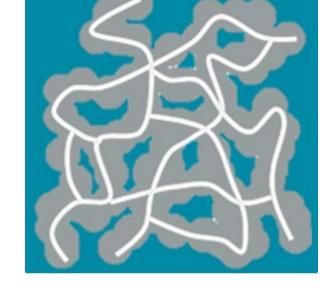


Polymer processing influence on the double electrical percolation threshold in PLA/PCL/GNP nanocomposites

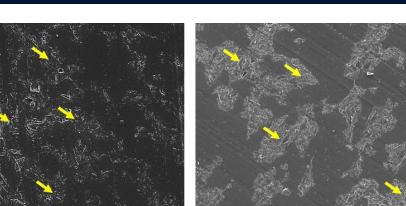
N.-A. Masarra¹, J.-C. Quantin², M. Batistella¹, R. El Hage^{1,3}, M.F. Pucci², R. Ravel ¹, J.-M. Lopez-Cuesta¹ ¹Polymers Composites and Hybrids (PCH), IMT Mines Ales, Ales, France ²LMGC, IMT Mines Ales, Univ Montpellier, CNRS, Ales, France ³Laboratory of Physical Chemistry of Materials (LCPM), PR2N-EDST, Faculty of Sciences II, Campus Fanar, Lebanese University, Jdeideh P.O. Box 90656, Lebanon

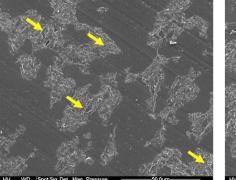
Introduction

Context/ interest:

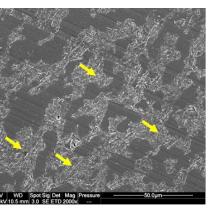

- Percolation theory: Explains the transition from an insulating material to a conductive one in conductive filled polymer composites.
- Electrical percolation threshold: Minimal filler concentration required to acquire a conductive network within the polymer matrix
- How to reduce the electrical percolation threshold? By creating a double electrical percolation threshold resulting from adding the conductive filler to an immiscible polymer blend matrix Required conditions for the double electrical percolation threshold [1], [2]:

1) Co-continuous polymer blend

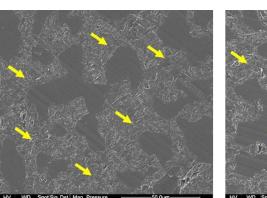

2) Selective localization of the conductive filler in a single polymer phase

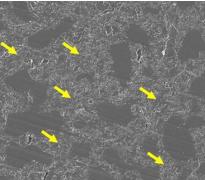

Objectives:

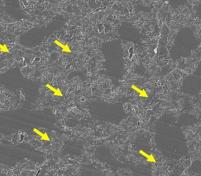
- Obtaining the double electrical percolation threshold in poly(lactic acid) (PLA)/ polycaprolactone (PCL)/ Graphene nanoplatelets (GNP) nanocomposites
- Studying the influence of different manufacturing processes on the co-continuous microstructure and the electrical conductivity of PLA/PCL/GNP nanocomposites The used processes are:
- ✓ Compression molding
- ✓ 3D printing (Fused Filament Fabrication or FFF) preceded by single-screw extrusion
- In our previous work, a comparison between 3D printing and injection molding influence on the microstructure and therefore the electrical conductivity of PLA/PCL/GNP composites took place [3].

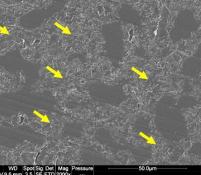


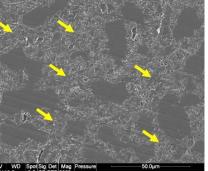
Selective localization of graphene in the PCL phase




Good dispersion of graphene particles in the PCL phase

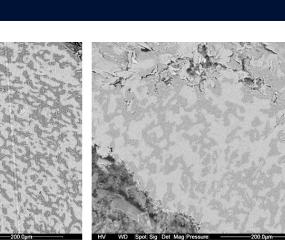


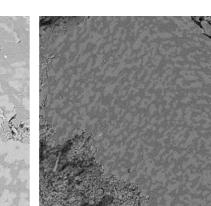

PLA/PCL/GNP compression molded composites: Permanent selective localization of GNP

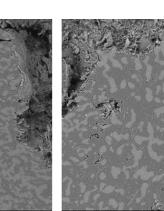

in the PCL phase (The graphene + PCL zones are indicated by yellow arrows.)

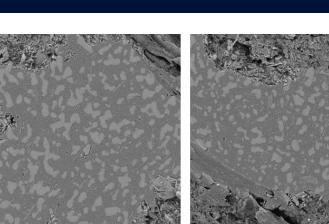
analysis PLAx/PCLy/10 wt.% GNP were produced (x PLA65/PCL35/10 wt.% GNP PLA60/PCL40/10 wt.% GNP PLA50/PCL50/10 wt.% GNP PLA40/PCL60/10 wt.% GNP PLA30/PCL70/10 wt.% GNP varies between 0 wt.% and 100 wt.% in the polymer total weight percentage).

GNP together

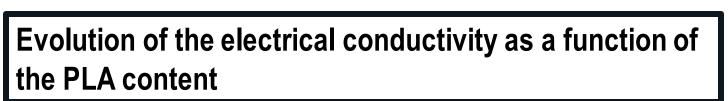

Compression molded samples

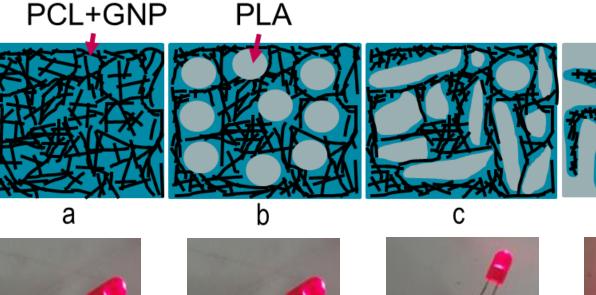

Processing steps:

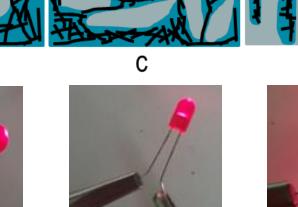

Twin-screw extrusion to blend PLA, PCL, and

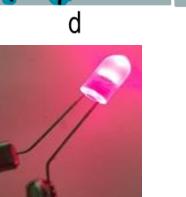

Compression molding to prepare samples for

Co-continuous microstructure



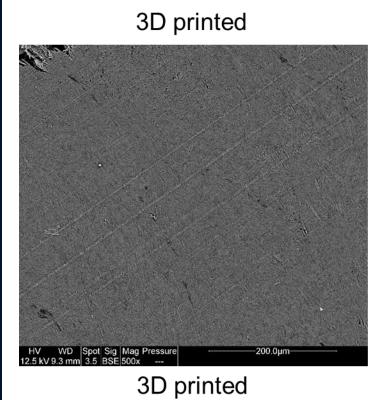

- Co-continuous microstructure is present in PLA65/PCL35/10 wt.% GNP and PLA60/PCL40/10 wt.% GNP formulations (The brighter phase is the PLA phase, and the darker phase is the PCL phase).
- The other samples possess a sea-island morphology where the PLA nodules are dispersed in the continuous PCL phase.

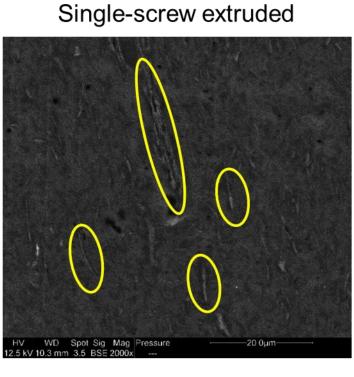

PLA50/PCL50/10 wt.% GNP

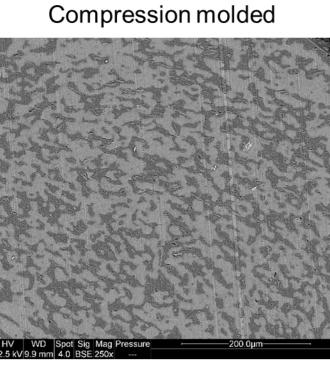

a→d d→f **PLA** composition (%)

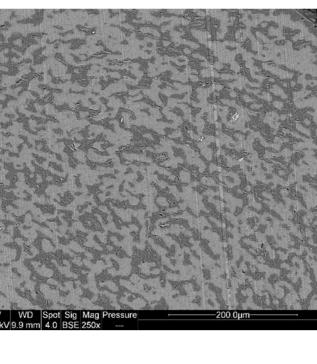
Double electrical percolation threshold

No light

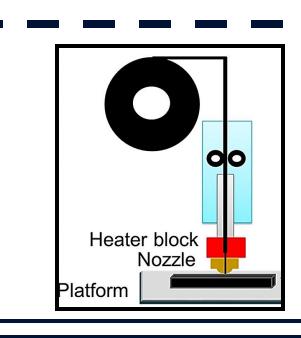

a→d: As the percentage of PLA increases from 0 wt.% to 55 wt.% in the composites, the electrical volume conductivity increases due to the greater confinement of the GNP dispersed in the PCL matrix.


d: Co-continuous morphologies are observed in the PLA55/PCL45-PLA70/PCL30 range with 10 wt.% GNP. The electrical conductivity is the highest in this zone with the best results for PLA65/PCL35/10 wt.% GNP.


A double electrical percolation threshold can be highlighted in this zone.


d→f: The electrical volume conductivity decreases again with the increase of the PLA percentage to reach its minimal value at PLA/10 wt.% GNP.

3D printed samples



PLA65/PCL35/10% GNP

- 3D printed sample: Good adhesion between the layers
- 3D printed sample vs compression molded sample: Smaller cocontinuous microstructure existing separately in each deposited layer

Processing steps:

- Twin-screw extrusion to blend PLA, PCL, and **GNP** together
- Single-screw extrusion to fabricate calibrated filaments
- Fused filament fabrication to manufacture the samples to be analyzed (compared with the compression molded samples)

Sample	Electrical volume conductivity (S. m ⁻¹)	Porosity (%)	LED (5 v)
PLA80/PCL20/10	< 10 ⁻⁵	12	No light
wt.% GNP			
PLA65/PCL35/10	0.1	16	
wt.% GNP			
PLA50/PCL50/10	0.03	14	No light
wt.% GNP			
PLA40/PCL60/10	0.019	14	No light
wt.% GNP			
PLA30/PCL70/10	0.014	15	No light
wt.% GNP			

References

- [1]: Huang et al., Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds, Journal: Carbon, Vol 73, 2014, Pages 267-274
- [2]: Chen et al., Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure, Journal: Composites Science and Technology, Vol 140, 2017, Pages 99-105
- [3]: Masarra et al., Fabrication of PLA/PCL/Graphene nanoplatelets (GNP) electrically conductive circuit using the fused filament fabrication (FFF) 3D printing technique, Journal: Materials, Vol 15, 2022

Conclusion

- This work succeeded for the first time to obtain the double electrical percolation threshold in PLA/PCL/GNP composite systems.
- The influence of several manufacturing processes on the co-continuity of PLA and PCL and consequently the electrical volume conductivity were addressed for the first time.
- Compression molded samples: Wide range of co-continuity that varies between PLA55/PCL45/10 wt.% GNP and PLA70/PCL30/10 wt.% GNP. **Reason:** Induced annealing effect
- 3D printed samples: PLA65/PCL35/10 wt.% GNP shows the highest electrical conductivity but still less than that of the compression molded sample Reason: Small co-continuous microstructure present in each deposited layer

Contact information

Corresponding author's information:

Nour Alhoda Masarra

PhD student at the Ecole des Mines d'Ales (France)

Address: Ales, France

<u>Tel:</u> +33/616783841

Email: nour-alhoda.masarra@mines-ales.fr

