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Abstract—When solving complex and critical decision prob-
lems involving several aspects, collecting decision-maker (DM)
preferences remains a delicate issue. Indirect parameter iden-
tification procedures are more adequate in such situations
than procedures consisting to ask directly the DM to provide
preferences. In the case of methods based on additive models
such as MACBETH, disaggregation procedures are implemented
to handle this problem. In case of sophisticated non-additive
model, e.g. Choquet integral based fuzzy measure, most of the
existing indirect procedures assume a 2-additive fuzzy measure
and the DM is asked to change her/his preferences if they do
not match this model. This paper proposes an approach to
determine preferences model that achieves a trade-off between
model sophistication and the fastidious MACBETH questioning
procedure when considering interactions between more than two
attributes. First, it proposes a practical approach to solve a
real case of multiple criteria decision problem while considering
sophistical model of preferences. On one hand, particular binary
alternatives are selected for a first questioning procedure to de-
termine the fuzzy measure parameters. In order to make the later
procedure as simple as possible to handle, some simplifications
are introduced to reduce both the amount of information and
the cognitive effort requested from the DM. Our proposition
consists in fixing several non-linear optimization problems until
reaching the first k for which the k-additive fuzzy measure match
the DM preferences. On the other hand, starting from a decision
matrix and the answers to a second questioning procedure, value
functions are determined. The second contribution is a theoretical
one and consists in proving the existence of a k-additive fuzzy
measure matching the DM preferences. Finally, the approach is
applied to a real world case that concerns the comparison of some
electrical and thermal vehicles regarding their environmental
impacts.

Index Terms—k-additive fuzzy measure, disaggregation proce-
dure, Choquet integral, multiple criteria decision analysis

I. INTRODUCTION

Let us consider the context of a multiple criteria decision
problem where a decision maker (DM) needs support to
resolve a rank decision problem. Let us assume that the DM
agreed with the aggregation principle, i.e. poor performances
of an alternatives on some criteria can be compensated by good
performances on other criteria. Consequently, the decision
problem is treated within the multi-attribute value theory
(mavt) framework [1]. More precisely, let us consider that
the alternatives are evaluated using a set of attributes N =
{1, ..., n} where the ith attribute takes its values in a space
Xi. An alternative is therefore an element x = (x1, ..., xn)
from the Cartesian product set X = X1 × ... × Xn. In
the mavt framework, the alternatives are compared using a

value function v : X → [0, 1] that exists when the binary
relation, denoted %, representing the preferences of the DM
over elements of X is a weak order. The most practical way
to determine v is to find its analytical form using the partial
value functions vi : Xi → [0, 1], i ∈ N . The additive form of v
requires that the attributes be mutually preference independent
[2] which is a very restrictive condition. Indeed, this condition
does not allow the expression of some kinds of preferences
which take into account the interactions between attributes. A
more general and flexible form is the decomposable model of
Krantz et al. [3].

Definition 1: Under the hypotheses of 1) weak preference
independence between attributes [2] and 2) % is a weak order,
v has the following form [3]:

∀x ∈ X, v(x) = F (v1(x1), ..., vn(xn)) (1)

where F is an aggregation operator increasing in all its
arguments.
Note that the weak preference independence assumption sim-
plifies the assessment of v by assessing vi for a single attribute
independently (the other attributes are fixed at arbitrarily se-
lected values) [2]. An interesting candidate for the operator F
is the Choquet integral operator [4] related to a fuzzy measure
[5]. The fuzzy measure can model interactions between at-
tributes and when these interactions exist, the function v of (1)
is non-additive. For such sophisticated models it is difficult to
obtain the parameters information from the DM, in particular,
when considering interaction for more than two attributes. For
instance, the authors of [6] [7] point out the discrepancy that
might exist between the meaning of the values assigned to
the interactions and the preferences in the mind of the DM.
This led several works to consider Choquet integral based
2-additive fuzzy measure models where the interactions are
limited to two attributes. These models are a trade-off between
an additive model and a sophisticated non-linear one. Indeed,
with a 2-additive fuzzy measure there are fewer parameters
and the DM can understand their meaning. To obtain the
coefficients of a 2-additivity fuzzy measure, disaggregation
procedures are preferred to asking the DM directly to provide
these parameters, as they have the advantage of requiring
less cognitive effort from DM [8] [9] [10]. MACBETH [11]
is a Multiple Criteria Decision Analysis (MCDA) method
that offers an example of a well established disaggregation
procedure for an additive model. Several extensions to non-
additive models were proposed [9] [12] [13]. However, in



case of 2-additivity model in some situations the information
provided by the DM fails to provide solutions. Then some
approaches attempt to find the parameters that minimize the
error with the DM preferences and some others propose to
ask the DM to modify the information provided until they are
coherent with a 2-additive fuzzy measure based model. This
paper proposes a practical extension of MACBETH method
to deal with k-additive model while attempting to minimize
the cognitive effort of the DM and shows how this extension
can be used in a real world problem. The theoretical aspects
of the approach are close to the proposition in [9] concerning
the general extension of MACBETH to non-additive models
and [12] [13] concerning the condition of the existence of
2-additive model corresponding to DM preferences, while it
stands out by proposing 1) several optimization programs
dedicated to determine the k-additive model with the smallest
k in case of interactions between more than two attributes;
2) particular learning examples for which it is easy for the
DM to provide preferences and give her/him the possibility of
expressing interactions between attributes; 3) a proof for the
existence of a k-additive model coherent with these prefer-
ences. The paper is organised as follows. Section II gives the
theoretical background of the paper and the reminder about the
MACBETH questioning procedure. We present our approach
in Section III and provide an illustration concerning the
comparison of some electrical and thermal vehicles regarding
their environmental impacts in Section IV.

II. THEORETICAL BACKGROUND AND REMINDERS

To simplify, we adopt in the rest of the paper the following
notations for i, j ∈ N , i 6= j, and I ⊆ N : the subset {i}
denoted by i, the subset N \ {i} denoted by −i, the subset
{i, j} by ij, the subset N \ {i, j} denoted by −ij and more
general, the subset N \ I denoted by −I . Similarly, for some
vectors of X (rep. Rn+), for x, y ∈ X (rep. Rn+), (xI , y−I)
denotes the vector z ∈ X(rep. Rn+) such that zi = xi, ∀i ∈ I
and zi = yi, ∀i ∈ N \ I .

A. Fuzzy Measure and Möbius Transform

Definition 2: A fuzzy measure µ over N is a set functions
from 2N to [0, 1] verifying [5]:

1) boundary conditions: µ(∅) = 0 and µ(N) = 1;
2) monotonicity conditions: ∀K,T ⊆ N ,

K ⊆ T =⇒ µ(K) ≤ µ(T ).

Remark 1: Let us consider a subset I ⊆ N , the quantity
µ(I) represents the weight of the coalition I of attributes in the
decision [4] and the monotonicity of µ means that the weight
of I can not decrease when adding to it an other attribute.

The definition 2 does not allow to find µ(K) from µ(T ),
and vice versa ∀K,T ⊆ N . Thus, in order to determine µ
one has to ask 2n−2 parameters from the DM. To reduce the
number of parameters defining a fuzzy measure, the notion of
Möbius transform was introduced in [14] [15].

Definition 3: The Möbius transform of a fuzzy measure µ
over N is a function mµ : 2N → [0, 1] defined as:

mµ(T ) =
∑

K⊆N :K⊆T

(−1)|T\K|µ(K), ∀T ⊆ N (2)

When mµ is given, it is possible to retrieve µ:

µ(T ) =
∑

K⊆N :K⊆T

mµ(K), ∀T ⊆ N (3)

In order that coefficients mµ(T ), T ⊆ N correspond to a
Möbius transform of a fuzzy measure µ over N , the boundary
and monotonicity conditions of the fuzzy measure must be
ensured [14]:

1) boundary conditions:

mµ(∅) = 0 and
∑
T⊆N

mµ(T ) = 1;

2) monotonicity conditions: ∀T ⊆ N and ∀i ∈ N ,∑
K:{i}⊆K⊆T

mµ(K) ≥ 0.

The advantage of introducing a Möbius transform is that under
certain conditions, one can define a fuzzy measure with a
very small number of parameters. Indeed the notion of k-
additive fuzzy measure [16] consider a reasonable number of
interactive attributes in order to achieve a trade-off between
the quantity of information required from the DM to define
the fuzzy measure parameters and the sophisticated model of
v in (1).

Definition 4: Let k ∈ N . A fuzzy measure µ is k-additive
if its Möbius transform mµ verify:

1) mµ(T ) = 0, ∀T ⊆ N such that |T | > k;
2) ∃K ⊆ N such that |K| = k and mµ(K) 6= 0.

From Definition 4, one can deduce that a k-additive fuzzy
measure is completely defined by the coefficients mµ(T ),

∀T ⊆ N : |T | ≤ k. This means that only
k∑
l=1

(nl ), e.g. n(n+1)
2

in the case when k = 2, coefficients are needed to build a k-
additive fuzzy measure instead of 2n−2. Thus for a k-additive
fuzzy measure, we have:

µ(I) =
∑

∅6=T⊆I, |T |≤k

mµ(T ), ∀I ⊆ N. (4)

To facilitate the understanding of the fuzzy measure coeffi-
cients, researchers have tried to express them using several
quantities as Shapley values [17] and interactions quantifica-
tion [18] [16]:

Definition 5: The Shapley value express a power index for
an attribute i ∈ N :

νi =
∑
I⊆N\i

(n− |I| − 1)!|I|!
n!

[µ(I ∪ i)− µ(I)] (5)

νi can be interpreted as a weighted average value of the
marginal contribution of attribute i alone in all coalitions [19].



Definition 6: The interaction between a pair of attributes
i, j ∈ N can be expressed as:

Iij =
∑

I⊆N\ij

m(I ∪ ij)
|I|+ 1

(6)

Iij can be interpreted as a weighted average value of the added
value produced by putting i and j together, all coalitions being
considered [19]. Depending on the sign of Iij , attributes can
have three kind of synergies [19]: 1) positive synergy: Iij > 0
(complementarity); 2) negative synergy: Iij < 0 (redundancy);
and 3) no synergy: Iij = 0 (the attributes are independents).

B. Choquet Integral

Definition 7: In a MCDA context, the Choquet integral of
a vector of positive real numbers y = (y1, ..., yn) ∈ Rn+ w.r.t
a fuzzy measure µ, denoted Cµ(y), is defined as:

Cµ(y) =
∑
i=1,n

(yσ(i) − yσ(i−1))µ(Aσ(i)) (7)

where 0 = yσ(0) ≤ yσ(1) ≤ yσ(2) ≤ ... ≤ yσ(n) (σ is a
permutation over N ) and Aσ(i) = {σ(i), σ(i + 1), ..., σ(n)}.
Equation (7) can be expressed using the Möbius transform mµ

as follows:
Cµ(y) =

∑
I⊆N

mµ(I)min
i∈I

yi (8)

Example 1: Let us consider particular vectors from Rn+:
(1i, 0−i), (1ij , 0−ij) where i, j ∈ N, i 6= j. We can easily
calculate the Choquet integral of these vectors using (7) and
(8):

Cµ(1i, 0−i) = µ(i) = m(i)

Cµ(1ij , 0−ij) = µ(ij) =
∑
I⊆ij

m(I) = m(i) +m(j) +m(ij).

C. Disaggregation Procedure

Except some very specific cases, asking directly vi’s and
Möbius’s values requires a considerable cognitive effort from
the DM especially when considering interactive attributes.
For this reason disaggregation procedure is introduced in the
MCDA works in order to identify the methods parameters.
The main idea is to ask the DM about information which is
for him easy to provide and then from this information vi,
i ∈ N and m(I), I ⊆ N are inferred. The corresponding
information concern the preferences of the decision-maker
about some alternatives that are easy for him to compare.
The principles of the disaggregation procedure in MCDA
methods is the same as the one used in the machine learning
techniques. For example, in the supervised classification task,
for some classifiers a model is assumed to separate classes
then the parameters of this model are determined by restoring
the model from learning examples. In this paper we consider
the disaggregation procedure of MACBETH method [20].
The advantages of this later procedure, proposed initially for
an additive model, are numerous. First it proposes a ques-
tioning procedure from which the preferences are collected
and the selected alternatives are easy to compare by the

DM. Second, MACBETH method states a linear program
where the constraints consist of the DM preferences and the
decision variable are the model parameters. The details of the
questioning procedure are presented in Subsubsection II-C1
and the details of the established linear program are presented
in Subsubsection II-C2.

1) MACBETH Questioning Procedure: The MACBETH
questioning procedure is organised as follows:
• Q1: Is one of the two elements more attractive than the

other? DM’s response (R1) can be: ”Yes”, or ”No”, or ”I
don’t know”. If R1 = ”Yes”, a second question (Q2) is
asked:

• Q2: Which of the two elements is the most attractive?
• Q3: How do you judge the difference of attractiveness?
• DM’s response (R3) would be provided in the form

”ds”, where ds, s = 1, 2, .., 6 are semantic categories
of difference of attractiveness defined so that, if s < s′,
the difference of attractiveness ds is weaker than the dif-
ference of attractiveness ds′ . The Six semantic categories
of difference of attractiveness are ”very weak”, ”weak”,
”moderate”, ”strong”, ”very strong” or ”extreme”.

In the MACBETH methodology, it is assumed that the DM is
able to identify for each attribute i ∈ N two absolute reference
levels:
• A first reference level denoted 1i in Xi which it is

considered good and completely satisfying for the DM,
even if more attractive elements could exist: vi(1i) = 1.

• A second reference level denoted 0i in Xi which is con-
sidered completely unacceptable by the DM: vi(0i) = 0.

We denote 0 ∈ X (resp. 1 ∈ X) the n-dimensional vec-
tor where all the components are 0i (resp. 1i). These two
reference levels are necessary to ensure commensurateness
between attributes. Two parts are involved in the MACBETH
disaggregation procedure for a model as in (1) when F
is a weighted average operator. The first one consists in
determining the weights ωi and the second one consists in
determining the value functions vi for each attributes (n times).
For the ith attribute, to determine vi the DM compares the
fictive alternatives (xji ,0−i) where xj correspond to the jth
alternatives that the DM aims to rank. While to determine
ωi, the DM is asked to compare binary alternatives (1i,0−i).
Note that the reference alternatives 1 and 0 are also included
in the comparisons in the two steps. As one can remark these
alternatives are easy to compare and they give information
about the unknown parameters. In addition, in case of a small
number of alternatives (resp. attributes), it is not fastidious to
compare alternatives (xji ,0−i) (resp. (1i,0−i)). In the case of
l alternatives to rank, the DM has to handle l (l + 1)/2 pair
comparisons n times for determining all vi. While for deter-
mining ωi, the DM has n (n + 1)/2 comparisons to handle.
Based on the answers, MACBETH detects any inconsistencies
and offers corrections interactively. Three binary preference
relations can be distinguished from the answers.
• ∼= {(a, b) ∈ A×A : a is not more attractive than b and
b is not more attractive than a};



• �= {(a, b) ∈ A × A : a is more attractive than b}; and
when the DM provides qualitative judgements about the
difference of attractiveness, the following binary relation
is considered:

Ps = {a � b and the difference of attractiveness is ds }

where A is the set of compared alternatives, s ∈ {1, ..., 6},
� is the asymmetric part of the binary relation % and ∼
its symmetric part. Note that introducing the difference of
attractiveness when comparing alternatives lead to assume
the condition of difference independence of preferences [2].
Finally, the ordinal information obtained from the decision-
maker are: {∼, Ps}. When considering a non-additive model,
the questioning procedure for the step concerning the deter-
mination of vi is the same as in the additive one. However,
for practical reasons, alternatives (xji ,1−i)) are preferred to
alternative (xji ,0−i)). Indeed, the DM could consider, in some
situations, that all alternatives (xji ,0−i)) are equivalent to the
alternative 0. While the extension of the questioning procedure
when determining ωi is not obvious. Indeed, the straightfor-
ward extension leads to ask the DM to make (2n) (2n−1)/2)
comparisons for the binary alternatives (1I ,0−I), I ⊆ N .
In addition to the large number issue, some alternatives are
difficult to compare. In [12] [13], the authors propose to focus
on determining a 2-additive fuzzy measure by considering
only the binary alternative with a maximum of two different
attributes i and j fixed at levels 1i and 1j . As mentioned
before, in this case the issue is that in some situation a Choquet
integral based 2-additive fuzzy measure does not match the
DM preferences.

2) MACBETH Linear Program: MACBETH establishes a
linear program where the ordinal preference information {∼
, Ps} form a part of the constraints and the decision variables
are the values of the interval scale v, i.e., which is defined up
to a positive linear transformation: v → αv+β, α > 0 (slope)
and β ∈ R (constant) [21] [19] with v(0) = 0 and v(1) = 1.
In the case where the ordinal information concern alternatives
(xji ,0−i), we have v(xji ,0−i) = ωi vi(x

j
i ) and in the case of

alternatives (1i,0−i), we have v(1i,0−i) = ωi. Let us denote
by y1, . . . , yl the value function, i.e., the interval scale, of the
l compared alternatives. The corresponding linear program is
presented in Tab. I.

TABLE I
LINEAR PROGRAM TO DETERMINE VALUE FUNCTION.

min :
subject to
yp − yr = 0 ∀(xp, xr) ∈∼
σs−1 < yp − yr ∀(xp, xr) ∈ Ps
yp − yr < σs ∀(xp, xr) ∈ Ps
0 = σ0 < σ1
σs < σs+1 s = 1, . . . , 5
0 ≤ yj ≤ 1 j = 1, . . . , l

III. MACBETH DISAGGREGATION PROCEDURE
EXTENSION

In this section we present our proposition for the MAC-
BETH methodology extension to non-additive model. First,
Subsection III-A presents the adaptation of the MACBETH
questioning procedure related to the determination of at-
tributes’ weights to the determination of the Möbius trans-
form coefficients. In this procedure, particular alternatives are
presented to the DM in order to express preference related
to the attribute pair interactions. Then we demonstrate that it
exists a Choquet integral based fuzzy measure representing
the collected preferences. In Subsection III-B, we present the
extension of the linear program in the MACBETH method
to a non-linear one that guaranties an uniform distribution of
the coefficient in case where information about difference of
attractiveness are not provided. Therefore, a mean square error
is fixed as objective function. Finally, in Subsection III-C we
show that it’s not always guaranteed to obtain a 2-additive
fuzzy measure and we propose an iterative procedure to
determine the optimal k, i.e. the smallest one, such that a
k-additive fuzzy measure correspond to the DM preferences.

A. Questioning Procedure

As mentioned in Subsection II-C1 the large number of
alternatives to compare and the difficulties of comparisons for
the DM require the adaptation of the questioning procedure
of MACBETH methodology when a non-additive model is
involved. The extension proposed in this paper consists in
reducing the number of binary alternatives and the number
of comparisons. As the aim is to consider as few as possible
the interactions between attributes in order to facilitate the
DM understanding of the model parameters, we propose to
limit the binary alternatives to those highlighting interactions
for maximum of two attributes. Those binary alternatives are
{(0i,1−i), (0ij ,1−ij), i 6= j, i, j ∈ N}.

The proposed questioning procedure is the following:
• First, the DM is asked to rank the binary alternatives from

the best to the worst. The alternatives 1 is placed at the
top of the ranking and the alternative 0 at the bottom of
the ranking.

• Second, the DM is asked to provide a difference of
attractiveness between each pair of successive alternatives
in the ranking.

The advantage of this simplification of the MACBETH orig-
inal procedure, where only the matrix cells located directly
above the diagonal are considered, is twofold. First, the
number of comparisons is drastically reduced and second the
preference inconsistencies are limited. More precisely, let us
denote B = {0,1, {(0i,1−i), (0ij ,1−ij), i 6= j, i, j ∈ N}},
the inconsistencies that can exist in the DM preferences
when ranking the alternatives in B are encountered when
the DM considers that (0ij ,1−ij) � (0i,1−i). They are
considered inconsistencies because they are in a contradiction
with the properties of an aggregation operator and the DM can
reasonably avoid them. If these kinds of inconsistencies are



not present in the preferences then it exists a Choquet integral
based fuzzy measure µ that represents the DM preferences.

Definition 8: The preferences {∼, {Ps, s ∈ {1, . . . , 6}}}
over B are said to be consistent if
• ∀i, j ∈ N such that i 6= j then either (0i,1−i) �

(0ij ,1−ij) or (0i,1−i) ∼ (0ij ,1−ij),
• 1 � 0.

The second condition cannot be satisfied when the DM con-
siders that all the alternatives are totally good or totally bad.
The drawback of the small comparisons related to the number
of the alternatives is that the obtained value functions are not as
precise as those that one would obtain with more comparisons.

Proposition 1: If the preferences

{∼, {Ps, s ∈ {1, . . . , 6}}}

over B are consistent then it exists a Choquet integral based
a fuzzy measure µ that represents the DM preferences.

Proof 1: The proof can be divided into two parts. The
first part consists in proving that for a list of ranked object
it is always possible to associate real values between 0 and
1, i.e., interval scale, respecting some constraints on the
width of differences between successive ordered values, i.e.,
some widths are more larger then others. This can be done
using mathematical induction and by considering 3, 4, ....
elements in the ranked list. When adding a new element,
one has just to adjust the other widths if necessary. The
second part is dedicated to prove the existence of a Choquet
integral based fuzzy measure µ that represents the preferences
{∼, {Ps, s ∈ {1, . . . , 6}}} over B when the coefficient

{µ(−i), µ(−ij), i 6= j, i, j ∈ N}

are ordered values in [0, 1] such that µ(−i) ≥ µ(−ij), ∀i, j ∈
N and i 6= j. In order to prove the second part, let us, for
example, consider that µ(N) = 1, µ(∅) = 0 and for each
subset I ⊂ N such that it exists at least a pair i′, j′ ∈ N such
that i′ 6= j′ and I ⊂ N r {i′, j′}, we set

µ(I) = min
i,j∈N,i6=j,I⊆Nr{i,j}

µ(−ij). (9)

Then µ is fully defined and it is a fuzzy measure over N .
Indeed, let us consider A,B ⊆ N such that A ⊆ B and let
us prove that µ(A) ≤ µ(B). If A = N r i, i ∈ N then either
B = N r i or B = N thus in both cases µ(A) ≤ µ(B). Else
if A = N r {i, j}, i, j ∈ N and i 6= j then either B = A,
or B = N r i or B = N thus in all cases µ(A) ≤ µ(B).
Elsewhere, it exists at least a pair i′, j′ ∈ N such that i′ 6= j′

and A ⊂ N r {i′, j′}. If it exists a pair i′′, j′′ ∈ N such that
i′′ 6= j′′ and B = N r {i′′, j′′} (or it exist i′′ ∈ N such that
B = N r {i′′}) then µ(A) ≤ µ(B). If else we have from (9)
µ(A) = µ(B).

B. Optimization Program

In Subsection III-A, we show that it exists a fuzzy measure
corresponding to the DM preferences. In this subsection we
set a non-linear optimization program (see Tab. II) to deter-
mine the coefficients of this fuzzy measure. For presentation

simplifications purpose, we denote the alternative of B in the
ascending order corresponding to the ranking provided by the
DM as {b1, . . . , bp} where p = n(n+1)

2 + 2.

TABLE II
QUADRATIC OPTIMIZATION PROGRAM TO DETERMINE COEFFICIENTS.

min :
∑

j∈{1,...,p}
(v(bj)− j

p−1
)2

subject to
preferences constraints
yt − yr = 0 ∀(bt, br) ∈∼, t, r ∈ {1, . . . , p}
σs−1 < yt − yr ∀(bt, br) ∈ Ps, t, r ∈ {1, . . . , p}
yp − yr < σs ∀(bt, br) ∈ Ps, t, r ∈ {1, . . . , p}
yt = a bt = a, a ∈ {0, 1}
yt = v(0i,1−i) =

∑
K⊆Nr{i}

m(K) for bt = (0i,1−i)

yt = v(0ij ,1−ij) =
∑

K⊆Nr{i,j}
m(K) for bt = (0ij ,1−ij)

0 ≤ yt ≤ 1 j = 1, . . . , p
fuzzy measure constraints
k-additivity constraints:
m(T ) = 0 ∀T ⊆ N : |T | > k
boundary constraint:∑
T⊆N

m(T ) = 1

monotonicity constraints:∑
K:{i}⊆K⊆T

m(K) ≥ 0 ∀T ⊆ N and ∀i ∈ N

semantic categories of difference
of attractiveness constraints
0 = σ0 < σ1
σs < σs+1 s = 1, . . . , 5

As one can see in Tab. II, the objective function part of
the optimization program is changed comparing to the orig-
inal MACBETH linear program. The remaining parts simply
translate the expression of the value function v as the Choquet
integral related to a Möbius transform and the constraints
related to the monotonicity of a fuzzy measure. Regarding the
objective function, the proposed one is a mean square error
between the values associated to the alternatives obtained from
the preferences and an uniform distribution of n(n+1)

2 values
between 0 and 1. The aim of this objective function is twofold.
First, in case of no difference of attractiveness are provided by
the DM, the associated values will correspond to an uniform
distribution which corresponds to the well-known principle in
artificial intelligence that is ”the least commitment principle”.
Second, this allow us to avoid local solutions from the solver
that are close to the boundaries of the decision variables.

C. Iterative Determination of a k-additive Fuzzy Measure

The existence of a Choquet integral based fuzzy measure
representing the preferences {∼, {Ps, s ∈ {1, . . . , 6}}} do not
guaranty that this fuzzy measure is a 2-additive one. Example 2
shows, for the case of 3 attributes, an example of preferences
for which a Choquet integral based 2-additive fuzzy measure
is not compatible.

Example 2: Let us consider the following example with 3
attributes and suppose that the DM provides the preferences



in (10).

(1,1,1) �1 (1,1,0) �3 (1,0,1) �4 (1,0,0)

∼ (0,1,1) �4 (0,1,0) �1 (0,0,1) �1 (0,0,0)
(10)

where for two alternatives a, b ∈ X , and a difference of
attractiveness ds, a �s b means a is preferred to b and the
difference of attractiveness is ds. If it exists a 2-additive fuzzy
measure for which the Choquet integral corresponds to the
preferences of (10), Equations (11) - (21) show the constraints
that the corresponding möbuis coefficients should obey.

(1,1,1) �1 (1,1,0):

σ0 < 1− (m1 +m2 +m12) < σ1 (11)

(1,1,0) �3 (1,0,1):

σ2 < m2 +m12 −m3 −m13 < σ3 (12)

(1,0,1) �4 (1,0,0):

σ3 < m3 +m13 < σ4 (13)

(1,0,0) ∼ (0,1,1):

m1 = m2 +m3 +m23 (14)

(0,1,1) �4 (0,1,0):

σ3 < m3 +m23 < σ4 (15)

(1,0,0) �4 (0,1,0):

σ3 < m1 −m2 < σ4 (16)

(0,1,0) �1 (0,0,1):

σ0 < m2 −m3 < σ1 (17)

(0,0,1) �1 (0,0,0):

σ0 < m3 < σ1 (18)

boundary constraint:

m1 +m2 +m3 +m12 +m13 +m23 +m123 = 1 (19)

2-additivity:
m123 = 0 (20)

monotonicity:

m1 ≥ 0,m2 ≥ 0,m3 ≥ 0,

m1 +m12 ≥ 0,

m2 +m12 ≥ 0,

m3 +m13 ≥ 0,

m1 +m12 +m13 +m123 ≥ 0,

m2 +m12 +m23 +m123 ≥ 0,

m3 +m13 +m23 +m123 ≥ 0.

attractiveness constraints:

0 < σ0 < σ1 < . . . < σ6 (21)

From (11) and (19) and (20), we have:

σ0 < m3 +m13 +m23 < σ1 (22)

From (13) and (18), we have:

m13 > σ3 − σ1 (23)

From (15) and (18), we have:

m23 > σ3 − σ1 (24)

Put together (21), (23) and (24) are in contradiction with (22).
In case it does not exist a 2-additive fuzzy measure, instead of
asking the DM to change the preferences, the paper proposes
to identify the k-additive fuzzy measure where k is as small
as possible regarding the preferences. For this aim an iterative
algorithm (see Algorithm 1) is proposed that calls the quadratic
program solveQOP (l, {∼, {Ps, s ∈ {1, . . . , 6}}}) of Tab. II
for 1-additive, 2-additive, 3-additive, . . ., until a solution is
found.

Algorithm 1: Determining the k-additive fuzzy mea-
sure from preferences information.

Data: Preference structure {∼, {Ps, s ∈ {1, . . . , 6}}}
Result: A k-additive fuzzy measure µ
// initialisation

1 l← 1;
2 repeat

// solve the quadratic optimization problem for
l-additive fuzzy measure

3 if it exists a l-additive solution then
4 µ← solveQOP (l, {∼, {Ps, s ∈ {1, . . . , 6}}});
5 k ← l;

6 else
7 l← l + 1;

8 until it exists a l-additive solution µ
9 return µ;

IV. ILLUSTRATION

To illustrate the proposed extension of MACBETH method-
ology, we consider an application involving a multiple criteria
decision problem. The application concerns the comparison
of five vehicles, three electrical ones and two thermal ones,
based on their environmental impacts related to the life cycle
assessment (LCA) principles. The application derives from
two studies. The first one conducted by the french agency for
ecological transition [22] dedicated to the LCA study and the
second one [23] aimed to compare the vehicles using MCDA
based on the decision matrix obtained with the first study
and the preferences of some decision-makers from the french
industry. Note that, only a subset of selected environmental
impacts and a subset of selected alternatives are considered
in the second study as the aim of the study was to show how
one can use MCDA methods for decision making within LCA.
Tab. III presents the list of the attributes and the alternatives
considered in the second study and Tab. IV presents the
corresponding decision matrix. Due to lack of space, we
cannot give more details about the application (see [23] and
[22] for more details). Note that the values in the decision
matrix of Tab. IV represented the environmental impacts and
therefore they have to be minimized.



TABLE III
ATTRIBUTES AND ALTERNATIVES.

attribute number abbreviation alternative abbreviation
Climate change 1 CC Electric vehicle France EV FR

Acidification 2 AC Electric vehicle Germany EV DE
Eutrophication 3 Eutro Electric vehicle Europe (EU 27) EV EU27

Total energy consumption 4 TEC Gasoline thermal vehicle Gas
Radioactive waste 5 RW Diesel thermal vehicle Dies

Radioactive emissions (air) 6 RE
NOx emissions 7 Nox

TABLE IV
THE DECISION MATRIX.

Attribute EV DE EV EU27 EV FR Gas Dies
CC (104 kg CO2 equiv) 1.78 1.49 0.678 2.69 2.22

AC (kg SO2 equiv) 47.8 70.3 34.3 41.5 49
Eurto (kg Phosphate equiv) 4 4.27 2.56 3.75 6.46

TEC (105 MJ) 3.09 2.99 3.02 4.11 3.32
RW (10−2 kg) 5.08 6.25 15.1 1.27 1.28

RE (Bq I129 equiv) 10.6 12.8 23.2 7.94 7.85
Nox (kg) 23.4 26.6 14.1 20 34.8

A. Möbius Coefficients Determination

We consider in this study the preferences of the DM that
is a single member from the french industry. The question
procedure in Subsection III-A is answered by the DM and
provide preferences about the comparisons of binary alterna-
tives in Tab. V. Note that we designed a very user-friendly
questionnaire, that is not presented here for space reasons,
to facilitate the DM task. In Tab. V are presented the DM’s
answers to the questionnaire.

TABLE V
THE DM PREFERENCES CONCERNING BINARY ALTERNATIVES.

(1,1,1,1,1,1,1) �3 (1,1,0,1,1,1,1) ∼ (1,0,1,1,1,1,1) ∼ (1,0,0,1,1,1,1) ∼
(1,1,1,1,1,0,1) �1 (1,0,1,1,1,0,1) �1 (1,1,0,1,1,0,1) �3 (1,1,1,1,0,1,1) �3

(1,1,1,1,1,1,0) �3 (1,1,1,0,1,1,1) �1 (0,1,1,1,1,1,1) �2 (1,1,0,1,0,1,1) ∼
(1,0,1,1,0,1,1) ∼ (1,1,1,1,0,0,1) �2 (1,0,1,1,1,1,0) ∼ (1,1,0,1,1,1,0) ∼
(1,1,1,1,1,0,0) �3 (1,1,1,1,0,1,0) �2 (1,1,0,0,1,1,1) ∼ (1,0,1,0,1,1,1) ∼
(1,1,1,0,1,0,1) �3 (1,1,1,0,0,1,1) �3 (1,1,1,0,1,1,0) �2 (0,1,0,1,1,1,1) ∼
(0,0,1,1,1,1,1) ∼ (0,1,1,1,1,0,1) �3 (0,1,1,1,0,1,1) �3 (0,1,1,1,1,1,0) �5

(0,1,1,0,1,1,1) �6 (0,0,0,0,0,0,0)

Applying the Algorithm 1, a 3-additive fuzzy measure is
identified as the solution of the quadratic optimization program
of Tab. II related to the preferences of Tab. V. The non-
zero coefficients of the identified 3-additive fuzzy measure are
presented in Tab. VI.

As one can see in Tab. VI, from these preferences, the
Möbius transform coefficients for the attributes taken alone,
that coincide with their fuzzy measure coefficients, are zero.
Thus the attributes alone have no importance in the decision.
While when the attributes are combined with other ones, some
of them become important. Indeed, the Tab. VII shows the
corresponding Shapley values and one can see that the attribute
”Climate change” and ”Total energy consumption” have more
than 50% of global importance in the decision. For more
analysis based on the fuzzy measure, one can take a look
at the pair interactions between attributes shown in Tab. VIII.
Three positive interactions seem to be important: {CC, TEC},
{CC,RW} and {CC,Nox}. Therefore, alternative that have

TABLE VI
THE OBTAINED 3-ADDITIVE FUZZY MEASURE.

subset mµ subset mµ subset mµ
{1, 2} 0.033 {1, 3} 0.046 {1, 2, 3} -0.033
{1, 4} 0.283 {1, 2, 4} -0.033 {3, 4} 0.004
{1, 3, 4} -0.033 {2, 3, 4} 0.04 {1, 5} 0.19
{2, 5} 0.007 {1, 2, 5} 0.0001 {3, 5} 0.00714
{1, 3, 5} -0.009 {2, 3, 5} -0.007 {4, 5} 0.055
{1, 4, 5} -0.047 {2, 4, 5} -0.007 {3, 4, 5} 0.001
{1, 6} 0.064 {1, 2, 6} -0.025 {1, 3, 6} -0.03
{2, 3, 6} 0.127 {4, 6} 0.007 {1, 4, 6} -0.047
{2, 4, 6} 0.028 {3, 4, 6} 0.015 {5, 6} 0.004
{1, 5, 6} -0.025 {2, 5, 6} -0.004 {3, 5, 6} -0.004
{4, 5, 6} 0.014 {1, 7} 0.212 {1, 2, 7} -0.008
{1, 3, 7} -0.009 {2, 3, 7} 0.018 {4, 7} 0.023
{1, 4, 7} -0.05 {2, 4, 7} 0.011 {3, 4, 7} 0.012
{5, 7} 0.003 {1, 5, 7} -0.014 {2, 5, 7} -0.003
{3, 5, 7} -0.003 {4, 5, 7} 0.163 {1, 6, 7} -0.004
{2, 6, 7} 0.0002 {4, 6, 7} 0.022 {5, 6, 7} -0.0001

TABLE VII
THE SHAPLEY VALUES.

CC AC Eutro TEC RW RE Nox
0.293 0.0548 0.0577 0.217 0.1525 0.0606 0.1643

good performances on these pair of attributes will be favored
by the DM preferences.

TABLE VIII
THE PAIR INTERACTION VALUES.

CC AC Eutro TEC RW RE Nox
CC . −0.0164114 −0.00979518 0.178723 0.142996 −0.000971418 0.170091
AC . . 0.0721558 0.0198734 −0.003587 0.0633496 0.00893116

Eutro . . . 0.0220475 −0.00357115 0.0545434 0.0089312
TEC . . . . 0.118258 0.0235369 0.102093
RW . . . . . −0.00507813 0.0748298
RE . . . . . . 0.0089312

B. Value Functions Determination

In this part, the original MACBETH methodology is used to
determine the value functions associated to the LCA impacts
expressed in different units of measure in Tab. IV. For each
attribute, the DM provided the answers to the MACBETH
questioning procedure (see Tab. IX).

From These preferences, we obtain the value function vi
and their aggregation v using the 3- additive fuzzy measure of
Tab. VI (see Tab. X). Finally, considering the decision matrix
in Tab. IV, the DM preferences on binary alternatives in Tab. V
and the DM preferences on fictive alternatives in Tab. IX, we
obtain the following ranking: 1: EV DE, 2: EV EU27, 3: EV
FR, 4: Dies, 5: Gas.

The most important remark is that the DM considers that
on each attribute the result obtained by the best alternative is
far, i.e. the difference of attractiveness is ”extreme”, from the
level of complete satisfaction. Therefore, all the alternatives
have below average satisfactions. The alternatives ”EV DE”
obtains almost average value on all the impacts which placed
it in the top of the ranking instead of the other alternatives
that obtain almost average value in several criteria but a very



TABLE IX
THE DIFFERENCE OF ATTRACTIVENESS MATRICES.

CC 1 (0.678,1−1) (1.49,1−1) (1.78,1−1) (2.22,1−1) (2.69,1−1) 0
1 - extreme extreme extreme extreme extreme extreme

(0.678,1−1) - - very strong very strong extreme extreme extreme
(1.49,1−1) - - - moderate strong very strong very strong
(1.78,1−1) - - - - strong very strong very strong
(2.22,1−1) - - - - - very strong very strong
(2.69,1−1) - - - - - - very weak

AC 1 (34.3,1−2) (41.5,1−2) (47.8,1−2) (49,1−2) (70.3,1−2) 0
1 - extreme extreme extreme extreme extreme extreme

(34.3,1−2) - - moderate moderate moderate strong strong
(41.5,1−2) - - - strong strong strong strong
(47.8,1−2) - - - - null strong strong
(49,1−2) - - - - - strong strong
(70.3,1−2) - - - - - - very weak

Eutro 1 (2.56,1−3) (3.75,1−3) (4,1−3) (4.27,1−3) (6.46,1−3) 0
1 - extreme extreme extreme extreme extreme extreme

(2.56,1−3) - - moderate strong strong very strong very strong
(3.75,1−3) - - - weak weak very strong very strong
(4,1−3) - - - - weak strong strong

(4.27,1−3) - - - - - moderate strong
(6.46,1−3) - - - - - - very weak

TEC 1 (2.99,1−4) (3.02,1−4) (3.09,1−4) (3.32,1−4) (4.11,1−4) 0
1 - extreme extreme extreme extreme extreme extreme

(2.99,1−4) - - null very weak moderate very strong very strong
(3.02,1−4) - - - very weak weak strong strong
(3.09,1−4) - - - - moderate strong strong
(3.32,1−4) - - - - - strong strong
(4.11,1−4) - - - - - - very weak

RW 1 (1.27,1−5) (1.28,1−5) (5.08,1−5) (6.25,1−5) (15.1,1−5) 0
1 - very strong very strong very strong extreme extreme extreme

(1.27,1−5) - - null strong strong very strong very strong
(1.28,1−5) - - - strong strong very strong very strong
(5.08,1−5) - - - - weak strong strong
(6.25,1−5) - - - - - strong strong
(15.1,1−5) - - - - - - very weak

RE 1 (7.85,1−6) (7.94,1−6) (10.6,1−6) (12.8,1−6) (23.2,1−6) 0
1 - extreme extreme extreme extreme extreme extreme

(7.85,1−6) - - null moderate moderate strong strong
(7.94,1−6) - - - moderate moderate strong strong
(10.6,1−6) - - - - moderate strong strong
(12.8,1−6) - - - - - strong strong
(23.2,1−6) - - - - - - very weak

Nox 1 (14.1,1−7) (20,1−7) (23.4,1−7) (26.6,1−7) (34.8,1−7) 0
1 - extreme extreme extreme extreme extreme extreme

(14.1,1−7) - - moderate strong strong very strong very strong
(20,1−7) - - - moderate moderate strong strong
(23.4,1−7) - - - - weak strong strong
(26.6,1−7) - - - - - strong strong
(34.8,1−7) - - - - - - very weak

TABLE X
THE DECISION MATRIX.

EV DE EV EU27 EV FR Gas Dies
v1 0.358544 0.384354 0.615246 0.0252104 0.230492
v2 0.384752 0.0002 0.453636 0.454036 0.384752
v3 0.311975 0.2495 0.4998 0.37445 0.062075
v4 0.424614 0.424951 0.424814 0.0002 0.289509
v5 0.364483 0.270633 0.09345 0.635117 0.635117
v6 0.416421 0.333129 0.0826793 0.4997 0.4997
v7 0.433021 0.40004 0.4998 0.466419 0.0325813
v 0.356379 0.287885 0.285445 0.0647806 0.143392

bad result in one or two impacts. The alternative ”Gas” has
bad performance on ”CC” and ”TEC” that are the important
attributes and that have positive interaction. Consequently, this
alternative is ranked last.

V. CONCLUSIONS

In this paper an extension of the MACBETH methodology
to non-additive models is proposed. In particular, the question-
ing and the disaggregation procedures are extended to handle
numerous parameters identification for non-additive models.
An illustration is given to show how to use this extension in
real life application.
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