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Mental arithmetic task classification with convolutional neural network
based on spectral-temporal features from EEG

Zaineb Ajra, Binbin Xu, Gérard Dray, Jacky Montmain, Stephane Perrey

Abstract— In recent years, neuroscientists have been inter-
ested to the development of brain-computer interface (BCI)
devices. Patients with motor disorders may benefit from BCIs
as a means of communication and for the restoration of motor
functions. Electroencephalography (EEG) is one of most used
for evaluating the neuronal activity. In many computer vision
applications, deep neural networks (DNN) show significant
advantages. Towards to ultimate usage of DNN, we present here
a shallow neural network that uses mainly two convolutional
neural network (CNN) layers, with relatively few parameters
and fast to learn spectral-temporal features from EEG. We
compared this models to three other neural network models
with different depths applied to a mental arithmetic task using
eye-closed state adapted for patients suffering from motor
disorders and a decline in visual functions. Experimental results
showed that the shallow CNN model outperformed all the
other models and achieved the highest classification accuracy
of 90.68%. It’s also more robust to deal with cross-subject
classification issues: only 3% standard deviation of accuracy
instead of 15.6% from conventional method.

I. INTRODUCTION

Nowadays, one of the medical challenges is to understand
the diseased brain in the context of neurological diseases
such as Alzheimer’s, Parkinson’s, consciousness disorders,
epilepsy, etc., in order to develop suitable treatments. The
brain and the spinal cord constitute the central nervous
system, capable of integrating information, controlling motor
skills / movements and ensuring cognitive functions [1].
Several technologies based on head movements, eye contact,
etc have given people the chance to control a wheelchair or
robot. However, for patients with brain injury who have lost
muscle control voluntarily, it is not easy or even not possible
to use these technologies.

The brain computer interface (BCI) technology offers
those who are deprived of muscle control a way to com-
municate with their environment and become less dependent
in their daily activities [2][3]. One of the most common BCI
is through electroencephalography (EEG), a non-invasive
neuroimaging technique that measures brain activity, which
is more accessible and more accurate than functional mag-
netic resonance imaging (fMRI) [4] in time resolution. EEG
signals reflect valuable information about the brain activity
in measured scalp regions. This is crucial for the diagnosis
and management of certain diseases or brain injuries.

In consequence, the first step is to better classify the
acquired EEG signals, for example separating EEG sig-
nals containing cognitive activities from the resting state.
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However, classifying cognitive tasks using EEG signals
necessitates solving difficult pattern recognition issues. A
prior feature engineering step is required with conventional
classification methods. Due to the highly complex property
of EEG signal, these methods cannot always guarantee to
produce the acceptable performance of classification. The
neural network (NN) in computer science has reached human
parity milestone in many applications. The most exciting
feature of neural network is its self-learning ability which
implies that manual feature extraction is not necessarily
required. This approach is now more and more used in
EEG classification to overcome the limits of conventional
methods, especially when data volume is increasing in an
exponential way [5][6].

One main issue when using NN is the choice of feature
selection and architecture, as in other fields. In this work, we
proposed to use joint spectral-temporal features instead of
the ones extracted with common spatial pattern filtering and
to benchmark different NN architectures for a mental task
classification using EEG signals, from basic shallow NN to
state-of-art deep NN models.

II. DATA AND MODELS

A. Data from cognitive tasks

1) Participants and data: In this study, we used the
publicly available dataset collected by Shin et al. in 2018
[7]. In the original dataset, 22 EEG channels and 9 near-
infrared spectroscopy (NIRS) channels were simultaneously
recorded from the scalp in 12 participants performing mental
arithmetic (MA) task and being relaxed (BL). Here, we
only consider EEG recordings. Regarding the EEG signals
acquired, 10 were placed on the frontal cortex and 12 other
on parieto-occipital areas.

2) Experimental protocol: Experiments were conducted
in 3 sessions. In each session, a pre-rest period of 15 s was
followed by 20 trials of task phase (27–29 s each) and then a
final 15 s post-rest period. A fixation cross was shown on the
monitor through the pre-rest and post-rest periods. During
each trial, participants were instructed to look at a visual
instruction (2 s) indicating the type of task, followed by task
period of 10 s and a rest period (15–17 s). In the instruction
period, the type of task was randomly displayed on the screen
(MA or BL). For MA task, an arbitrary one-digit number
between 6 and 9 was subtracted from three digit number.
For BL, participants were asked to relax and gaze at the
fixation cross displayed in the middle of the monitor. A total
of 60 trials (20 trials × 3 sessions) were performed by each
subject.
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3) Data preprocessing: The raw EEG signals from 22
channels were down-sampled to 200Hz and then band-pass
filtered within the range of 0.5–50Hz using a 3rd-order
Butterworth filter. Ocular artifacts were rejected manually.
The artifact-free data was segmented into epochs using time
intervals from −2 s (2 s before the beginning of the task) to
10 s (the end of the task). The baseline in the range of −1 s
to 0 s were removed from data. In total, 60 epochs of 12 s
duration were obtained for each participant.
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Fig. 1. The study work-flow: from signal-spectrum to different models

B. Spectral-temporal feature extraction

In the work [7], Shin et al. used features extracted from
EEG signals with common spatial pattern filter (CSP). The
time-frequency analysis allows to obtain richer information
which are more appropriate to neural network. Thus, in
this work, spectral-temporal features were used. These fea-
tures are extracted with event-related spectral power (ERSP)
approach from EEG data with EEGLab. ERSP is applied
at epoch level. As most known DNN have fixed input
dimensions such as (224 × 224), to take the advantage of
these powerful models, the ERSP output (time × frequency
domain) is set with the same dimensions. In total 15 480
spectrograms (12 subjects × 22 electrodes × 60 epochs)
were extracted. The main workflow can be found in Fig. 1.

C. Models

Shin et al. used shrinkage linear discriminant analysis
(sLDA) to classify the features obtained from CSP on EEG.
While classifying MA task from BL, the performance by
sLDA reached 77.3± 15.9% (mean ± std) in terms of accu-
racy. In our work, we opted for neural network models. Two
types of NN models were evaluated: 1) proposed shallow
neural network: basic recurrent neural network (RNN) and
convolutional neural network; 2) common state-of-art deep
neural networks: GoogLeNet and ResNet-50.

1) Long Short-Term Memory (LSTM) model: RNN is
capable to learn temporal dependence in the sequential data.
It’s the common architecture to deal with time series data,
and often serves as the baseline model in bench-marking.
Here, we proposed to use a first model based on LSTM
which is one of the most used RNN variants. This model

is consisted of two LSTM layers having respectively 256
and 128 hidden neurons. Each of them is followed by a
Dropout layer (drop rate 0.5). The output classification layer
used SOFTMAX as activation. The spectral-temporal features
are thus considered as for example 224 time series in the
frequency domain. The model architecture can be found in
Fig. 2.

LSTM network

In
pu

tL
ay

er
in

pu
t:

ou
tp

ut
:

[(?
, 2

24
, 2

24
)]

[(?
, 2

24
, 2

24
)]

LS
TM

in
pu

t:
ou

tp
ut

:
(?

, 2
24

, 2
24

)
(?

, 2
24

, 2
56

)

D
ro

po
ut

in
pu

t:
ou

tp
ut

:
(?

, 2
24

, 2
56

)
(?

, 2
24

, 2
56

)

LS
TM

in
pu

t:
ou

tp
ut

:
(?

, 2
24

, 2
56

)
(?

, 2
24

, 1
28

)

D
ro

po
ut

in
pu

t:
ou

tp
ut

:
(?

, 2
24

, 1
28

)
(?

, 2
24

, 1
28

)

Fl
att

en
in

pu
t:

ou
tp

ut
:

(?
, 2

24
, 1

28
)

(?
, 2

86
72

)

D
en

se
in

pu
t:

ou
tp

ut
:

(?
, 2

86
72

)
(?

, 2
)

Fig. 2. Baseline LSTM model architecture

2) Convolutional Neural Networks: CNN is currently the
most used neural network architecture. The main advantage
of CNN is its self-learning ability of feature extraction –
using a series of convolution filters, CNN layer can generate
invariant features from two-dimensional / three-dimensional
data. There’s no necessarily further step of manual feature
extraction. Another advantage of CNN models is that it also
takes the spatial (or cross-dimensional in case of data other
than images) constraints which may yield better features. The
two-dimensional spectral-temporal features ERSP features of
dimension 224 × 224 from EEG signals can be considered
as one type of image. Application of CNN layers on its
classification can then be considered.

Fig. 3. CNN model architecture

The proposed CNN model (Fig. 3) followed the same
principle – shallow neural network. This model has essen-
tially two 2D convolutional layers (Conv2D) which are each
attached to a batch normalization layer to address the issue
of internal covariate shift. The Batch normalization layer can
also be considered as regularizer, in many cases it may help
to eliminate the need of a Dropout layer. Both Conv2D layers
using a Rectified Linear Unit (ReLU) activation have 10
filters with kernel of size 3× 3 and zero-padding is applied
to match the same input dimension. These two blocks are
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linked by a max pooling layer with 2 × 2 size and 2 × 2
stride.

3) Deep neural network: Considering the data size limit,
two proposed models are both basic shallow network. The
ultimate goal is to acquire enough data to re-train the stat-
of-the-art DNN models. At the first stage, it’s worth to
investigate how these DNN models perform in this appli-
cation. Two models with the same input image size are
considered: GoogLeNet and ResNet-50. As shown in Table
I, they have considerably larger sizes in comparison to the
proposed shallow networks which have only 0.74 / 0.25
million parameters.

TABLE I
MODELS PROPERTIES

Network Depth Parameters (Millions) Input Size

GoogLeNet 22 7 224-by-224
ResNet-50 50 25.6 224-by-224

LSTM 2 0.74 224-by-224
CNN 2 0.25 224-by-224

D. Training options and performance evaluation

All models were trained in the same configuration.
Stochastic gradient descent with momentum (SGDM) op-
timizer is used for all. The initial learning rate is fixed at
0.001. The maximum number of training epoch is 50, with
batch size 64. The same early stopping rule is applied –
validation patience of 20 and a validation frequency of per
8 iterations.

Keeping the original subject / task ratios from the raw data,
the 15 840 samples are randomly split into TRAINING (70%),
VALIDATION (15%) and TEST (15%). In order to minimize
the risk of over-fitting, 20 random triple-sets were generated
and used for all models. The median values of commonly
used metrics (Accuracy, Specificity, Sensitivity and F1-score)
on TEST sets are reported from the 20 splits.

III. RESULTS / DISCUSSION

For the four NN models with same training conditions
– shallow LSTM / CNN, deep GoogLeNet and ResNet-50,
their performance metrics are presented in Table II. The
shallow LSTM model showed poor performance, with a

TABLE II
THE PERFORMANCES OF DIFFERENT METHODS (MEDIAN %)

Methods ACC Sensibility Specificity F1 score

sLDA [7] 80.10 – – –

LSTM 67.76 67.74 68.37 68.38
GoogLeNet 73.34 77.56 72.45 72.22
ResNet-50 72.77 74.63 72.00 72.07

CNN 90.68 94.34 90.85 90.21

STANDARD DEVIATION OF CNN MODEL

CNN std 2.30 5.53 6.29 2.28

median accuracy only at 67.76% which is quite lower than
the baseline results of 80.1% from [7]. Deep NN models
performed similarly. Both models showed neither satisfactory
results with 73.34% / 72.77% accuracy. The shallow CNN
model, despite its smallest number of parameters, achieved
an accuracy of 90.68% and outperformed all the listed
models. This model is also much more robust with a standard
deviation accuracy only at 2.3%, while it was 15.9% in [7].

TABLE III
PERFORMANCES BY PARTICIPANT WITH CNN MODEL (MEDIAN %)

sLDA [7] proposed CNN model

Participant ACC EEG ACC Sen Spe F1

1 96.5 90.3± 4.4 92.7 91.3 90.1
2 79.0 91.2± 3.0 94.4 93.4 91.3
3 58.2 92.0± 2.6 94.6 94.0 91.8
4 90.7 90.9± 2.9 93.7 91.2 90.9
5 95.7 90.3± 3.4 91.1 91.6 89.9
6 83.0 89.4± 3.6 91.6 89.1 89.6
7 50.7 92.1± 2.6 95.1 90.8 92.1
8 66.2 90.3± 2.8 92.2 90.6 89.9
9 81.2 88.7± 3.0 91.7 90.6 88.3

10 76.8 90.1± 2.7 95.1 91.3 89.8
11 96.0 92.4± 2.4 95.7 92.5 92.2
12 53.7 89.1± 2.6 90.5 90.1 88.6

std 15.9 1.20 1.80 1.36 1.30

Another common issue of classification study in neuro-
science is that the performance varies strongly from one
subject to another. So, we tested the trained models for each
participant in test set as well. As shown in Table III, the
CNN model demonstrated its robustness. The classification
accuracy is quite similar for all the 12 participants. The sLDA
approach with CSP extracted features failed to classify the
MA task from BL, with accuracy close to 50% – the random
selection in case of binary classification. The inter-participant
standard deviation of accuracy is 15.6%, while the new CNN
model showed significantly small as 1.2%. At participant
level, the inter-participant std values are all close to 3%.

Further observation at EEG channel level revealed that
the performance varied from one brain region to another
(Fig. 4, topological plot with interpolation from EEGLab;
detailed values in Tab. IV). The good accuracy in the frontal
cortex region (especially left) is consistent with literature
on mental arithmetic tasks [8]. In occipital region, similar
accuracy was obtained. This suggested that this region might
be a promising candidate in the classification of this type of
tasks.

The poor performance from LSTM models is generally
related to one of its drawbacks - lack of spatial (or cross-
dimensional) learning. More specifically in this study, LSTM
model took only the temporal information into account, the
structural correlation in frequency domain being ignored.
This would make it fail to classify correctly this type of data
in cognitive task. Applying the same early stopping rules as
shallow NN, the deep neural networks showed only moderate
performance. However, if they are trained differently (with
less strict early stopping rule and considerably more fine-
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Fig. 4. Topological representation of performances by Channels

TABLE IV
PERFORMANCES BY CHANNELS (MEDIAN %)

Channel ACC Channel ACC Channel ACC

F7 89.1 AFF1h 93.3 POO1 92.6
AFF5h 91.3 AFF2h 91.3 POO2 89.1
F3 91.7 Cz 89.7 P4 89.2
AFp1 92.2 Pz 90.5 P8 91.4
AFp2 88.1 T7 88.5 C4 90.0
AFF6h 89.3 C3 86.9 T8 91.4
F4 91.4 P7 91.5
F8 88.8 P3 92.3

tuning), these models started to show promising performance
(some case better than baseline result with sLDA). They
should perform better when the data size is sufficiently large.

FURTHER TRAINING ON LSTM AND RESNET-50 MODELS

Methods ACC Sensibility Specificity F1 score

LSTM 78.87 82.69 79.01 75.86
ResNet-50 85.90 88.92 83.48 84.86

But one needs to note that the training time is significantly
longer than shallow networks. And many deep NN models
run only on graphics processing unit (GPU) in order to be
trained in an acceptable time range. When the data size is
limited, this study highlights that use of shallow CNN may
already help to obtain satisfactory accuracy as high as 91%.
There exists still slight room to improve the performance
of this model by fine-tuning the architecture and training
parameters.

IV. CONCLUSION

In this study, we examined the performance of four
neural network models in cognitive tasks classification of
EEG recordings at trial level. Our findings revealed that

the proposed shallow CNN improves significantly classifica-
tion performance reaching 90.68% cross-validation accuracy,
which is 10.6% higher than with sLDA method in their
original study [7]. The spectral and temporal features from
EEG would be more representative than features extracted
by spatial pattern filtering. In comparison with CNN model,
the basic LSTM model in time domain only showed poor
performance and failed to accomplish the classification task.
This suggests that the structure across frequencies can indeed
bring additional information.

Even though the DNN did not give satisfactory results
when using the same training options, when trained with dif-
ferent configurations, their performances started to increase
and can surpass the performance with sLDA. However, this
will require much more training time and parameter fine-
tuning. They are still very promising. Increasing the data
volume will help to improve the performance and most
importantly to propose some more generalized and robust
models when dealing with unlearned new data. A project of
this objective is currently on-going.

The high performance of the shallow CNN model showed
that for cognitive task classification, simple shallow network
might already be sufficient which requires much less training
time and computational load. The personalised model is also
conceivable when trial-level data number is enough. This can
also help to reduce the inter-subjects issue.
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