180 ◦C for 5 min. The reaction scheme is shown in Figure 8 [42].

Direct grafting of cellulose nanocrystals (CNC) on PLA, without the addition of PLA-
g-MA, is also described, following the reaction scheme of Figure 9 [43]. could his DCP was
sprayed onto PLA beads, and the DCP-coated PLA pellets were mixed with CNC and ex-
truded in a twin-screw extruder at 180 ◦C at 50 rpm for 5 min. The effective grafting of CNC
onto PLA was identified by SEC, FTIR and NMR, but NMR showed a very low proportion
of CNC in the copolymer. Some mechanical and structural properties were significantly
impacted (increased Young modulus, decreased elongation, increased crystallinity).
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PLA-g-Natural Rubber (PLA-g-NR)

Among the drawbacks of PLA materials, we can also highlight their fragility. Natural
rubbers (NR), on the other hand, are highly flexible, environmentally friendly and derived
from a renewable resource. They are good toughness agents due to their high molecular
weight and very low glass transition temperature. However, due to the non-polarity of
NRs, PLA/NR blends are immiscible and not compatible. To improve the interfacial
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interaction between PLA and NR, the reactive compatibilizer PLA-g-MA is used to form a
graft copolymer PLA-g-NR [44,45]. Typically, the compatibilized blend is made in a twin
screw extruder at a temperature between 160 and 180 ◦C and a screw speed of around
30 rpm. With the addition of PLA-g-MA, the mechanical properties of the material were
significantly improved. It was found that a 3% PLA-g-MA was the best compatibilizer
composition to achieve the best performance of the material [44]. The reverse reaction of a
maleic anhydride on NR (NR-MA), followed by reaction on PLA in a radical medium, was
also performed with similar results regarding mechanical properties [46,47]. However, in
this case, the proposed mechanism does not involve a reaction on the PLA backbone but
only the alcohol chain end, which reacts on the backbone of NR-MA (Figure 10).
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PLA-g-Polyester

Other degradable and flexible polyesters are now being developed on an industrial
scale, such as polybutylene adipate-co-terephthalate (PBAT), polybutylene succinate (PBS)
or poly ε−caprolactone (PCL); the first two examples are derived from renewable resources.
Blends of PLA with these polyesters are good candidates for improving the brittleness and
toughness of PLA while maintaining the biodegradability of the blends. Unfortunately,
these blends are largely incompatible, especially with PBAT, due to its structure, which
contains aromatic rings [48]. As with PLA/NR blends, PLA-g-MA was used as a reactive
compatibilizer whose possible reaction of the alcohol chain end of PBAT with the grafted
anhydride is shown in Figure 11.

Typically, the reaction is carried out in a co-rotating twin screw extruder at a tempera-
ture between 160 and 180 ◦C and a screw speed of 25–100 rpm [49,50]. Effective grafting
of PBAT was demonstrated by a drastic increase in the molecular mass of the copolymer,
from 10 kDa to ca. 20 kDa. The mechanical properties of the PLA/PBAT blend were only
slightly improved despite the incorporation of PLA-g-MA. However, the improvement of
the interfacial adhesion between PLA and PBAT was evidenced by SEM micrographs. A
very limited compatibility effect of the addition of PLA-g-MA in PLA/PBAT/TiO2 blends
was also observed, with TiO2 acting as a nucleating agent [51]. The addition of CaCO3 to
PLA/PBAT/PLA-g-MA blends resulted in an increase in Young’s modulus [52].
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Figure 11. Possible reaction between PLA-g-MA and PBAT (from Rigolin et al. [50], copyright Elsevier,
reproduced with permission).

Phetwarotai et al. studied PLA and PBS blends in the presence of PLA-g-MA or
toluene diisocyante (TDI) as compatibilizers [53]. They showed that TDI is a more effective
compatibilizer than PLA-g-MA for PLA/PBS blend films, their failure mode changed
from brittle to ductile due to the improved compatibility. The effect of PLA-g-MA was
also studied on PLA/PBAT/thermoplastic starch (TPS) ternary blend films. The thermal
stability, tensile properties and compatibility of the PLA, PBAT, and TPS blends were
slightly improved with the addition of the compatibilizer [54].

In the case of PLA/PCL with non-compatible blends, a reaction of MA with PCL is
more likely to occur between the anhydride and OH groups on the PCL chain ends. As in
the case of PBAT, it is the terminal alcohol of the PCL that reacts with the grafted anhydride
of the PLA chain (Figure 12A) [55]. According to the authors, the compatibility effect of
PLA-g-MA was shown by SEM micrographs (Figure 12B) and by a significant increase in
the elongation at break of the material, from 7% in PLA or in a mixture of PLA and PCL to
53% in a compatibilized blend.
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By reactive extrusion of the bio-based poly(glycerol succinate-co-maleate) (PGSMA)
with PLA at 150–180 ◦C in the presence of a free radical initiator, a PLA-g-PGSMA graft
copolymer was obtained that acts as an interfacial compatibilizer due to the double bond
of the maleate unit in PGSMA [56]. The tensile strength of PLA/PGSMA blends was
improved by almost 400% compared to that of pure PLA. This increase was caused by
(i) the in situ formation of PLA-g-PGSMA graft copolymers and (ii) the crosslinking of
PGSMA within the PLA matrix, which act as interfacial compatibilizers. Two-dimensional
NMR and FTIR confirmed the formation of PLA-g-PGSMA, but the substitution degree on
the PLA backbone was not evaluated. It is important to note that this work was performed
with very-low-molecular-weight PGSMA (Mn < 1200 Da).

PLA-g-MA is also used to compatibilize PLA with thermoplastic polyurethane elas-
tomers (TPU) and thermoplastic polyester elastomers (TPE). Charpy impact, toughness
and fracture toughness of brittle PLA were improved when the blends were compatibilized
by addition of PLA-g-MA without adversely damaging effects on other mechanical and
thermal properties of the PLA blends [57].

Other PLA-Based Blends

PLA-g-MA serves as reactive compatibilizer for other polymer blends by reacting the
anhydride functions on the second constituent of the blend. Examples include polyamides
11 and 12, where anhydride function reacts in the amine groups [58,59]. The ductility and
impact strength of the compatibilized blends were increased by a factor two compared
to non-compatibilized blends. A crosslinking agent (trimethylolpropane trimethacry-
late) was also used to enhance the impact strength of the PLA-g-MA-containing blend.
PLA/Polyamide6 (PA6) blends were compatibilized with PLA-g-IA (IA = itaconic anhy-
dride), a compound similar to PLA-g-MA [60]. It was reported that IA can react with amine
and amide functions of PA6. Unfortunately, a weak compatibility effect was obtained,
likely due to the low concentration of IA moieties grafted onto PLA backbone (0.4 wt.%).
PLA-g-IA is also a compatibilizer of PLA/Novatein (a protein-based thermoplastic) as
shown in the SEM micrographs of Figure 13 [61].
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Compatibilizing effects of PLA-g-MA on the properties of PLA/Soy Protein concen-
trate (SPC) blends were demonstrated by a 19% increase in tensile strength compared to the
non-compatibilized blend [62]. Finally, PLA-g-MA also has the ability to provide some com-
patibility to PLA/mineral mixtures such as PLA/carbon nanotubes [22], PLA/Titanium
oxide [63], PLA/halloysite [64], PLA/hydroxyapatite [65], PLA/talc [66], PLA polyhedral
oligomeric silsesquioxane (POSS) [67].
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2.2.2. PLA-g-Glycidyl Methacrylate (PLA-g-GMA)

A second type of compound that allows for the reactive functionalization of the PLA
chain is glycidyl methacrylate (GMA). Grafting is a free-radical reaction performed in a
mixer (80 rpm) at 160 ◦C for 12 min in the presence of BPO [68]. A proposed scheme of the
reaction is shown in Figure 14 [69].
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The possibility of further functionalization is ensured by the presence of the new
oxirane group on the grafted chain. As for PLA-g-MA, the main application lies in the
compatibility of polymer blends. The graft content increased from 1.8 to 11.0 wt.% as the
GMA concentration in the feed is varied from 5 to 20 wt.%. [68]. The degree of substitution,
which is significantly higher than that of PLA-g-MA, is therefore the main advantage
of GMA over MA. The characterization and properties of PLA-g-GMA (crystallization,
characteristics, tensile stress, stress–strain curve, brittleness, thermal properties) compared
to the one of PLA, are described by Kangwanwatthanasiri et al. [70].

The main graft copolymers obtained from PLA-g-GMA and their principal properties
and applications are described in the following paragraphs. We found almost the same
types of structures as those obtained with PLA-g-MA; therefore, they will not be described
in detail.

PLA-g-Cellulosic Derivatives

PLA-g-GA is blended with cellulosic derivatives, fully renewable and degradable
resources, to obtain a fully biodegradable product. For example, when used with starch, a
small percentage of PLA-g-GMA plays the role of a compatibilizer, which is incorporated
into both PLA and starch phases [68]. Essentially, when PLA-g-GMA is incorporated into
PLA/cellulosic blends, the mechanical properties are improved: the starch tensile strength
at break increased from 18.6 ± 3.8 to 29.3 ± 5.8 MPa, the tensile modulus from 510 ± 62 to
901 ± 62 MPa, and elongation at break from 1.8 ± 0.4 to 3.4 ± 0.6% [68].

Based on the reaction with PLA-g-GMA, the various PLA/cellulosic derivatives blends
that were compatibilized are PLA–starch copolymers [68], PLA-treated arrowroot fiber [71],
PLA–lignin [72,73] PLA–cassava pulp [74], PLA–cellulose [75], PLA–bamboo flour [76],
PLA–rice straw fiber [77].

PLA-g-Polyesters

For the same reasons as described with MA, PLA/PBAT and PLA/PBS blends were
compatibilized by the addition of PLA-g-GMA, with the main results of improved me-
chanical and thermal properties [69]. Specifically, the presence of PLA-g-GMA in a blend
PLA/PBAT led to a decrease in crystallization rate, an increase in melt strength and viscos-
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ity, an improvement of tensile strength, and elongation at break, which are dependent on
the proportion of PLA-g-GMA [78]. In a typical operating procedure, PLA, PBS or PBAT
and PLA-g-GMA were melt blended together in a twin-screw extruder at a rotational speed
of 30 rpm for several minutes. The temperature was between 150 and 170 ◦C [79]. The
PLA/PBAT/PLA-g-GMA blends were successfully printed by 3D printing. A reaction
mechanism between PBAT and PLA-g-GMA is described in Figure 15 [78]. With 10 wt.% of
compatibilizer, the viscosity of the PBAT/PLA blend increased, and there was no longer a
crystalline region of PBAT, showing an improved compatibility of PLA and PBAT.
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PLA/cassava pulp/PBS ternary biocomposites were also compatibilized by PLA-g-
GPA, with the mechanical properties of the PLA/cassava pulp/PBS composites being
improved with the addition of PLA-g-GMA [80]. Similar to polyesters, PLA/thermoplastic
polyurethane (TPU) blends were also compatibilized in the presence of PLA-g-GMA [81].
In this example, PLA-g-TPU acted as a compatibilizer for the blend PLA/TPU.

2.2.3. PLA-g-Acrylic Acid (PLA-g-AA)

Another functionalization of the PLA chain is used in the field of the compatibilization
of PLA-based blends, namely the grafting of acrylic acid (AA) to give a PLA-g-AA graft
copolymer. Typically, AA grafting is performed under free radical conditions, by adding a
mixture of AA and BPO to molten PLA in a mixer at 95 ◦C for a period of 6 h [82]. A PLA-
g-PAA copolymer is formed, which can then react with alcohol functions of the cellulosic
derivatives by esterifying the alcohol functions of the cellulosic compound (Figure 16).
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As with PLA-g-MA, PLA-g-AA can compatibilize blends with natural cellulosic com-
pounds, such as sisal fiber [31], wood flour [83], corn starch [84], rice husk [85], and
hyaluronic acid [86]. In all cases, improvements in mechanical properties and/or biodegra-
dation are obtained in the compatibilized mixtures. The compatibilization effect is shown
by the size of the corn starch (CS) phase in PLA/CS and PLA/CS/PLA-g-corn starch. In a
PLA/CS blend (50/50 w/w), the CS phase size decreased from 17.5 µm to 7.3 µm when
PLA-g-corn starch was added in the blend [84].

Acrylic acid can also be graft-polymerized onto PLA chains in a solution using a
photoinitiator, typically benzophenone, under UV irradiation at 254 nm [87]. Finally, the
grafting of PAA onto the PLA backbone was also obtained by a free-radical reaction of BPO
onto a solution of PLA in chloroform, followed by a reaction and polymerization of AA
at 100 ◦C for 10 min under pressure. A drastic decrease in toughness and an increase in
tensile modulus were observed in PLA-g-PAA as compared to PLA [88].

Inorganic–organic hybrid composites, based on mixtures of PLA and SiO2 [89] and
TiO2 [90] generated via a sol–gel process, also showed improved mechanical and thermal
properties when PLA was replaced by PLA-g-AA. This was attributed to stronger interfacial
forces between carboxylic acid groups of PLA-g-AA and the residual Si-OH and Ti-OH
groups [89].

2.2.4. PLA-g-Halogen

The halogenation, in particular bromination, of the PLA chain is another method
for reactive functionalization of the PLA chain. Usually, bromination is achieved by a
free-radical mechanism. Typically, PLA is treated with N-bromo succinimide (NBS) in the
presence of BPO over a period of 5 days [91]. There is no detectable chain degradation or
crosslinking based on SEC results. Similarly, authors prepared chlorinated and iodinated
PLAs. They used short-chain PLA (Mn = 2 kDa) to facilitate polymer characterization. The
substitution degree depended on the halogen: from 3.2% for bromination and chlorination
to 0.5% for iodination. However, the degree of bromination can be increased to 8% with
microwave activation.

PLA-g-Br was used as a multisite macroinitiator for the ATRP of methyl methacry-
late (MMA) and oligo ethylene glycol methacrylate (OEGMA) (Figure 17). Depending
on the PLA-g-Br/MMA ratio, the side chains had different lengths. Complete bromine
consumption was achieved during polymerization [92].
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The bromination reaction was also performed on the surface of PLA films by treating
the surface with NBS in H2O under UV irradiation. The incorporation of up to 3.7%
bromine on the surface was achieved. Surface-initiated ATRP of quaternary ammonium
methacrylate (QMA) chloride in the presence of CuBr and 2,2′-bipyridyl (bpy) was then
performed, as shown in Figure 18. The cationic grafted surfaces are significantly more toxic
to E.coli cells than genuine PLA, but no toxicity to HeLa cells upon contact was found [93].
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A direct surface grafting (without any pre-halogenation) of poly(methacrylic acid)
(PMAA) onto PLA was obtained after activation of the surface of a PLA film via photo-
oxidation followed by the UV-induced polymerization of methacrylic acid. The grafting
was confirmed in particular by FTIR analysis [94]. This method was employed to prepare a
nano hydroxyapatite/g-PLA composite.

PLA nanofibers obtained by electrospinning were coated with PMMA by plasma
polymerization [95]. The coated PLA fibers showed an increase in diameter from 250 nm
to 700 nm. MTT assays and cells count showed that the PLA-g-PMMA copolymers form
intrinsically biocompatible systems.

2.2.5. Other PLA-Based Graft Copolymers
PLA-g-Nitrilotriacetic Acid (PLA-g-NTA)

In the field of “green packaging”, it is desirable to have non-migratory, metal-chelating
and biodegradable materials. To this end, metal-chelated nitrilotriacetic acid (NTA) was
grafted onto PLA using a classical radical mechanism, as shown in Figure 19 [96]. The
grafting was evidenced by ATR-FTIR and XPS. Significant radical scavenging and metal-
chelating efficacies as well as the ability to delay the degradation of ascorbic acid showed
the antioxidant capacity of PLA-g-NTA. However, this NTA grafting was not followed by
any polymer grafting, even if the grafted carboxylic acids are functional groups.

PLA-g-Vinyltrimethoxysilane (PLA-g-VTMS)

PLA-g-VTMS was prepared by a free radical reaction of vinyltrimethoxysilane (VTMS)
on PLA in the presence of DCP in a Brabender at 190 ◦C for 5 min. The trimethoxysilane
was then hydrolyzed to allow the crosslinking of the PLA chains to improve the mechanical
properties of the PLA nanofibers (Figure 20) [97]. Electrospun nanofibrous mats based
on PLA/NCC and PLA-g-silane/NCC nanocomposites were fabricated and compared.
PLA-g-VTMS was used to improve the mechanical properties of PLA/nanocrystalline
cellulose (NCC). In particular, the impact of NCC on improving tensile strength was
notable, even though no chemical reaction of PLA-g-VTMS with NCC is reported. In
addition, a cytotoxicity assessment showed the biocompatibility of the modified nanofibers,
making them good candidates for tissue engineering applications.
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PLA-g-Poly(Vinyl Pyrrolidone) (PLA-g-PVP)

A PLA film was treated with a solution of N-vinyl pyrrolidone (NVP) in methanol and
AgNO3 using 60Co γ−radiation polymerization at a dose of 1–30 kGy at room temperature.
After washings, a PLA-g-PVP film was formed on the surface. Silver nanoparticles were
also immobilized on the film surface. A surface grafting ratio, in the range of 25–49%, is
assessed by the FTIR ratio of the bands at 1660 cm−1 of PVP and the sum of the bands at
1660 cm−1 and 1750 cm−1 of PLA [98]. There is no indication of the grafting degree of PVP
onto the PLA backbone. It is noted, however, that PVP grafting significantly accelerated
PLA degradation and does not impede cell proliferation [99]. Controlled variation in the
grafting ratio could broaden the applications of this material in tissue engineering scaffolds,
drug delivery, and the prevention of post-surgical adhesion.

2.2.6. Anionic Derivatization

The anionic derivatization of PCL was described by Ponsart et al. [19]. It is a remark-
ably powerful one-pot two-step method for grafting many types of substituents on the
PCL backbone. This method is theoretically applicable to many polyesters, but it leads
to varying degrees of chain cleavage depending on the nature of the polyester, due to
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the anionic medium caused by the presence of lithium diisopropylamide. Even though
PCL is relatively resistant to this basic medium, which is not the case with PLA, There
are still many chain breakings. Nevertheless, El Habnouni et al. applied the method to
the surface of the PLA film and nanofibers in a non-solvent medium that causes only
moderate-chain scissions and allows for the preparation of functional PLA surfaces [100].
In particular, this approach was exploited with propargylated PLA allowing the grafting of
bioactive polymers through CuAAC or thiol-yne click reactions. Therefore, anti-biofilm and
bactericidal PLA surfaces were obtained by the reaction of α-azido QPDMAEMA (quat-
ernized poly(2-(dimethylamino)ethyl methacrylate)) or thiol-functional polyaspartamide
derivatives (Figure 21) [101,102].
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surface (adapted from Sardo et al. [102] and El Habnouni et al. [101]).

The main copolymers grafted onto the PLA chain, precursors, copolymers and litera-
ture references are summarized in Table 3.
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Table 3. Main PLA-based grafted copolymers according to literature.

Precursor: Functionalized PLA PLA-g-Copolymer Refs.

PLA-g-MA

cellulosic derivatives [24,40,41]
luffa [26]
flax [27]

coffee grounds [103]
wood flour [29,30]
rice husk [29,30]

sisal [31]
straw [32]

bamboo [33]
cassava [34,35]
starch [36,39,42]

lemongrass [37]
natural rubber [44,45]

polyesters
PBAT [48–50]

PBAT/TiO2 [51]
PBAT/CaCO3 [52]
PBAT/starch [54]

PBS [53]
PCL [55]

PGSMA [56]
TPU [57]
PA [58,59]

soy protein [62]
mineral compounds [22,63–67]

PLA-g-IA polyamide [60,61]

PLA-g-GMA

cellulosic derivatives
starch [68]

arrowroot [71]
lignin [72,73]

cassava [74]
cellulose [75]
bamboo [76]

rice-straw [77]
polyesters

PBAT [69,78,79]
PBAT/cassava [80]

TPU [81]

PLA-g-AA

cellulosic derivatives
starch [82,84,90]
sisal [31]

wood flour [83]
rice husk [85]

mineral compounds [89]
hyaluronic acid [86]

PLA-g-halogen PMMA and POEGMA [92–94]

PVP [98,99]

PLA-g-alkyne PEG [17]

Direct grafting
cellulose nanocrystals [43]

natural rubber [46,47]
PMMA [95]

Surface-anionic derivatization
QPDMAEMA [101]

α,β-poly(N-2-hydroxyethyl)-D,L-aspartamide [102]
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3. Conclusions

Research on the chemical modifications of the PLA backbone to yield PLA-g-polymer
graft copolymers is scarce. These modifications mostly occur via a radical mechanism in
the presence of a peroxide, leading to the covalent substitution of a reagent on the methine
proton of the PLA chain. These reactions are essentially carried out in mass at high tem-
perature in a mixer or an extruder. The main substituents are anhydride or epoxy groups
that allow a reactive compatibilization of PLA-based polymer blends. The degree of substi-
tution remains low (<2%) but allows for significant improvements in properties, mainly
in mechanical properties. The reactions of the anhydride or epoxide functions grafted on
the PLA chain with other polymers (cellulose derivatives, polyesters, polyamides, natural
gums, PMMA) lead to the formation of numerous graft copolymers whose backbone is PLA.
If these PLA-g-polymers are mostly described for the compatibilization of PLA-containing
blends, it appears that the applications of these PLA-based grafted copolymers could cross
over into biomedical and environmental fields, because they are intrinsically biocompat-
ible systems. In any case, the low degree of grafting obtained in these grafting reactions
highlights the importance of finding new grafting approaches to develop functionalization
on the PLA chain in order to obtain new PLA-based graft copolymers.
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