
HAL Id: hal-03676679
https://imt-mines-ales.hal.science/hal-03676679

Submitted on 24 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance of Recent tiny/small YOLO Versions in the
Context of Top-view Fisheye Images

Benoit Faure, Nathan Odic, Olfa Haggui, Baptiste Magnier

To cite this version:
Benoit Faure, Nathan Odic, Olfa Haggui, Baptiste Magnier. Performance of Recent tiny/small YOLO
Versions in the Context of Top-view Fisheye Images. ISHAPE 2022 - 1st International Workshop
on Intelligent Systems in Human and Artificial Perception, May 2022, Lecce, Italy. pp.246-257,
�10.1007/978-3-031-13321-3_22�. �hal-03676679�

https://imt-mines-ales.hal.science/hal-03676679
https://hal.archives-ouvertes.fr

Performance of Recent tiny/small YOLO Versions
in the Context of Top-view Fisheye Images

Benoît Faure1, Nathan Odic1, Olfa Haggui2, and Baptiste Magnier1

1 Euromov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
{benoit.faure, nathan.odic}@mines-ales.org, baptiste.magnier@mines-ales.fr

2 LIRMM, Univ. Montpellier, CNRS, Montpellier, France, olfa.haggui@lirmm.fr

Abstract. With the spreading of the computer vision field, human de-
tection and tracking are problems more relevant than ever. However, due
to the complexity of fisheye images, current lightweight detection models
show difficulty when processing them. The aim of this article is to com-
pare the performance on fisheye images of current real time detection
solutions, specifically YOLOv3-tiny, YOLOv4-tiny and YOLOv5-small.
Experiments carried out using a top-view fisheye camera, show faster
performance but the very poor detection quality from YOLOv4-tiny.
YOLOv5-small, while being slightly slower, gives a far better detection
than both other solutions. The database created for this paper is avail-
able online. In conclusion, the current review shows YOLOv5-small is the
best solution out of the 3 reviewed in a fast, real time, fisheye application.

Keywords: Human detection · YOLOv3, v4, v5· Fisheye camera.

1 Introduction and Motivations

Human detection is a challenging task owing to their variable appearance and
wide range of poses [4], especially with fisheye camera. Indeed, a fisheye lens
enables images to be acquired with a broad field of view [16,8,12]. However,
pedestrians appear in different shapes, sizes and at various orientations. Unfor-
tunately, most of the existing people-detection algorithms are designed for stan-
dard/perspective camera images where people appear upright. On the one hand,
people-detection algorithms using classical feature extraction have been adapted
to fisheye images [2,18,3]. On the other hand, the detection performances are im-
proved with the great success of deep learning. For instance, the YOLO (You
Only Look Once [14]) is a reliable detector based on Deep Convolutional Neural
Network and remains commonly used for real-time object detection. Recently,
different algorithms based on YOLO provide much faster and more accurate
results than previous algorithms aimed at detecting people in fisheye images
without any pre-processing [5,7]. Meanwhile, different YOLO versions exist, the
last are: YOLOv3 [15], YOLOv4 [17], and YOLOv5 [10]. The small/tiny imple-
mentations of these versions are optimum regarding limited hardware resources.
The aim of this article is to compare the person’s detection performance of these
versions on fisheye images. After discussing the differences between each algo-
rithm, each YOLO version is trained on fisheye images, using fisheye datasets.

2 B. Faure, N. Odic, O. Haggui and B. Magnier

TestingTraining

Split Dataset into
Training and Testing

Convert video
Into frames

Data
 Annotation

Data
 Acquisition

YOLOv3 tiny YOLOv4 tiny YOLOv5 small

Backbone Neck Head

 SPP + PANCSPDarknet29FPNDarknet19 YOLO loss CSPDarknet53 PANnet

Backbone Neck Head Backbone Neck Head

YOLO loss YOLO loss

Fig. 1. Flow diagram of different YOLO architectures studied in this communication.

2 Detection Method

In this communication, human detection methods in top down fisheye cameras
are evaluated. The detection model used in this paper is the state of the art
method YOLO, the different versions of it we compared are shown in Fig.1.

2.1 YOLO: an Architecture for human detection

This section details the developments of the YOLO architecture based on Deep
Convolutional Neural Network detection model and its extensions: YOLOv3-
tiny, YOLOv4-tiny and YOLOv5-small architectures. Originally, YOLO is a
state of art Object Detector which can perform object detection in real-time with
a good accuracy [14]. It treats the detection task as a regression downside and
has been wide utilized in image process fields. There are various deep learning
algorithms, but they are unable detecting an object in a single run. Meanwhile,
YOLO makes the detection in a single forward propagation through a neural
network, which makes it suitable for real-time applications. This property has
made YOLO very popular amongst the other deep learning algorithms. Recently,
several versions, e.g., YOLOv3 [15], also YOLOv4 [17], and lastly YOLOv5 [10],
have additionally been developed to improve the classification performance on
complicated datasets, and, to increase the quantity of data within the feature
map. Usually, in the architecture of the YOLO algorithm, the head and neural
network type are the same for all of the algorithms, whereas backbone, neck,
and loss function are different, as detailed below.

3

YOLOv3-tiny: In order to benefit computers having limited hardware re-
sources, YOLOv3-tiny algorithm (denoted YOLOv3-t) is the preferable version
of YOLOv3. Indeed, it is easy for YOLOv3-t [9][21] network to satisfy real-time
requirements on a standard computer with a limited Graphics Processing Unit
(GPU). In fact, YOLOv3-t is the simplified and light version of the original
YOLOv3 [15]. It operates with the same operating principle as original model,
but with a varied number of parameters in which the depth of convolutional layer
is reduced. Originally, YOLOv3 [15] utilizes the architecture of darknet53, and
then uses many 1×1 and 3×3 convolution kernels to extract features. The Dark-
net19 structure of the YOLOv3-t network, within structure contains only seven
convolutional layers and small number of 1×1 and 3×3 convolutional layers is
used as feature extractor to achieve the desired effect in miniaturized devices.
Eventually, to reduce the dimensionality size through the network: pooling layer
is applied. However, its convolutional layer structure still uses the same structure
of 2D-Convolution, Batch Normalization and an activation function LeakyRelu
(Leaky Rectified Linear Unit) as the YOLOv3 algorithm. This network simplifi-
cation requires this model to occupy less amount of memory and, consequently,
will improve the speed of the detection process.

YOLOv4-tiny: As a modified version of YOLOv3, YOLOv4 [17] is used in
this work with a derived version. Thus, YOLOv4-tiny (denoted YOLOv4-t) uses
Cross Stage Partial Network (CSPNet) in Darknet, creating a new feature ex-
tractor backbone called CSPDarknet53. However, to help it achieve these fast
speeds, YOLOv4-t [11] utilizes a couple of different changes from the original
YOLOv4 network. Foremost, the number of convolutional layers in the CSP
backbone are compressed with a total of 29 pre-trained convolutional layers.
Additionally, the number of YOLO layers has been reduced to two instead of
three and there are fewer anchor boxes for prediction. We can use YOLOv4-t
for a faster training and a faster detection. Therefore, the neck is composed of
a Spatial Pyramid Pooling (SPP) layer and PANet path aggregation. They are
used for feature aggregation to improve the receptive field and short out impor-
tant features from the backbone. In addition, the head is composed of YOLO
layer. Fundamentally, the image is fed to CSPDarknet for feature extraction and
then to path aggregation network PANet for fusion. At last, YOLOv4-t is the
better option when compared with YOLOv4 as faster inference time is more
important when working with a real-time object detection environment.

YOLOv5-small: In this context, YOLOv5 is different from the previous re-
leases. The v5 model has shown a substantial performance increase from its pre-
decessors. In addition, YOLOv5 [10] comes with its various versions: YOLOv5-s,
the small version, YOLOv5-m, the medium version, YOLOv5-l, the large version
and YOLOv5-x, the extra-large version, each having its own unique character-
istic. Since this study focuses on real-time detection, the speed is a factor of
the utmost importance, hence the smallest version has been chosen as the rep-
resentative of the YOLOv5 family for its performance analysis. The backbone

4 B. Faure, N. Odic, O. Haggui and B. Magnier

is CSPDarknet53 and solves the repetitive gradient information in large back-
bones and integrates gradient change into feature map; that reduces the inference
speed, increases accuracy, and reduces the model size by decreasing the parame-
ters. Furthermore, it uses a path aggregation network (PANet) as neck to boost
the information flow. PANet adopts a new feature pyramid network (FPN) that
includes several bottom ups and top down layers. Consequently, this improves
the propagation of low-level features in the model. The PANet improves the lo-
calization in lower layers, which enhances the localization accuracy of the object.
In addition, the head in YOLOv5 is the same as YOLOv4 and YOLOv3, gener-
ating three different outputs of feature maps to achieve multi-scale prediction.
Finally, it helps to enhance the prediction of small to large objects efficiently.

2.2 Dataset

Images in these datasets were resized to 640×640 pixels because YOLO requires
square images whose height and width are multiples of 32. The image size of
640×640 was chosen based on preliminary tests with YOLOv5-s.

Public Datasets: Primarily, as a base for the algorithm, weights trained on the
COCO dataset [13] were used. This dataset provides numerous images containing
human examples. Even though the images presented are not fisheye and not
necessarily top view, they gave a big data baseline for our model. The objective
being, to start fisheye training with weights already able to recognize the general
features of a human figure. A few benchmarks and datasets have been created in
order to train and evaluate people detection algorithms for fisheye images. Such
datasets are used to specialize our model on fisheye cameras. Fisheye images
pose challenges not encountered in images taken with a standard lens. These
include illumination variations across the image and big variations in the angle
at which a person appears. Additionally, fisheye images distort figures in it. The
distortion is much more prominent on the edge of the images, with big objects
being affected the most. The distortion causes shrinking of the objects, this
makes it harder for the YOLO algorithm to discern it.

The chosen dataset for specialization is the MIRROR Worlds dataset3. How-
ever, preliminary tests on these datasets gave poor detection results. That is
because annotations of this dataset are imprecise, as shown in Fig. 2. These

3 http://www2.icat.vt.edu/mirrorworlds/

Fig. 2. Dataset MIRROR, originally not perfectly annotated.

http://www2.icat.vt.edu/mirrorworlds/

5

Table 1. Experimental characteristics of the used datasets.
Database MIRROR (new annotations) Our dataset

Number of videos 19 31
Number of images for training 821 1492

Number of images for test 204 377 + 406
Moving camera No Yes

annotations were at times not bounding anything, or bounding completely dif-
ferent objects, objects that ended up being detected as human by the detection
algorithm. We thus decided to relabel the MIRROR dataset using roboflow4.
Subsequently, 1025 annotated images were obtained; the split for this dataset
is 80% training and 20% test. Additionally, we decided to create a new dataset
to further increase the variations in environments and situations the algorithm
could find itself in.

Our Dataset: The images for the new dataset were collected in the CERIS
laboratory of the IMT mines Alès. Videos were acquired with a fisheye camera
(Basler ace acA2040-120uc) mounted on a pole and placed around 3m in height.
Initially, images were pulled from videos from both inside and outside the labo-
ratory’s hangar. During each capture, the camera was static, 2-3 people moved
around the camera taking different positions. Examples include sitting, lying
down and crouching. Furthermore, the brightness level of the images is very low
inside the hangar, outside, however the images are very clear. The split for this
dataset is 80% train and 20% test; it is available online with tied annotations5.

A second part of the dataset was made, the objective of which being to test
the effectiveness of each algorithm (see Sec. 2.1) on images set in environments
they were not familiar with. For this part of the dataset, images were pulled from
videos taken outdoors and on the street outside. Consequently, these images are
different from the one detailed previously. So far, 406 images were annotated,
and between 0 and 3 discernible people appear in each image. Finally, the Tab. 1
represents the characteristics of the datasets we used with 406 annotated images
of the different scene than others utilized only for the tests.
Data Annotation: Data labelling is an essential step in a supervised machine
learning task requiring significant manual work. To annotate our new dataset,
boxes containing people are manually annotated. In order to do so, the Roboflow
Tool is used. From a technical aspect, the pixel representing the center of the
BBox, as well as its height and width in pixels are defined. Consequently, each
BBox is represented by five parameters:

– (x, y): pixel coordinates of the BBox center,
– w and h: width and height of the BBox respectively,
– class: ID of the object category.

The parameters x, y, w and h are essential for the evaluation presented in
the next section, whereas the ID concerns mainly tracking processes.
4 https://roboflow.com/annotate
5 https://github.com/BenoitFaureIMT/CERIS_FishEye

https://roboflow.com/annotate
https://github.com/BenoitFaureIMT/CERIS_FishEye

6 B. Faure, N. Odic, O. Haggui and B. Magnier

3 Experiments and Evaluations

3.1 Evaluation Metrics

To analyze the progress of the network, we utilize the five following metrics:
mean average precision 0.5 and 0.5:0.95, precision, recall and CIoU.

Mean Average Precision After running the network on a certain number of
images, of which the real BBox sizes and positions are known (i.e., called ground
truth), the IoU (Intersection over Union) is computed between each detected
BBox and all real BBoxes, the corresponding box with the highest IoU can be
considered as the detected BBox: IoU = Intersection area of both boxes

Union area of both boxes
. A threshold

α is then set to compute the mean average precision mAPα:

mAPα =
Number of detectionswhere the coressponding IoU ≥ α

Number of detections from the neural network
(1)

Moreover, it is possible to take the average of different values of α, to show the
progress of the network over a range of metrics simultaneously. With this idea
we declare mAP0.5:0.95:

mAP0.5:0.95 =
1

10

9∑
k=0

(mAP (0.5 + 0.05 ∗ k) (2)

Precision: When a detected BBox obtains an IoU above 0, it is counted as a
positive. However, the box of the detected object could be very inaccurate, for
example by bounding only the top half, or by actually covering twice or thrice
the area of the real box. To counter this problem, we set a threshold at 0.5, above
which a detection is counted as a true positive, and below which, it is counted
as a false positive: precision = total amount of true positives

number of true positives + number of false positives
.

Recall: It represents the percentage of detections, which were not missed, a real
BBox which was not detected represents a false negative and define the recall:
recall = total amount of true positives

total amount of (true positives + false negatives)
.

CIoU: Complete IoU bounding boss regression [22] allows for fast conver-
gence towards the ground truth BBox. It is used in the training of YOLOv3-t,
YOLOv4-t and YOLOv5-s. The metric combines the overlap between predicted
and ground truth, as well as the center of the BBoxes and their aspect ratio.

3.2 Training of the models

To train the different YOLO networks, we used the respective PyTorch imple-
mentations of each architecture. The definition for the architecture of YOLOv4-
t was obtained from a github repository in [26], which based it on Ultralytics’
yolov5 implementation. Finally, the definition for YOLOv3-t [24], YOLOv5-s [23]

7

Table 2. Training parameters for YOLOv3-t, YOLOv4-t and YOLOv5-s

Version Training on MIRROR dataset Training on our dataset Hyper parametersEpochs Batch size Image size Epochs Batch size Image size
YOLOv3-t 100 64 640 50 64 640 Default
YOLOv4-t 100 64 640 50 64 640 Default
YOLOv5-s 100 64 640 50 64 640 Default

and the methods for training [25] the networks were obtained from the Ultralyt-
ics github repository, the company that developed the YOLOv5 architecture.

As mentioned in the Sec. 2.2, the training started using weights pre-trained
on the COCO dataset [13]. Each YOLO version is then specialized on fisheye
cameras, using first the MIRROR dataset (own annotated) before moving train-
ing onto our own dataset. We chose to train on the datasets in this order, as
the context in which the network will be applied is expected to be closer to
the environment we obtained images from. The settings for the training of each
YOLO version are detailed in the Tab. 2.

The batch size was maximized while considering the GPU’s memory limi-
tations could hold, this was done as to follow indications from Ultralytics on
training the model. The image size was set to correspond to the size of COCO
images and hyper-parameters were set to their default values. To quantify how
close we are to overfitting the model, we observed the rate at which the CIoU
increased. In an attempt to limit the risk of overfitting, epochs for both datasets
were chosen as to stop training before this rate became negligible. The Fig. 3
represents the evolution of the CIoU during training on the MIRROR dataset
(a) and our dataset (b). The graphs start very close to each other in (a) as they
were all trained on the COCO dataset, however YOLOv5-s shows better perfor-
mance in learning especially at the start of training where it begins converging
much faster. In Fig. 3(b), the graphs start separate, this is due to the better
score YOLOv5-s had at the end of training on the MIRROR dataset. The com-
bination of these two graphs demonstrates a better learning performance of the
YOLOv5-s model.

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

C
Io
U

Epoch

YoloV3-tiny YoloV4-tiny YoloV5-small

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

C
Io
U

Epoch

YoloV3-tiny YoloV4-tiny YoloV5-small

(a) MIRROR Dataset (new annotations) (b) Proposed Dataset

Fig. 3. Evolution of CIoU during training of each YOLO model

8 B. Faure, N. Odic, O. Haggui and B. Magnier

Table 3. Performance of YOLOv3-t, YOLOv4-t and YOLOv5-s on the MIRROR
dataset after being trained on it (computer equipped with GPU Tesla K80).

Version Precision Recall mAP0.5 mAP0.5:0.95 Detection (ms)
YOLOv3-t 0.964 0.922 0.976 0.617 19.8
YOLOv4-t 0.947 0.952 0.975 0.587 14.7
YOLOv5-s 0.953 0.974 0.989 0.736 25.3

Table 4. Performance of YOLOv3-t, YOLOv4-t and YOLOv5-s on our dataset after
being trained on both MIRROR and our new dataset (computer with GPU Tesla K80).

Version Precision Recall mAP0.5 mAP0.5:0.95 Detection (ms)
YOLOv3-t 0.988 0.961 0.984 0.644 20.1
YOLOv4-t 0.976 0.936 0.976 0.626 15.2
YOLOv5-s 0.987 0.991 0.993 0.724 25.8

3.3 Performance of the models on images in a familiar context

The Tab. 3 gives the final metrics of the training and testing on the MIRROR
dataset, while the Tab. 4 gives the final metrics of the testing on our dataset of
models trained on both our dataset and the MIRROR dataset. The results are
similar across all 3 versions for Precision, Recall and mAP0.5, however YOLOv5-s
has better results for mAP0.5:0.95. In terms of the detection quality, YOLOv5-
s performed best, with YOLOv3-t and YOLOv4-t as second and third place
respectively. However, in detection speed the rankings are reversed, the increase
in speed from YOLOv4-t comes from the small size of the neural network (weight
file is 6.3Mo) relative to YOLOv3-t (17.4Mo) and YOLOv5-s (14.5Mo).

(a) (b) (c) (d) (e)
Fig. 4. People detection on top-view fisheye images. The used algorithms for the detec-
tion are in the first row: YOLOv3-t, second row: YOLOv4-t and third row: YOLOv5-s.
Images in (a)-(b) correspond to our new image dataset whereas in (c)-(e), they are tied
to MIRROR dataset with new annotations.

 9

Table 5. YOLOv3-t, YOLOv4-t and YOLOv5-s performances in an unfamiliar context.

Version Precision Recall mAP0.5 mAP0.5:0.95 Detection (ms)
YOLOv3-t 0.374 0.221 0.207 0.054 19.8
YOLOv4-t 0.191 0.109 0.089 0.021 14.4
YOLOv5-s 0.820 0.656 0.739 0.389 24.2

GPU Tesla K80

To finish testing, all 3 models were used to detect people in the same dataset
they were trained on. A sample of the data obtained is shown in Fig. 4. All 3
algorithms perform well in both a dark (a)-(b) and light (c)-(e) contexts. The
algorithms were also able to detect and bound small entities as shown in column
(e) of Fig. 4.

3.4 Performance of the models on images in an unfamiliar context

Results shown previously (Sec. 3.3) give a very optimistic view of the algorithms
performance. However, the high similarity between the BBoxes provided by each
model, as well as the very high performance in low light contexts possibly in-
dicates a partial memorization of the dataset. To investigate this, all 3 trained
YOLO versions were tested on the second part of our dataset. As the images
and contexts differ greatly in comparison to images our models were trained on,
it would give a better indication of the models performance.

The Tab. 5 summarizes the results obtained in the test, the rankings are con-
sistent with the results obtained previously; however the distance between each
model is much bigger. On all precision metrics, YOLOv5-s performs much better
than the other two metrics. The mAP0.5 of the model is at 0.739, meaning that
the algorithm is capable of bounding it’s detection relatively well. Furthermore,
the model displays a high precision (0.82), indicating the low number of false
positives in an unfamiliar context. Finally, the recall is at 0.656, it indicates that
the model missed around 35% of detection; this figure is high, but in the context
of a tracking algorithm could be negligible if compensated properly.

The Fig. 5 shows a sample of the images obtained from the tests. While
these images have been selected, they represent quite well the obtained images.
In that respect, YOLOv5-s outperforms the other networks, but still has its
limitations, as shown by the metrics discussed previously. Column (e) shows two
false negatives, one (center) is due to the black clothes on a dark background,
and another (bottom left) appears when the person walks into the very edge of
the image. This same person was detected a few frames before in the column
(d). This column also shows a false negative (center) and a false positive (top
left) also appearing at the edge of the frame where cars can be seen distorted.
Nevertheless, looking at columns (a), (b) and (c) where the images are very clear,
YOLOv5-s was able to properly detect all people present in the picture.

While it is true that YOLOv3-t and YOLOv4-t both have faster detection
speeds than YOLOv5, the difference between each algorithm is about 5ms. The
detection speeds of YOLOv5-small are fast enough to be used in real time cases
(i.e., >10 fps), making detection speed a secondary factor in the comparison of

10 B. Faure, N. Odic, O. Haggui and B. Magnier

each network. The difference is further dwarfed by the very high performance of
YOLOv5-s on detection metrics in comparison to YOLOv3-t and YOLOv4-t.
We expect YOLOv4-t’s very poor performance to come from it’s small size,
because of it, it memorized the dataset rather than learn important features.

4 Conclusion
This paper presents a comparison in the performance of YOLOv3-tiny, YOLOv4-
tiny and YOLOv5-small when applied to a problem involving fisheye images.
During training, even though YOLOv5-s shows slightly better convergence, all 3
networks give similar detection scores. However, the same cannot be said about
the networks’ performance on datasets pulled from contexts they are unfamiliar
with. In these cases, YOLOv5-s surpasses both YOLOv3-t and YOLOv4-t by a
large margin, while giving itself acceptable detection performances. Moreover,
while YOLOv5-s displays the slowest detection time, it is a small disadvantage
as the detection speeds are still fast enough (25ms per frame) for real time
applications. To further the argument in favor of YOLOv5-s, YOLOv4-t and
YOLOv3-t have detection times of the same order of magnitude as YOLOv5-s,
making the differences negligible in comparison to the differences in detection
quality. Subsequently, YOLOv5-s is the best solution out of the 3 proposed for a
real time, fisheye detection application. This solution was retained to act as the
detection portion of a real time tracking algorithm [19,6,20], applied to videos
acquired from a top-view fisheye camera, and mounted on an aerial drone or for
security cameras. As a reminder, the dataset is available online (see Sec. 2.2).

(a) (b) (c) (d) (e)
Fig. 5. People detection on top-view fisheye images on a new dataset without training
on the same data. The used algorithms for the detection are in the first row: YOLOv3-t,
second row: YOLOv4-t and third row: YOLOv5-s.

11

References

1. Ahmed, I., Ahmad, M., Ahmad, A. and Jeon, G. (2020). Top view multiple peo-
ple tracking by detection using deep SORT and YOLOv3 with transfer learning:
within 5G infrastructure. International Journal of Machine Learning and Cybernet-
ics. 12(11), 3053-3067.

2. Chiang, A. T., and Wang, Y. (2014). Human detection in fish-eye images using
HOG-based detectors over rotated windows. IEEE ICMEW, 1-6.

3. Demirkus, M., Wang, L., Eschey, M., Kaestle, H., and Galasso, F. (2017). People
Detection in Fish-eye Top-views. In VISIGRAPP (5: VISAPP), 141-148.

4. Dollar, P., Wojek, C., Schiele, B., and Perona, P. (2011). Pedestrian detection: An
evaluation of the state of the art. IEEE TPAMI, 34(4), 743-761.

5. Duan, Z., Tezcan, O., Nakamura, H., Ishwar, P., and Konrad, J. (2020). RAPiD:
rotation-aware people detection in overhead fisheye images. IEEE/CVF CVPR
Workshops, 636-637.

6. Haggui, O., Tchalim, M.A. and Magnier, B. (2021). A Comparison of OpenCV
Algorithms for Human Tracking with a Moving Perspective Camera. IEEE EUVIP.

7. Haggui, O., Bayd. H,. A.,Magnier, B., and Aberkane, A. (2021) Human Detection
in Moving Fisheye Camera using an Improved YOLOv3 Framework. IEEE MMSP.

8. Hansen, P., Corke, P., and Boles, W. (2010). Wide-angle visual feature matching for
outdoor localization. The International J. of Robotics Research, 29(2-3), 267-297.

9. He, W., Huang, Z., Wei, Z., Li, C., Guo, B. (2019) TF-YOLO: An Improved Incre-
mental Network for Real-Time Object Detection. Appl. Sci. , 9, 3225.

10. Iyer, R., Shashikant Ringe, P., Varadharajan Iyer, R. and Prabhulal Bhensdadiya,
K. (2021). Comparison of YOLOv3, YOLOv5s and MobileNet-SSD V2 for Real-
Time Mask Detection. International Research J. of Engineering and Technology,
8(7), 2395–0056.

11. Jiang, Z., Zhao, L., Li, S., and Jia, Y. (2020). Real-time object detection method
based on improved YOLOv4-tiny. arXiv preprint arXiv:2011.04244.

12. Kumler, J. J., and Bauer, M. L. (2000). Fish-eye lens designs and their relative per-
formance. In Current developments in lens design and optical systems engineering.
International Society for Optics and Photonics. 4093, 360-369.

13. Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., and Zitnick,
C. L. (2014). Microsoft COCO: Common Objects in COntext. In ECCV, 740-755.

14. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once:
Unified, real-time object detection. IEEE CVPR, 779-788.

15. Redmon, J., and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767.

16. Scaramuzza, D., and Ikeuchi, K. (2014). Omnidirectional camera. Springer.
17. Shaniya, P., Jati, G., Alhamidi, M.R., Caesarendra, W. and Jatmiko, W. (2021).

YOLOv4 RGBT Human Detection on Unmanned Aerial Vehicle Perspective. IEEE
IWBIS, 41-46.

18. Wang, T., Chang, C. W., and Wu, Y. S. (2017). Template-based people detection
using a single downward-viewing fisheye camera. IEEE ISPACS, 719-723.

19. Wojke, N., Bewley, A. and Paulus, D. (2017). Simple online and realtime tracking
with a deep association metric. IEEE ICIP, 3645-3649.

20. Talaoubrid, H., Vert, M., Hayat, K., and Magnier, B. (2022). Human Tracking in
Top-View Fisheye Images: Analysis of Familiar Similarity Measures via HOG and
against Various Color Spaces. Journal of Imaging, 8(4), 115.

12 B. Faure, N. Odic, O. Haggui and B. Magnier

21. Xiao, D., Shan, F., Li, Z., Le, B.T., Liu, X., and Li, X. (2019). A Target Detection
Model Based on Improved Tiny-Yolov3 Under the Environment of Mining Truck.
IEEE Access, 7, 123757-123764.

22. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., and Ren, D. (2020). Distance-IoU
Loss: Faster and better learning for bounding box regression. In AAAI.

23. Ultralytics (2021) yolov5s [source code]. https://github.com/ultralytics/
yolov5/blob/master/models/yolov5s.yaml

24. Ultralytics (2021) yolov5-tiny [source code]. https://github.com/ultralytics/
yolov5/blob/master/models/hub/yolov3-tiny.yaml

25. Ultralytics (2021) train [source code]. https://github.com/ultralytics/yolov5/
blob/master/train.py

26. Yolov4-tiny [source code]. https://github.com/WongKinYiu/PyTorch_YOLOv4/
blob/u5_preview/models/yolov4-tiny.yaml

https://github.com/ultralytics/yolov5/blob/master/models/yolov5s.yaml
https://github.com/ultralytics/yolov5/blob/master/models/yolov5s.yaml
https://github.com/ultralytics/yolov5/blob/master/models/hub/yolov3-tiny.yaml
https://github.com/ultralytics/yolov5/blob/master/models/hub/yolov3-tiny.yaml
https://github.com/ultralytics/yolov5/blob/master/train.py
https://github.com/ultralytics/yolov5/blob/master/train.py
https://github.com/WongKinYiu/PyTorch_YOLOv4/blob/u5_preview/models/yolov4-tiny.yaml
https://github.com/WongKinYiu/PyTorch_YOLOv4/blob/u5_preview/models/yolov4-tiny.yaml

	Performance of Recent tiny/small YOLO Versions in the Context of Top-view Fisheye Images

