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Citation: Tadić, Ð.; Manasfi, R.;

Bertrand, M.; Sauvêtre, A.; Chiron, S.

Use of Passive and Grab Sampling

and High-Resolution Mass

Spectrometry for Non-Targeted

Analysis of Emerging Contaminants

and Their Semi-Quantification in

Water. Molecules 2022, 27, 3167.

https://doi.org/10.3390/

molecules27103167

Academic Editor: Andrea Salvo

Received: 21 April 2022

Accepted: 13 May 2022

Published: 16 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Use of Passive and Grab Sampling and High-Resolution Mass
Spectrometry for Non-Targeted Analysis of Emerging
Contaminants and Their Semi-Quantification in Water
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Abstract: Different groups of organic micropollutants including pharmaceuticals and pesticides have
emerged in the environment in the last years, resulting in a rise in environmental and human health
risks. In order to face up and evaluate these risks, there is an increasing need to assess their occurrence
in the environment. Therefore, many studies in the past couple of decades were focused on the
improvements in organic micropollutants’ extraction efficiency from the different environmental
matrices, as well as their mass spectrometry detection parameters and acquisition modes. This paper
presents different sampling methodologies and high-resolution mass spectrometry-based non-target
screening workflows for the identification of pharmaceuticals, pesticides, and their transformation
products in different kinds of water (domestic wastewater and river water). Identification confidence
was increased including retention time prediction in the workflow. The applied methodology,
using a passive sampling technique, allowed for the identification of 85 and 47 contaminants in the
wastewater effluent and river water, respectively. Finally, contaminants’ prioritization was performed
through semi-quantification in grab samples as a fundamental step for monitoring schemes.

Keywords: non-target screening; passive sampling; contaminants of emerging concern; transformation
products; wastewater; river water; semi-quantification

1. Introduction

Pharmaceuticals are continuously introduced into the environment, and in recent
years their usage increased, especially in response to the pandemic caused by the outbreak
of the coronavirus (SARS-CoV-2) [1,2]. Many studies, published in the last decade, provide
information on the occurrence and fate of pharmaceuticals in the aquatic environment,
e.g., surface waters [3] and wastewater effluents (WWE) [2]. These compounds could be
resistant to environmental degradation and are considered as one of the major categories of
contaminants of emerging concern (CEC) [2,4]. In addition to pharmaceuticals, pesticides
are of major concern as well, as compounds that are stable over time and harmful not only
for human health but also can cause profound imbalances in the ecosystem [5,6].

Current monitoring of CEC in water bodies is mainly focused on the quantification of
several compounds, which are selected based on the various prioritization schemes [7,8].
Although this approach has its advantages, it is rather limited since only a small subgroup
of chemicals is revealed. Screening and quantification of a big number of analytes applying
the conventional approach require analytical standards, which are costly and sometimes not
even commercially available (e.g., for (bio)transformation products (TPs)). Another draw-
back of target screening is overlooking contaminant metabolites and TPs that can, in some
cases, retain biological activity and/or be more abundant and harmful than their parent
compounds [9,10]. In fact, the path from discharge to complete mineralization is rather long
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and complex, and it was demonstrated that incomplete mineralization of one parent com-
pound yields several TPs [11]. Concern about their occurrence is gaining more and more
scientific attention; for instance, O-desmethyl venlafaxine was already included in the Water
Watch List under the Water Framework Directive (https://eur-lex.europa.eu/legal-content/
EN/TXT/?uri=uriserv:OJ.L_.2020.257.01.0032.01.ENG&toc=OJ:L:2020:257:TOC, accessed
on 1 February 2022). Hence, monitoring practitioners and policymakers should consider
new techniques to achieve a more holistic water quality assessment against organic mi-
cropollutants and to reveal a bigger fraction of the entire chemical profile. In this way,
other substances, which were not included in the target monitoring schemes and which are,
for example, of local concern, can be considered [12,13]. For instance, Gago-Ferrero et al.
demonstrated the application of high-resolution mass spectrometry (HRMS) with 24 h
composite flow proportional samples in a successfully performed wide scope screening for
more than 2000 compounds in wastewater [14].

Nowadays, we are witnessing a shift in the approach when it comes to contaminants’
monitoring in the environment, especially water. Qualitative data accompanied with
semi-quantitative data can be more valuable than exact concentration for only a few
compounds [12]. Analytical possibilities with new generation instrumentation, such as
liquid or gas chromatography coupled with HRMS, are providing a possibility for new
and comprehensive assessment, yet there is still space and need for optimization and
harmonization of analytical procedures. As stated by Menger et al. [15], recent progress
in non-target screening (NTS) analysis requires new challenges for quality control and
quality assurance.

In this context, we evaluated the advantages and disadvantages of grab and passive
sampling, and prioritization of contaminants based on the identification confidence and
their concentrations. The applied methodology includes liquid chromatography coupled
with HRMS applied for the identification of CEC in two different types of water, i.e., mu-
nicipal wastewater effluent and river water. Identification was based on mass accuracy,
isotopic pattern, fragmentation pattern in the deconvoluted MS2, and retention time (RT)
prediction. Finally, detected compounds were semi-quantified using the in-silico ionization
efficiency prediction. Therefore, we are suggesting highly confident rapid screening of CEC
and their TPs by NTS and their semi-quantification as a step forward in the management
of water pollution and as a fundament for establishing new monitoring schemes.

2. Results
2.1. Compound Identification

In total, 118 compounds were detected in WWE (n = 85) and river samples (n = 47)
using HRMS of which 14 were common. Seven pesticides and 6 pharmaceuticals were
confirmed with analytical standard or deuterated standard, reaching level 1 of identification,
whereas the rest were identified by matching their DDA-MS2 spectra with the spectral
libraries, hence reaching level 2a according to Schymanski et al. [16]. The difference
between grab and passive sampling in terms of the number of identified compounds in
the case of the WWE showed that five compounds (amisulpride N-oxide, clarithromycin,
levorphanol, ofloxacin, and propranolol) were not detected in grab samples in spite of the
potential relevance of antibiotics. Although these five compounds count for a relatively
low percentage (6% of the total), their occurrence would remain undetected without
applying passive samplers. One more advantage of passive samples over grab samples was
observed during the identification process. Namely, the ion abundance in the mass spectra
was higher, and this was especially important for the identification of the contaminants,
as they provided a better quality of MS2 spectra. In general, only a small number of
compounds would not pass confirmation due to poor isotopic pattern match. For example,
for bezafibrate, four out of four isotopes were present in the passive sample, while only the
main mass of bezafibrate was detected in grab samples, and none of the other isotopes (as
presented in Figure 1); hence, this compound was filtered as identified but not confirmed,
while in the passive sample, bezafibrate was identified and confirmed. A similar situation
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was observed for anabasine and metformin where the isotopic pattern match was lower
than 80% in grab samples.
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(red: experimental spectra; blue: theoretical spectra).

As mentioned, all compounds were identified based on the occurrence of at least
two fragments in their MS2 spectra, and in this regard, to fulfill this minimal requirement,
there were no differences between grab and passive samples. However, a higher number
of fragments was observed in passive samples. In addition, the difference in the intensity
was observed too, showing their prevalence over the background matrix (see Figure 2).
Due to the aforementioned and the nature of non-target screening, there is a possibility
of false positives and false negatives. The authors support the application of passive
samplers for the screening of CEC in WWE because passive samplers provided results
with higher confidence. More specifically, the higher number of detected fragments and
better isotopic pattern match due to higher concentrations of CEC in extracts obtained from
passive samplers.

On the other hand, results obtained from the river water also showed a clear advantage
of passive sampling over the grab sampling, which is also reflected in the number of
identified compounds, which is in accordance with findings by Mathon et al. [17]. Data
presented in the Supplementary excel file (“Summary”) show a difference not just between
grab and passive samples, but also between grab samples themselves when sampled on a
different date. Namely, 47 compounds were detected in passive samples while in the grab
samples 24 and 17 compounds were detected, on the day of the placement and after 14 days
of placement, respectively. Moreover, two compounds (trimethoprim and ethylmorphine)
were identified in the grab sample and not in POCIS, which was not the case when WWE
was analyzed. This difference in the qualitative results can be attributed to the fluctuation
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in river flow and in CEC concentration. Consequently, more consistent qualitative data
obtained in WWE can be attributed to the fact that the sampling was conducted in the
maturation pond which has a hydraulic RT of several days enabling homogenization; hence,
fluctuations are less evident.
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Target analysis is indeed a valuable approach due to the unequivocal identification of
individual compounds at very low trace levels, but it becomes cumbersome and expensive
when the screening of a large number of analytes is required [18]. On the contrary, as
demonstrated in this study, NTS is capable of identifying a higher number of contaminants
with level 2a confidence in comparison with level 1 confidence which is labor-intensive,
especially for the relatively big number of potential contaminants in a sample. However,
unless we reach level 1, there is always a concern related to the confidence of the results.
In the presented workflow, MS2 spectra of all compounds, obtained by data-dependent
acquisition, matched their spectra from online databases. In this way, fragmentation
patterns and so-called characteristic fragments were manually compared to reduce the
possibility of false-positive outputs. However, the investigation of fragmentation patterns
and characteristic fragments of individual compounds is time-consuming and should be
automatized. Another strategy, commonly used to reduce the chance of false-positive
results, is RT prediction, which is discussed in the following section.

2.2. Retention Time Prediction

It is important to say, as stated by Bade et al. [19], that the application of RT prediction
is not to replace the use of reference standards, but to help to gain more confidence in the
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obtained data along with MS2 data. As an important parameter that can refine obtained
results, RT prediction is gaining attention in the scientific community; hence, simple
algorithms based on the log Kow value and more complex ones based on the quantitative
structure-retention relationship were developed [19,20]. The acceptable error for predicted
RT can be estimated as 12% of the total run time, or 12% of the maximum experimental RT
used in the training set during model development [20], whereas the window of 2 min was
used in another study [19]. In this study, we applied the aforementioned estimation based
on the 12% of maximum RT used in the training set, as this error window (1.5 min) is the
narrowest. Figure 3 shows experimental and predicted RT with allowed error bars. As it
can be seen, both data sets’ (WWE and river samples) compounds eluted at the beginning of
the chromatographic run and at the end did not fit the applied error window. Nonetheless,
73% and 71% of all compounds in river and WWE, respectively, fit the model within the
acceptable error window.
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After the 11th min and at the beginning of the chromatographic run, we observed a dif-
ference bigger than the accepted error window (Figure 3); consequently, these compounds
were marked as less confident results, but were not discarded completely (Supplementary
excel file “Summary”). RT prediction can help us during the prioritization of identified
compounds especially when accompanied with concentration data; in this way, we can
select relevant contaminants with high identification confidence.

RT prediction is generally used for the discrimination of possible false-positive results,
especially in cases where several peaks are detected for one compound in an EIC (extracted
ion chromatogram). However, there are other possible explanations and scenarios that have
to be considered before a priori rejection of signals that do not fit our prediction model. Hy-
pothetically speaking, if the DDA-MS2, including fragmentation pattern and characteristic
fragments of a certain compound, matches the online library but the identified compound
does not match RT prediction, it can originate from another molecule from which it was
released during the ionization. Here, the authors would like to stress the possibility of
“hidden” parent compounds revealed by in-source fragmentation. This might happen
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with biotransformation products, especially phase II metabolites, where added moiety
“disappeared” as neutral loss, and here we detected the remaining part of the metabolite.
Some biotransformation products, such as sugar or glutathione conjugates, are by default
more polar than the parent compound; hence, we can expect their elution at the beginning
of the chromatographic run in the given conditions. It was confirmed that weak bonds in
a metabolite can be broken during the ionization process, even using the softest ioniza-
tion method [21,22], while the higher temperatures can increase in source fragmentation,
yielding the even greater response of fragments than the parent compounds [23].

Due to the aforementioned, we should not discard these results, but rather keep in
mind that they might originate from a metabolite, especially in environmental samples.
This can be further investigated; for example, neutral loss detection can be applied for
the identification of possible metabolites from which the detected compound occurred,
whereas multi-stage mass spectrometry (MSn) can further aid in structure elucidation.

2.3. Contamination Profile

Log Kow values of detected compounds ranged from −3.8 to 5.3 with mean and
median values of 2.1 and 2.2, respectively, and their distribution is presented in Figure 4.
As it can be seen, if we exclude two extreme values, we can observe that log Kow values
ranged from −2 to 5. The choice of sorbents may affect the pre-selection of compounds
based on the affinity of the analytes [24], which is clearly demonstrated by the log Kow
range. For the sake of comprehensiveness of NTS, for the more polar compounds and more
polar metabolites and TPs with log Kow < −2, other sorbents than HLB (e.g., multilayer
cartridges) and other chromatographic conditions (e.g., HILIC column) are needed.
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For compounds detected in river water samples, log Kow values ranged from −0.25
to 4.8, with mean and median values of 2.2, while in WWE, 70% of all compounds detected
have log Kow less than 3. This is an important threshold because compounds with log
Kow values less than 3 do not adsorb greatly to the particles; hence, their occurrence in the
WWE is expected. On the other hand, compounds with log Kow values higher than 3 have
medium or high adsorption on the particles, which increases the hydraulic retention time
of these compounds during the treatment and consequently their better removal during
the treatment [25]. However, we detected 25 compounds in the WWE with log Kow values
higher than 3. As stated by Pomiès et al.’s [26] prediction, the removal in the WWTP is
rather difficult due to the number of mechanisms. Therefore, a comprehensive and robust
analytical technique is necessary when it comes to the screening of the WWE. Moreover,
compounds with higher log Kow values than 3 should not be a priory excluded from the
target lists.
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Among 85 compounds that were detected in the municipal WWE, 65% were pharma-
ceuticals and their TPs (Figure 5a), followed by pesticides and industrial chemicals both
counting for 10%. The rest of identified compounds belonged to the group of steroids, ro-
denticides, illicit drugs, insect repellents, neurotransmitters, etc. (Supplementary excel file
“Summary”). Among pharmaceuticals, the predominant groups were: antibacterial (n = 6),
cardiovascular medications (n = 6), sedative (n = 5), non-steroidal anti-inflammatory drugs
(NSAIDs) (n = 5), pain killers (n = 4), antiepileptic (n = 3), antifungal (n = 3), antihistaminic
(n = 2), beta-blocker (n = 2), lipid-lowering (n = 2), neuropathic pain relief (n = 2), whilst for
the following, only one compound per group was detected: anticholinergic, antidepressant,
cough suppressant, antidiabetic, neuromuscular weakness, scabicidal agent, and stimulant
(antitobacco). The observed contaminant profile shows the occurrence of pharmaceuticals
used mainly to treat chronic diseases, and these groups of pharmaceuticals are commonly
detected in water [1]. Obtained results are in accordance with previously published ar-
ticles where a comprehensive screening of contaminants in wastewater was conducted.
Namely, 43 compounds identified in this study were also present in the wastewater from
Athens [14].
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In addition to parent compounds, 9 pharmaceutical TPs were detected, i.e., 10-hydroxy-
carbamazepine, carbamazepine epoxide, 2-amino-1H-benzimidazole, amisulpride N-oxide,
gabapentin lactam, N-desmethyl mephenytoin (nirvanol), N-desmethyl clobazam, N-
desmethyl venlafaxine, and O-desmethyl venlafaxine.

2-amino-1H-benzimidazole was reported as a TP of carbendazim [27], whereas its
parent compound was not detected. Similarly, amisulpride N-oxide was detected, but
not amisulpride, which leads us to the conclusion that some TPs are more persistent than
their parent compounds. The same phenomenon was observed for nirvanol, a metabolite
of mephenytoin used to control seizures [28]. One of the main concerns related to the
occurrence of pharmaceutical TPs is their toxicity and biological activity, such as in the case
of N-desmethyl clobazam, the main metabolite of clobazam, which shows a greater half-life
than parent compounds and can retain pharmacologic activities [29]. Two metabolites of
carbamazepine (10-hydroxycarbamazepine and carbamazepine epoxide) and venlafaxine
(N-desmethyl venlafaxine and O-desmethyl venlafaxine) were detected alongside their
parent compounds, raising a question of their possible synergistic effect as they appear in a
cocktail in the WWE.

One illicit drug, buphedrone, which belongs to the synthetic cathinone, was identified
in the WWE, which is widely used since it is frequently detected in wastewaters across
Europe [30]. Another synthetic cathinone, 3,4-dimethylmethcathinone (3,4-DMMC), and
one cocaine metabolite (ecgonine) were detected. Regarding industrial compounds, the
most abundant were plasticizers (n = 4), and one compound per group was detected which
belongs to the anticorrosive, dye carrier, catalyst, and emulsifier family. Half of the detected
pesticides were insecticides, whereas the remaining were herbicides and fungicides. The
difference in the pest profile shows that insecticides are prevalent in the residential areas in
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comparison with river water where herbicides were prevalent due to the nearby agricultural
areas, which will be discussed in the following lines.

Results obtained from river water showed a bit different contamination profile in
comparison with municipal WWE (Figure 5b). Namely, the majority of identified com-
pounds were pharmaceuticals (40%) and pesticides (31%), followed by pharmaceutical
metabolites (11%) and pesticides’ TPs (4%). The detected pharmaceuticals belong to the
following groups of sedative and painkiller (n = 8), antipsychotic and antidepressant
(n = 5), beta-blocker (n = 3), antibiotic (n = 1), cardiovascular, appetite suppressant, and
antifungal. The detected pharmaceutical profile is somehow expected due to the presence
of a psychiatric hospital, and its wastewater discharge close to the sampling point. The
second-largest group of contaminants was pesticides, and among them were herbicides
(n = 8) and fungicides (n = 7) and one insecticide. The occurrence of these pesticides can be
explained by the presence of agricultural fields and the fact that applied pesticides can leach
into the surface water. For instance, imidacloprid, propyzamide, metolachlor, boscalid, and
simazine were also detected in other French rivers [17]. Eight pharmaceutical TPs were
identified in the river water and these are metabolites of venlafaxine, amisulpride, tramadol,
and lamotrigine. Additionally, two pesticide TPs were identified: desethyl sebuthylazine
and desmethyl norflurazon. Two illicit drugs were detected (cathinone and its metabolite
methcathinone) and 4′-Methyl-α-pyrrolidinobutiophenone (novel stimulant drug). None
of these compounds were detected in the WW effluent. Norephedrine, which was used
in human medicine, was excluded from the market, but this product can be used as an
illegal drug.

2.4. Quantitative and Semi-Quantitative Analysis

Semi-quantification based on the prediction of the ionization efficiency requires at
least five compounds with known concentrations measured in the same analysis [31]. As
the target analysis of pesticides did not provide enough data to conduct prediction of the
ionization efficiency, concentrations of 9 deuterated compounds (which were added to sam-
ples before analysis) were used as well to fulfill the requirements. Semi-quantification of
compounds using passive sampling was not attempted because this requires the knowledge
of the sampling rate (Rs) which is specific to each compound and given conditions, and
critical for calculating the ambient concentration. Results obtained from quantification and
semi-quantification, in grab samples, for WWE and the river are presented in Tables 1 and 2,
respectively. Concentration values for WWE ranged from to 0.1 ng/L (sulpiride) to
3.1 × 105 ng/L (butoxytriglycol). Two compounds, ibuprofen and butoxytriglycol, were
detected above 1000 ng/L in all grab samples; other compounds at the same level are
dibutyl phthalate, tributyl phosphate, flecanide, and lamotrigine, whereas the rest of the
detected compounds were below 1000 ng/L.

Results obtained by semi-quantification for river water are in accordance with the
published data. Pharmaceuticals in environmental waters are typically present in low ng/L
concentrations [32]. Similarly, González-Gaya et al. reported relatively low concentra-
tions of CECs in river and estuarine water in Spain, e.g., caffeine (28 ng/L), metformin
(37 ng/L), primidone (92 ng/L), and gabapentin (23 ng/L) [18]. In WWE, results are
also mostly consistent with those of a comprehensive study, where 90 WW treatment
plants were included, revealing the following compounds as the most abundant: sucralose,
benzotriazoles, several organophosphate ester flame retardants, and pharmaceuticals carba-
mazepine, tramadol, telmisartan, venlafaxine, irbesartan, fluconazole, oxazepam, fexofena-
dine, diclofenac, citalopram, codeine, bisoprolol, esprosartan, and antibiotics trimethoprim,
ciprofloxacine, sulfamethoxazole, and clindamycine in concentrations ranging from few
hundreds of ng/L to few µg/L [33].
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Table 1. Concentrations (and standard deviations) obtained by quantification and semi-quantification in WWE in grab sample.

Compound
Concentration (ng/L)

Compound
Concentration (ng/L)

Grab Day 0 Grab Day 7 Grab Day 14 Grab Day 0 Grab Day 7 Grab Day 14

1,3-Dicyclohexylurea 5 (±2.9) 2.6 (±0.9) 11.3 (±3.5) Gemfibrozil 499 (±260) 57.9 (±14) 47.9 (±14.4)

10-Hydroxycarbazepine 90.9 (±6.7) 26.6 (±3.8) 41.1 (±1) Ibuprofen 6.8 × 104

(±6.3 × 104) 2.7 × 103 (±954) 1.7 × 103 (±894)

2,2,6,6-Tetramethyl-4-
piperidinol 83.8 (±50.6) 39.6 (±9.3) 152 (±37.9) Imidacloprid * 16.5 (±1.2) 7.4 (±0.7) 11.1 (±2.5)

2-Amino-1H-benzimidazole 49.7 (±27.6) 31.5 (±12.8) 154.5 (±64.1) Irbesartan 7.2 (±9.1) 11.9 (±5.8) 28.3 (±28.4)

2-Hydroxyestrone 95.9 (±24) 46.3 (±4.9) 79.6 (±0.4) Ketoprofen 3.6 (±0.09) 3.3 (±2)

3,4-Dimethylmethcathinone 21.2 (±7.8) 12 (±2.4) 80.4 (±17.2) Lacosamide 2.4 (±0.1) 1.1 (±0) 1.2 (±0.2)

3-Acetylindole 1.5 (±0.1) 0.7 (±0.1) 0.7 (±0.2) Lamotrigine 1464 (±39) 626 (±146) 1263 (±270)

Alminoprofen 2 (±0.7) 1.6 (±0.4) 6 (±3.2) Laurolactam 27.3 (±2.8) 12.4 (±3.3) 49.1 (±5.6)

Alprenolol 2.8 (±2.7) 2.8 (±1.8) 25.1 (±16.7) Lidocaine 13.9 (±6.1) 18.5 (±6.2) 55.9 (±33.1)

Aminocarb 47 (±0.1) 23.1 (±5.6) 42.4 (±5.9) lorazepam 7.6 (±3.3) 1.4 (±0.3) 19.8 (±1.6)

Amisulpride N-oxide Lormetazepam 8.3 (±2.8) 2.1 (±0.5) 10.5 (±1.7)

Anabasine 5 (±0.6) 2.1 (±0.9) 33.2 (±7) Metformin 26.1 (±7.2) 8.6 (±3.1) 1.9 (±1)

Ancymidol 1.3 (±0.3) 1.5 (±0.5) 3.7 (±0.3) Mexacarbate 2 (±0.3) 1.2 (±0.3) 14.8 (±0.6)

Antipyrine (phenazone) 2.1 (±1.3) 0.8 (±0.5) 11.1 (±1.3) N-desmethyl
mephenytoin 6 (±4) 2.8 (±0.3)

Azoxystrobin * 1.6 (±0.09) 0.9 (±0.4) 1.2 (±0.2) N-desmethyl
clobazam 168 (±76.7) 29.6 (±6.2) 552 (±49.8)

Benzotriazole 224 (±3.5) 166 (±33.2) 273 (±19) N-desmethyl
venlafaxine 17.2 (±10.5) 15 (±7.5) 60.4 (±31.5)

Bezafibrate 11.1 (±9.7) 11.8 (±4.5) 3.2 (±2.6) Nordazepam 10.7 (±3.7) 6.7 (±2.5) 23.9 (±6.4)

Buphedrone 2.9 (±1.6) 4 (±1.9) 1.7 (±0.8) O-Desmethyl
venlafaxine 1.3 (±1.1) 0.3 (±0) 13.5 (±9.5)

Bupivacaine 0.4 (±0.2) 3 (±1.4) Picaridin 5 (±2.1) 2.2 (±0.6) 6.8 (±1.5)
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Table 1. Cont.

Compound
Concentration (ng/L)

Compound
Concentration (ng/L)

Grab Day 0 Grab Day 7 Grab Day 14 Grab Day 0 Grab Day 7 Grab Day 14

Butoxytriglycol 3.1 × 105

(±1.0 × 105)
7.2 × 104

(±1.7 × 104)
3.6 × 104

(±1.8 × 104)
Prazepam 7.3 (±3.6) 5.5 (±2.3) 14 (±5)

Caffeine 616 (±394) 38.9 (±6.1) 295 (±39.5) Propiconazole 1.4 (±0.5) 1 (±0.4) 3 (±1.1)

Carbamazepine 104 (±9.1) 96.5 (±12) 119 (±0.7) Pseudotropine 11.9 (±5.2) 10.6 (±4.8) 45.9 (±13.1)

Carbamazepine epoxide 11.6 (±1.1) 5 (±1.2) 10.3 (±0.3) Pyridostigmine 127 (±5.5) 62.5 (±17.4) 55.5 (±2.9)

Celiprolol 24.4 (±28.5) 21.6 (±14.2) 292 (±273) Pyroquilon 46.9 (±4.8) 14.6 (±3.5) 31.9 (±0.9)

Cetirizine 0.5 (±0.6) 0.4 (±0.4) 20.6 (±15.8) Rosuvastatin 5.2 (±6.4) 1.3 (±0.5) 0.7 (±0.02)

Climbazole 20.1 (±3) 7.7 (±2.5) 12.9 (±2.3) Serotonin 11.2 (±1.3) 4.9 (±1.5) 15.6 (±1)

Crotamiton 9.5 (±5) 1.1 (±0.3) 20.1 (±0.9) Sotalol 5.8 (±7.1) 1.1 (±0.6) 13.3 (±14.5)

Cytisine 5.1 (±1.4) 3.7 (±2) 8.7 (±0.9) Sulfamethoxazole 63 (±7) 29.5 (±6.3) 61.5 (±0.7)

Dextromethorphan 0.4 (±0.2) Sulpiride 0.1 (±0.03) 0.5 (±0.3)

Diazinon 0.5 (±0.3) 0.3 (±0.1) 1.4 (±0.6) Terbuthylazin* 0.2 (±0.09) 0.2 (±0.2) 3.9 (±0.4)

Dibutyl phthalate 3870 (±1142) 998 (±76.8) 5224 (±872) Tramadol 7.7 (±5.5) 8 (±4.2) 41.3 (±24.3)

Diclofenac 1 (±0.04) Tributyl phosphate 1164 (±151) 476 (±11.9) 4739 (±218)

Diuron * 3.6 (±0.7) 2.4 (±1) 1.9 (±0.9) Triclosan 59.6 (±0.5)

DMACA Reagent 0.4 (±0.05) 0.2 (±0) 0.7 (±0.08) Triethyl phosphate 771 (±287) 190 (±17.1) 229 (±11.1)

Ecgonine 6.6 (±0.6) 4.8 (±1.4) 0.7 (±0.6) Triisopropanolamine 3.8 (±2.7) 1.1 (±0.5) 11.4 (±8)

Estriol 186 (±13.1) 62 (±14.2) 105 (±6) Trimethoprim 0.7 (±0.02) 2.5 (±1.3)

Fexofenadine 0.3 (±0.5) 0.5 (±0.4) 7.9 (±9.9) Tris (2-butoxyethyl)
phosphate 96.7 (±52.7) 60.8 (±28.3) 263 (±87.4)

Flecainide 614 (±520) 491 (±158) 1813 (±327) Tyramine 99.6 (±21.3) 39.4 (±8.6) 68.1 (±2.7)

Fluconazole 33.2 (±9.9) 17.5 (±5.6) 37.4 (±6.7) Valpromide 518 (±36.9) 122 (±8.7) 30.4 (±4)

Gabapentin 195 (±29.4) 68.1 (±11.5) 117 (±15.4) Venlafaxine 5.3 (±4) 6.4 (±3.5) 41.6 (±19.3)

Gabapentin lactam 13.4 (±1.1) 9.8 (±3.9) 43.2 (±5.3)

* quantified with analytical standard.
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Table 2. Concentrations (and standard deviations) obtained by quantification and semi-quantification
in river in grab samples.

Compounds
Concentration (ng/L)

Compounds
Concentration (ng/L)

Grab Day 0 Grab Day 14 Grab Day 0 Grab Day 14

Benzophenone 4 (±1.4) 15.8 (±0.6) Trimethoprim 1.4 (±0.5)

Antipyrine/phenazone 2.4 (±0.2) 0.2 (±0.04) Clobazam 0.1 (±0.03)

Desethyl sebuthylazine 11.1 (±0.8) 3.2 (±0.1) Ethylmorphine 18.2 (±2.2) 29.6 (±1.9)

Atraton 5.3 (±0.5) 2 (±0.03) Benalaxyl 0.8 (±0.1)

Metribuzin 51.6 (±0.8) Tiapride 0.2 (±0.2) 0.1 (±0.02)

Prometon 8.8 (±0.8) 0.2 (±0.002) Retrorsine 2.3 (±0.07)

Picaridin 1.1 (±1.5) 7.4 (±2.3) Amisulpride 2.4 (±0.1)

Norfentanyl 65.9 (±66.7) 65.9 (±26.5) Fluopyram 2.1 (±0.3)

Lidocaine 0.09 (±0.01) Azoxystrobin * 11.7 (±0.4)

Prometryn 1.1 (±0.01) 0.07 (±0.04) Flecainide 0.3 (±0.03)

Meperidine 0.05 (±0.009) 0.5 (±0.02) Sulpiride 9.8 (±1.7) 17.8 (±1.5)

Lamotrigine 4 (±0.7) 167.2 (±1.6) Tramadol 4 (±0.1) 3.6 (±0.01)

Napropamide 8.2 (±0.8) Simazin* 5.7 (±0.07)

Metolachlor * 4.2 (±0.3)

* quantified with analytical standard.

Several different approaches have been tested to overcome the lack of analytical stan-
dards and evaluate the most accurate ones for the semi-quantification [34]. Two strategies,
based on the assumptions that TPs have the same response as the parent compounds and
that the internal standard eluting closest to the compound of interest will have a similar
response factor, appeared to be less reliable when comparing to the approach based on the
prediction of the ionization efficiency of the compounds in the ESI source. Namely, the
quantification error accounted for 2.1 times of a compound concentration when the ioniza-
tion prediction was applied [34]. In fact, the nature of semi-quantification approaches and
the generated quantification error can be the source of variability between the replicates,
and consequently yielded concentration results with relatively high standards deviation
values, as it can be seen in Tables 1 and 2.

The presented approach can be widely used for water monitoring purposes. For
instance, in comprehensive wastewater-based epidemiology, comprehensive screening
can be conducted relatively quickly and obtain the first insight into the possible range of
concentrations of compounds of interest. Similarly, it can be used during the first steps in
the development of the contaminants’ monitoring schemes that aim at monitoring locally
relevant contaminants. This is relevant since contamination profiles might differ, as it
was presented in this study. For example, among identified compounds in this study,
tributyl phosphate is estimated to be present in a concentration higher than its ChV value
(chronic toxicity) for Mysid (which is 50 ng/L) and hence might be relevant. Comparison
of detected concentrations with available Predicted No Effect Concentrations [3] showed
that there is no ecological effect. Moreover, antimicrobial compounds were detected at
concentrations that will not promote resistance selection [35]. Recently, NTS has been
applied in the evaluation of the contaminants’ removal efficiency in the WWTP, providing
more information on their performance. In this case, a comparison of the peak area of the
compounds of interest before and after the treatment can give us a clue about the treatment
efficiency (removal percentage). However, these estimations will inevitably generate errors
due to the different concentration—peak area ratios. That is to say, the observed percentage
difference of peak areas does not necessarily reflect the same difference in percentage in
the concentration. Additionally, the comparison of peak areas in different sample types
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is less accurate due to the difference in the ionization suppression/enhancement caused
by a specific matrix. One more advantage of the ionization prediction tool is that the
aforementioned errors are minimized, and more accurate results can be obtained since
it was demonstrated that different biological matrices (different types of cereals), hence
different matrix effects, do not affect prediction error [31].

3. Materials and Methods
3.1. Sample Collection and Processing

Seasonal (Polar Organic Chemical Integrative Sampler (POCIS) campaigns were de-
ployed in the spring and summer of 2021. At each sampling point, one cage containing
3 POCIS discs was at least 30 cm vertically submerged; the cage was weighted down
by a ballast and finally left in the water for 15 d. AttractSPEPOCIS HLB was purchased
from Affinisep (Le Houlme, France) with approximately 230 mg of the solid adsorbent
N-vinylpyrrolidone-divinylbenzene (Oasis HLB). The POCIS sampling area was 41 cm2.
The 3 mL polypropylene cartridges used to recover POCIS receiving phases were purchased
from Supelco (Bellefonte, PA, USA).

Upon retrieval, POCIS discs were individually washed with distilled water, sealed in
their original aluminum bag, transported to the lab in an icebox, and stored under −20 ◦C
until extraction. Receiving phases of the POCIS were transferred into 3 mL SPE cartridges,
spiked with 50 µL of a mixture of deuterated compounds (1 mg/L methanol), and then
eluted with 8 mL of methanol. After concentration under a gentle stream of nitrogen, final
extracts (reconstituted in 1 mL 10% methanol) were filtered with 0.2 µm of the PTFE filter
and analyzed by LC-HRMS.

3.2. Target Analysis

Grab water samples were collected in duplicates in 1 L amber glass bottles at the
same point as the POCIS was deployed. Sampling was performed at the deployment and
retrieval of POCIS, after 14 d in surface (river) water and after 7 and 14 d in wastewater.
All samples were transported to the lab in an icebox, filtered through a 0.45 µm glass fiber
filter, and stored at 4 ◦C until extraction within 24 h.

For pesticides’ analysis, grab samples (500 mL) were filtered through GF/F filters to
eliminate suspended matter, spiked with 50 µL of atrazine d5 (1 ng µL−1 acetone), and
extracted by solid-phase extraction (SPE) using Oasis HLB cartridges (500 mg sorbent,
6 cc, Waters). Prior to extraction, the Oasis HLB cartridges were activated with 5 mL of
acetonitrile under vacuum, followed by 5 mL of methanol and 5 mL of ultrapure water.
Before elution, they were dried under vacuum for 1 h. Analytes were recovered by eluting
the cartridges with 8 mL of acetonitrile at a flow rate of 1 mL min−1. Extracts were analyzed
with an Alliance HPLC system (Waters Series 2695) using a reverse-phase Phenomenex
Kinetex Polar C18 (100 mm × 4.6 mm I.D × 2.6 µm particle size) column and a security
guard UHPLC Polar C18 4.6 mm ID (Phenomenex). The mobile phase was composed of
Milli-Q and acetonitrile, both with 0.05% formic acid, at a constant flow rate of 0.4 mL/min.
The gradient was programmed so the proportion of acetonitrile increased from 60 to 100%
in 10 min followed by stabilization for 2 min, before returning to initial conditions. This
system was coupled with a triple quadrupole mass spectrometer Micromass Quattro micro
API (Waters) fitted with an ESI source operating in positive ion mode. Argon was used
as collision gas. The multiple reaction monitoring mode was used for the ion specific
acquisition. Analytical data treatment were done with MassLynx software from Waters.
Its Quantlynx interface enables the quantification of the targeted substances. Analytical
parameters are presented in Appendix A (Table A1). The linearity, LOQs and LODs,
precision, and accuracy of the analytical methods were carefully validated as described in
Branchet et al. [36].
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3.3. Non-Target Analysis

For non-target screening, a generic approach in the sample preparation of grab samples
was applied. Namely, for extraction, solid-phase extraction (SPE) OASIS HLB cartridges
were used (250 mg sorbent, 6 cc, from Waters). Cartridges were conditioned with 10 mL
methanol followed by 10 mL water; then, the water sample (V = 250 mL) was loaded
followed with 10 mL of water for rinsing. SPE cartridges were then set under vacuum until
total dryness and eluted with 6 mL methanol. Obtained eluates were set under a gentle
nitrogen flow for complete evaporation, and finally, residues were reconstituted with 1 mL
of the LC-MS/MS mobile phase (10/90, methanol/water, v/v), filtered with 0.2 µm of the
PTFE filter, and transferred to vials ready for injection.

Extracts were analyzed on a HPLC Accelera 600 pump coupled to a Q-Orbitrap HRMS
mass spectrometer (Thermo Fischer Scientific, Les Ullis, France) equipped with a heated
electrospray ionization probe (HESI) source for detection. Chromatographic separation
was conducted using Waters XBridge BEH C18 (2.1 × 150 mm and 2.5 µm particle size)
equipped with a pre-column. The chromatography assays involved a 10 µL injection
volume, a 0.30 mL/min flow rate, and a binary gradient of water (A) and acetonitrile (B),
both containing 0.1% formic acid, as follows: 10% B at 0–1 min, 90% B at 10–23 min, 10% B
at 24–29 min. HESI parameters were as follows: 40 arbitrary units (AU) sheath gas; 15 AU
auxiliary gas; 300 ◦C capillary temperature; 200 ◦C heater temperature, and the electrospray
voltage was set at 3.0 kV for the positive and 2.5 kV for the negative ionization mode. The
S-lens radio frequency (RF) level was set at 100 AU. Full scan data were acquired at a
resolution of 70,000 full width at half maximum (FWHM) with an automatic gain control
(AGC) of 106, 250 ms of the maximum ion injection time, and scan range 100–1000 m/z.
Moreover, for MS2, data-dependent acquisition (DDA) and data-independent acquisitions
(DIA) were achieved at a resolution of 17,500, two absolute collision energies (20 eV and
40 eV) isolation window 1 m/z, AGC of 5 × 104, 150 ms of the maximum ion injection time,
and scan range 50–1000 m/z.

Chromatograms obtained by DIA were screened for contaminants using two lists of
emerging substances “S1 MASSBANK” (https://www.norman-network.com/?q=node/236,
assessed on 1 February 2022) and the list of contaminants EFS_HRAM_Compound_Database
provided by Thermo Fisher Scientific. Identification parameters were at least 2 fragments,
and the parent compound detected with a mass error less than 5 ppm and at an intensity
higher than 104, while 80% for the isotopic match was a threshold for confirmation. After
the first screening, all possible candidates were selected for the further DDA-MS2. Obtained
spectra were matched against online available databases (i.e., mz cloud, MassBank, MoNA)
for the final confirmation, reaching identification level 2a [16].

3.4. Retention Time Prediction, Semi-Quantification, Data Analysis

RT was predicted using the software package Quantitative Structure Retention Re-
lationships (QSRR) Automator [37]. The training data set consisted of the RT of 75 com-
pounds, previously injected in the same system and presented in the Supplementary excel
file. Semi-quantification was performed based on the in-silico prediction of the response
of the compounds in ESI [31] which was provided by Quantem Analytics, Tartu, Estonia
(www.quantem.co, accessed on 1 February 2022). Data were processed using Xcalibur
(Thermo Fisher Scientific, Les Ullis, France) and TraceFinder (Thermo Fisher Scientific, Les
Ullis, France). All analyses were conducted in triplicates.

4. Conclusions

The presented methods demonstrated the advantage of the passive samplers over
the grab samples for the qualitative analysis. When it comes to the NTS, level of confi-
dence becomes a crucial factor. In this respect, passive samples yielded the MS2 spectrum
which provided much more information, i.e., characteristic fragments and isotopes. It
was shown that in cases of rivers or other water bodies where there is a relatively high
flow, the advantage of passive samples is clearly demonstrated. Relying only on a grab

https://www.norman-network.com/?q=node/236
www.quantem.co
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sampling is leading to the overlooking and underestimation of the contamination state.
Moreover, RT prediction can reduce false positives and increase the confidence of identified
compounds. Finally, for the sake of comprehensiveness, semi-quantification was crucial for
the prioritization of the compounds that should be more thoroughly monitored and proved
to be a relevant tool for reducing the necessity of a priori purchasing of analytical standards.
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Appendix A

Table A1. Quality assurance and quality control of applied targeted analysis for pesticides in wastewater effluents.

Class Name RT Quantification
Trace

Recovery
Rates in

WW (in%)
CAS Chemical

Formula Log Kow Analytical
LOD (µg/L)

Analytical
LOQ (µg/L)

LOQ in Grab
Water Sample

(ng/L)

LOD in Water
Sample (ng/L)

IS Simazine D5 3.33 207.1 > 129 - 220621-41-0 C7H7D5ClN5 - - - - -
Herbicide Acetochlor 7.12 224 > 224 142 34256-82-1 C14H20ClNO2 4.14 4.1 13.6 12.2 40.7
Herbicide Alachlor 7.06 270.1 > 237.9 138 15972-60-8 C14H20ClNO2 2.97 10.0 33.2 29.9 99.7
Herbicide Atrazine 3.94 216 > 174 112 1912-24-9 C8H14ClN5 2.50 1.9 6.4 5.8 19.3

Herbicide Atrazine-desethyl
(DEA) 2.72 188 > 146 116 6190-65-4 C6H10ClN5 1.51 4.6 15.5 13.9 46.5

Herbicide Chlortoluron 3.51 213.1 > 72.1 129 15545-48-9 C10H13ClN2O 2.50 6.0 20.2 18.1 60.5
Herbicide DCPMU 3.33 219 > 127.1 10 3567-62-2 C8H8Cl2N2O 2.94 5.4 17.9 16.1 53.6
Herbicide DCPU 2.9 205 > 127 0 2327-02-8 C7H6Cl2N2O 2.35 4.1 13.5 12.2 40.6

Herbicide Terbuthylazine
desethyl (DET) 3.22 202.1 >146.1 107 30125-63-4 C7H12ClN5 2.30 1.4 4.6 4.2 13.9

Herbicide Atrazine desisopropyl
(DIA) 2.54 174 > 104 154 1007-28-9 C5H8ClN5 0.32 4.8 16.0 14.4 48.1

Herbicide Diuron 3.83 233.1 > 72 125 330-54-1 C9H10Cl2N2O 2.87 3.7 12.5 11.2 37.4
Herbicide Flazasulfuron 3.78 408.1 > 182.1 7 104040-78-0 C13H12F3N5O5S −0.06 4.5 15.1 13.6 45.3
Herbicide Isoproturon 3.67 207 > 72 124 34123-59-6 C12H18N2O 2.50 3.6 12.1 10.9 36.2
Herbicide Linuron 5.21 249 > 160 122 330-55-2 C9H10Cl2N2O2 3.00 3.5 11.8 10.6 35.3
Herbicide Metolachlor 6.92 252 > 252 148 51218-45-2 C15H22ClNO2 3.40 6.9 23.0 20.7 69.0
Herbicide Oxadixyl 2.95 279.1 > 132.1 98 77732-09-3 C14H18N2O4 0.65 6.4 21.2 19.1 63.7
Herbicide Propyzamide 6.06 256 > 190 133 23950-58-5 C12H11Cl2NO 3.30 4.5 14.9 13.4 44.7
Herbicide Prosulfocarb 9.52 252 > 91 124 52888-80-9 C14H21NOS 4.48 2.8 9.3 8.4 27.9
Herbicide Simazine 3.33 202 > 124 100 122-34-9 C7H12ClN5 2.30 2.4 7.9 7.1 23.6
Herbicide Simazine hydroxy 1.91 184 > 114 37 2599-11-3 C7H13N5O 1.67 3.8 12.8 11.5 38.4
Herbicide Terbutylazine 5.22 230.1 > 174 124 5915-41-3 C9H16ClN5 3.40 5.9 19.8 17.8 59.4
Herbicide Terbutylazine hydroxy 1.93 212.2 > 156 0 66753-07-9 C9H17N5O 1.29 2.5 8.4 7.5 25.1
Fungicide Azoxystrobin 4.86 404 > 344 121 131860-33-8 C22H17N3O5 2.50 3.9 13.0 11.7 39.0
Fungicide Carbendazim 2.11 192 > 160 17 10605-21-7 C9H9N3O2 1.48 2.8 9.2 8.3 27.5
Fungicide Dimethomorph 4.05 388 > 301 165 110488-70-5 C21H22ClNO4 2.63 4.3 14.4 13.0 43.3
Fungicide Epoxiconazole 5.22 330.01 > 121.03 157 135319-73-2 C17H13ClFN3O 3.30 3.0 10.0 9.0 29.9
Fungicide Metalaxyl 3.67 280 > 220 125 57837-19-1 C15H21NO4 1.65 8.8 29.3 26.4 88.0
Fungicide Penconazole 6.66 284.2 > 159.1 145 66246-88-6 C13H15Cl2N3 3.72 4.2 14.1 12.7 42.4
Fungicide Prochloraz 4.59 378.04 > 310.18 138 67747-09-5 C15H16Cl3N3O2 3.50 5.0 16.7 15.0 50.0
Fungicide Pyrimethanil 4.32 200 > 107 97 53112-28-0 C12H13N3 2.84 2.9 9.5 8.6 28.6
Fungicide Tebuconazole 5.74 308 > 70 152 107534-96-3 C16H22ClN3O 3.49 3.0 9.9 8.9 29.6
Fungicide Tetraconazole 5.33 372 > 159 146 112281-77-3 C13H11Cl2F4N3O 3.60 5.0 16.7 15.0 50.0
Insecticide Imidacloprid 2.62 256.1 > 209.1 95 138261-41-3 C9H10ClN5O2 0.57 4.1 13.6 12.2 40.7
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