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Experienced developers are key for the success of software development projects. In open-source software development, due to openness and distance, one cannot always rely on interpersonal interactions to know who these key people are. Automating the mining of experienced developers is not an easy task either, because of the subjectivity and relativity of what experience is and also because the material to search from (code and development-related metadata) does not obviously relate developers to their capabilities. Some research works propose developer profiling or clustering solutions though, from which we take inspiration. This paper advocates that it is possible to learn from tangible metrics extracted from code and development-related artifacts who are the experienced developers. It uses a supervised learning-based approach trained with a manually labeled dataset of 703 developers from 17 open-source projects from GitHub for which 23 metrics are automatically extracted. Experienced developers classification results show a high F1 measure. A companion explainability study analyzes which metrics are the most influential.

Introduction

Thanks to their knowledge and skills, experienced developers are key to software projects. Indeed, Booch advocates that "every project should have exactly one identifiable architect, although for larger projects, the principal architect should be backed up by an architecture team of modest size" [START_REF] Booch | Object solutions: managing the objectoriented project[END_REF]. Experienced developers are often those who possess both the historical and technical knowledge of the project. This technical knowledge often overlaps with the knowledge of the project's software architecture. Kruchten [START_REF] Kruchten | The software architect[END_REF] argues that software project architects are often experienced developers who master various concepts and technologies. The loss of this knowledge, that could be induced by people leaving a project, is detrimental and imply human and technical management issues [START_REF] Izquierdo-Cortazar | Using software archaeology to measure knowledge loss in software projects due to developer turnover[END_REF]. Therefore, the identification of experienced developers is a step towards better practices for the management of development teams. In open-source projects, where interpersonal relations are not followed as easily as they are in company teams, identifying experienced developers through human interactions is not always possible.

To overcome this issue, this paper investigates the possibility of mining experienced developers automatically, based on tangible metrics extracted from code and development-related artifacts from open-source software projects. It proposes a complete approach for mining experienced developers based on software metrics, as descriptive features of the problem, and supervised learning, as a binary classification method. As a first step, we create a dataset of 703 developers (contributors to projects) extracted from 17 Java open-source projects hosted on GitHub. Then, developers are manually labeled as being experienced or not, using manual searches in professional social networks and project documentation. To deal with an imbalanced dataset (lack of data in the experienced developer class) synthetic data generation (over-sampling using K-Means SMOTE) is used. Then, various classification methods are benchmarked from which Random Forest (RF) happens to be the most efficient. The classification reaches a good F1 measure, with well balanced recall and precision. Results prove that supervised classification is a valid approach to automatically mine experienced developers from project contributors using software metrics. Moreover, the classifier explanation (using the SHAP technique) provides valuable insight about the prominent characteristics in experienced developer profiles and, more specifically, architectural activities.

The remainder of this paper is organized as follows. Section 2 presents state-of-the art approaches to profile or cluster developers based on their experience. Section 3 details our proposed experienced developer mining approach. Section 4 presents and analyzes our results. Section 5 discusses threats to validity. Section 6 concludes and provides perspectives about this work.

Related works on developer profiling and clustering

Several works exist that identify experienced developers or domains of expertise in software projects [START_REF] Greene | CVExplorer: Identifying candidate developers by mining and exploring their open source contributions[END_REF][START_REF] Dos Santos | Mining software repositories to identify library experts[END_REF][START_REF] Hauff | Matching GitHub developer profiles to job advertisements[END_REF][START_REF] Teyton | Find your library experts[END_REF][START_REF] Teyton | Automatic extraction of developer expertise[END_REF][START_REF] Di Bella | A multivariate classification of open source developers[END_REF][START_REF] Kagdi | Who can help me with this source code change?[END_REF][START_REF] Schuler | Mining usage expertise from version archives[END_REF][START_REF] Sindhgatta | Identifying domain expertise of developers from source code[END_REF][START_REF] Mockus | Expertise browser: a quantitative approach to identifying expertise[END_REF]. Approaches fall into two categories: profiling and clustering.

Profiling

Profiling approaches discover experts for a single or several technologies in a given project.

Mockus et al. [START_REF] Mockus | Expertise browser: a quantitative approach to identifying expertise[END_REF] propose Expertise Browser to find expertise domains in project artifacts (documentation, code, product, etc.) using various data sources (repository data, documentation, etc.). Expertise Browser is based on their proposed concept of Experience Atom that models a developer's expertise on the basis of the modifications made on a project artifact. The collection of these Experience Atoms on each program unit composes the expertise of the developer. Singhgatta [START_REF] Sindhgatta | Identifying domain expertise of developers from source code[END_REF] uses repository data and source code combined with clustering (K-Means) to extract key concepts of expertise such as security, database or multi-threading. Expertise concepts are then linked to developers using repository logs. It thus measures an expertise level on each expertise concept for each developer. Schuler et al. [START_REF] Schuler | Mining usage expertise from version archives[END_REF] profile developers using CVS data and source code. They have implemented a system to measure the software expertise at the method level. They argue that a developer that changes a method must understand its functionality and therefore has an expertise. To do so, they count the number of methods used and changed by developers. Each method in the project is attach to all developers that have worked on it. Developers that changed or used the highest number of methods are considered to be experts. LIBTIC [START_REF] Teyton | Find your library experts[END_REF] is an approach created by Teyton et al. to find library experts. As proposed by [START_REF] Kagdi | Who can help me with this source code change?[END_REF], LIBTIC computes vectors to characterize expertise levels of developers. However, LIBTIC is focused on library usage. Data encoded in vectors come both from the source code of libraries (jar archive) and developers' Git repositories. It evaluates how developers master libraries and identifies the required expertise in project.

XTic [START_REF] Teyton | Automatic extraction of developer expertise[END_REF] is the most versatile approach. It uses source code and repository data. Teyton et al. [START_REF] Teyton | Automatic extraction of developer expertise[END_REF] 

Clustering

Clustering approaches group developers according to their skills or their experience in a given project.

Kagdi et al. [START_REF] Kagdi | Who can help me with this source code change?[END_REF] identify three groups of expert developers. These groups corresponds to three granularity levels in object-oriented projects: file, package and system. Despite these works, to our knowledge, this paper is the first to mine experienced developers using supervised learning combined to software metrics. Besides, only three approaches profile architectural skills [START_REF] Teyton | Automatic extraction of developer expertise[END_REF][START_REF] Greene | CVExplorer: Identifying candidate developers by mining and exploring their open source contributions[END_REF][START_REF] Dos Santos | Mining software repositories to identify library experts[END_REF]. Moreover, only two approaches use machine learning, more precisely unsupervised learning [START_REF] Sindhgatta | Identifying domain expertise of developers from source code[END_REF][START_REF] Di Bella | A multivariate classification of open source developers[END_REF]. Among of these works, Di Bella et al. 's proposal (Di Bella et al., 2013) is the only that uses software metrics to perform an unsupervised classification of developers in open-source projects.

3 Proposed approach for mining experienced developers

In this section, we detail our proposed approach to mine experienced developers from dataset creation to classifier selection and evaluation. In order to guarantee the reproducibility of this study, both our source code and data are available online 1 . The proposed approach is sketched in Figure 1.

Dataset creation

To our knowledge, there is no dataset of contributors related to open-source projects based on Spring.Therefore, we have chosen to create our own. Our goal here is to build a dataset of developers associated to metrics (described in Section 3.1.2) and developer experience (Experienced Software Engineer, Software Engineer or Unknown).

1 https://github.com/qperez/MEDOS

Contributors extraction

First, we select 17 popular projects that use the architectural Java Spring Framework2 . Using the GitHub REST API3 , we extract 951 developers that contribute to these projects. The data retrieved contain username, name and email from developers' GitHub accounts. Each extracted developer is linked to its project. A developer working on several projects appears several times in the extracted collection.

Contributor metrics extraction

Using the PyDriller tool [START_REF] Spadini | Py-Driller: Python framework for mining software repositories[END_REF] Non-contributors bring some noise to the data which could reduce the quality of the classifier. To exclude non-contributors to the source code, we remove from our dataset the contributors that did not change at least one line as synthesized in the following variables: AddLGM , DelLGM , AddLoC, DelLoC, AddSAM, DelSAM. By this means, the dataset size reduces from 951 contributors to 703.

Mapping contributors to developers' experience in projects

Next goal consists in labeling our dataset with the aim of using it for supervised learning. This amounts to map GitHub contributor profiles to their level of experience in projects. To do so, we search each developer on internet using GitHub username and name. We use this method because many developers use social networks [START_REF] Archambault | A longitudinal study of facebook, linkedin, & twitter use[END_REF]. As a perspective, another complementary solution might be to send questionnaires to developers but the weakness of this method is the usual low response rate [START_REF] Tse | Comparing response rate, response speed and response quality of two methods of sending questionnaires: e-mail vs. mail[END_REF][START_REF] Cook | A meta-analysis of response rates in web-or internetbased surveys[END_REF]. Therefore, we collect contributor's experience from LinkedIn, Twitter and GitHub profiles or project documentation websites. To do so, we manually search each developer GitHub name in search engines. If the search result is positive, to prevent homonyms in names, we check that the developer mentions that he is working on the given project. Finally, we inspect the developer's profile and manually label the developer.

Considering a given project, if the profile of a given developer mentions:

• "Architect" or "Senior Software Engineer" then we label this developer as "Experienced Software Engineer" (ESE) [START_REF] Kruchten | The software architect[END_REF],

• "Junior Software Engineer" or "Software Engineer" then we label this developer as "Software Engineer" (SE),

• "Developer" then we search if the developer has a Master of Sciences in Software Engineering. If so, the developer is labelled as "SE"; else the developer is labelled as "OTHER".

• Other descriptions than "SE" or "ESE" then we label the developer as "OTHER".

If the GitHub username of the developer contains the word "bot" then he is labelled as "BOT". Finally, if no information is available about the experience of the developer in the project then it is labelled as "UNKNOWN". Labeling results in one of the five values listed in Table 2.

After having used this raw labeling technique, deeper analysis shows that "SE" or "UNKNOWN" develop- ers can have metrics comparable to "ESE". To avoid these misclassifications, we have sought outliners using an Isolation-Forest method. Isolation-Forest calculates a score for each observation in the dataset. This score provides a measure of normality for each observation. We assume that some "SE" or "UNKWNON" may be declared "ESE". After an inspection of outliners spotted by Isolation-Forest, we have manually relabeled 21 of them: 4 "UN-KNOWN" to "ESE" and 17 "SE" to "ESE". Table 3 details the number of contributors for each category before and after manual relabeling. This labeling will allow a wider use of the dataset in other contexts than the binary classification that we perform here.

Our goal is now to perform a binary classification of developers separating "ESE" from "Non-ESE". All contributors associated to labels other than "ESE" are considered "Non-ESE". As a result of this process, we obtain 98 contributors labelled as being "ESE" and 605 contributors considered to be "Non-ESE".

Feature engineering

To be efficient, classification requires a preprocessing phase called feature engineering [START_REF] Zheng | Feature engineering for machine learning: principles and techniques for data scientists[END_REF]. In this phase, various transformations are applied on data: scaling, mathematical transformation, normalization, outliner detection etc.

The first step of feature engineering we apply is a log transformation to reduce the high data skewness of 6 variables: DiP, NoC, AddLOC, DelLOC, AddSAM, DelSAM. High skewness leads to a large variance in estimates that finally decreases classifier performance.

Having variables (features) with different scales and units, we perform a data standardization step. We use the Min-Max method to reduce the effect of outliners and scale data in the range [-1, 1]. Min-Max scaling is defined as follows:

X scaled = X -X min X max -X min × (maxmin) + min with :

• X the feature value to scale,

• X scaled the feature value scaled,

• X min and X max the minimum and maximum observed value for feature X,

• max the upper bound for the range,

• min the lower bound for the range.

Data over-sampling

A point of attention is our highly imbalanced dataset.

Our dataset contains 98 experienced developers (minority class) and 605 non-experienced developers (majority class). Keeping these categories imbalanced would lead to a biased classification model. To overcome the lack of data on the minority class, we use the SMOTE (Synthetic Minority Over-sampling Technique) over-sampling method [START_REF] Chawla | SMOTE: synthetic minority oversampling technique[END_REF]. SMOTE is designed to create synthetic data based on existing data. It selects existing points in space, creates vectors between them and randomly generates a synthetic point on this vector. SMOTE has proven its performance as compared to other data generation methods such as random over-sampling [START_REF] Chawla | SMOTE: synthetic minority oversampling technique[END_REF][START_REF] Dudjak | In-depth performance analysis of SMOTE-based oversampling algorithms in binary classification[END_REF]. More precisely, a variant of SMOTE called K-Means SMOTE [START_REF] Douzas | Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE[END_REF] is used here. Compared to SMOTE, K-Means SMOTE reduces noise in the generated data [START_REF] Douzas | Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE[END_REF]. By this means, we generate synthetic experienced contributor profiles. Synthetic data generation is performed during the classifier training phase to increase the number of learning data. Figure 2 shows the combination of over-sampling and 4-fold. The over-sampling is performed on the minority class on each test fold.

Classifier selection

In this study, we now compare 6 different classifiers to choose from. We test 3 classifiers that are known to have good performances on small datasets (SVM, LR, kNN) and, for the comparison, 3 more complex classifiers (SGD, RF, MLP). Using our labeled dataset, we test these classifiers using their implementations in the Scikit-learn API (Lars Buitinck, 2013)

• Logistic Regression (LR) is a binomial regression model used to describe data and the relationship between a dependent variable and one or more independent variables. LR estimates the probability of an event occurence using a sigmoid function.

• k-Nearest Neighbors (kNN) is a non-parametric method in which the model stores the data of the training dataset to perform the classification. To assess the class of a new input, kNN looks for its k closest neighbors using a distance formula (e.g., Euclidean distance) and chooses the class of the majority of neighbors.

• Support Vector Machines (SVMs) are non probabilistic classifiers based on linear algebra. Training SVMs creates hyperplanes that separate multidimensional data into different classes. SVMs optimize hyperplanes' positions by maximizing their distance with the nearest data. These classifiers generally reach a good accuracy.

• Multi-Layer Perceptron (MLP) is a type of formal neural network that is organized in several layers. Information flows from the neurons of the input layer to the neurons of the output layer through weighted connections. Supervised training incrementally adjusts the weights of connections (error back-propagation) so that the expected outputs can be learned by the MLP. Through the use of multi-layers, a MLP is able to classify data that is not linearly separable (using multiple learned hyperplanes).

• Random-Forest (RF) is a parallel learning method based on multiple, randomly constructed, decision trees. Each tree of the random forest is trained on a random subset of data according to the bagging principle, with a random subset of features according to the principle of random projections.

• Stochastic Gradient Descent (SGD) uses the it-erative gradient descent method to minimize an objective function defined as a sum of functions:

Q(w) = 1 n n ∑ i=1 Q i (w),
where w is the parameter to be estimated in order to minimize function Q(w). Q i corresponds to the i-th observation in the training dataset.

Classifiers have hyper-parameters values influencing the model. Thus, setting correct hyper-parameter values provides better classifications. To do so, hyperparameters values are tuned using a Grid-Search algorithm. Grid-Search, also called parameter sweep, is a brute-force method that searches for an optimal combination of parameters' values using their n-fold Cartesian product. Classifier performances are evaluated using a stratified k-fold cross-validation protocol (k = 4). We selected a small k and stratified version because dataset size is modest. As shown by Figure 2, we oversample only the train folds. Test folds keep the distribution of original data so as to be representative of real data from projects Indeed, performing validation on a over-sampled test fold would have biased the evaluation.

Results

Classifier selection

As explained in Section 3.4, we test and compare six classifiers using the F1 measure: Multi-layer Perceptron (MLP), k-Nearest Neighbors (kNN), Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM) and Stochastic Gradient De-scent (SGD). Classifier hyper-parameters are previously coarsely optimized using a Grid-Search algorithm. Classifiers are then evaluated with a stratified 4-fold protocol (see Section 3.3). Table 4 compiles optimized hyper-parameter values and experimental results for each classifier. RF happens to be the classifier that performs best (bold figures). Hence, RF will be the chosen classifier for the remaining. 

Detailed results

In order to determine the respective influence of each step in our process, we evaluate our RF classifier with different settings. For each setting we compute F1 measure, recall, precision and balanced accuracy. Results are given by Figure 3 and Table 5. Setting 1. In this configuration, feature scaling, data transformation and synthetic data generation are not used. Moreover, RF classifier hyper-parameter values are set to default (i.e., as set by the Scikit-Learn API). Evaluation results in a good precision (0.8608) but a poor recall (0.6829). Confidence intervals are large on all measures. Setting 2. This configuration replicates Setting 1 except for classifier hyper-parameters, which are optimized as calculated by Gird-Search. In this configuration, the F1-Measure is almost unaffected (0.7591) as compared to the previous configuration (0.7601). However, as compared to Setting 1, confidence intervals are reduced or stable for all measures. Setting 3. In this configuration, Setting 2 is improved using log transformation and data scaling. As compared to Setting 2, Setting 3 shows a positive influence on F1 measure (+0.0063), recall (+0.010) and accuracy (+0.005). All confidence intervals are sub-stantially increased. These transformations increase the performance of the classifier but induce more variability. Setting 4. Setting 3 is in turn altered with the addition of synthetic data generation as described in Section 3.4. Training the classifier on a balanced dataset has a positive impact on measures. As compared to Setting 3, F1 (+0.0233), recall (+0.413) and accuracy (+0.0198) are increased. Confidence intervals are reduced on all measures as compared to Setting 3 but close to those of Setting 2. As in Setting 3, precision is decreased (-0.002) but there is a good trade-off between recall (0.7446) and precision (0.8390).

Feature contribution

One of the challenges of Machine Learning algorithms is their explainability. Explainability techniques show which features are most significant for classification. Several technology-agnostic explanation methods could be considered: feature permutation [START_REF] Breiman | Random forests[END_REF], Local Interpretable Modelagnostic Explanation (LIME) [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF], SHapley Additive exPlanations (SHAP) [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] and Anchors [START_REF] Ribeiro | Anchors: High-precision model-agnostic explanations[END_REF]. These methods are post-hoc, meaning they analyze classifiers after they have been trained on data. Only feature permutation, LIME and SHAP explain the classifier globally, i.e., explain feature contribution. Anchors explains only classification results for a given instance. Feature permutation is the most simple method but not the most reliable [START_REF] Hooker | Please stop permuting features: An explanation and alternatives[END_REF]. Studies comparing LIME and SHAP conclude that SHAP gives more consistent explanations [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF][START_REF] Moscato | A benchmark of machine learning approaches for credit score prediction[END_REF]. Therefore, we choose SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] to explain our RF classifier. SHAP uses game theory, more precisely the Shapley value (Shapley, 1953) to measure feature contribution to classification. We combine SHAP explanation with our stratified 4-fold protocol to explain results on each fold. Feature contribution values returned by SHAP are thus saved for each fold and their means computed for each feature afterwards. Figure 4 shows results about the explanation of the RF classifier. We observe that four features have a preponderant impact on classification: number of lines of code added (AddLOC), churn of lines of code (ChurnLOC), number of deleted files (DelF) and number of non-abstract classes created (NoNAB). Di Bella et al. [START_REF] Di Bella | A multivariate classification of open source developers[END_REF] have shown that lines of codes are discriminant features to categorize developers using an unsupervised method. Here, in a supervised context, we make the same observation. We observe the same here. From the eighth to the eleventh position in Figure 4, we find different features related to the Java object structure: number of classes not extending another class (NonCE), number of classes implementing an interface (NoCII), number of classes not implementing an interface (NoCnII) and number of classes extending another class (NoCE). These four features tend to show that taking into account the activities on the structure of the Java code of projects has only a moderate impact to discriminate experimented developers from others. Number of Gradle/Maven modules created (NoMGM ) and number of Gradle/Maven lines added (AddLGM ) (ranked thirteenth and fourteenth) are less important than the Java structure but should not be neglected. The most surprising observation concerns features about Spring architecture (AD DSAM, DE LSAM, CH U R NSAM), which are the least important for classification. Spring architectural contributions seems to be not discriminant to classify developers contrary to our intuition. Although these tasks are taken over by experienced and often long time contributors in projects [START_REF] Perez | Towards Profiling Runtime Architecture Code Contributors in Software Projects[END_REF], they correspond to the very specific role of architect are thus assumed by a smaller proportion of the experienced developers.

Threats to validity

This section discusses the main threats to the validity of our proposal.

Internal Threats. The main internal threat is linked to the quality of our dataset. Our approach strongly relies on labels that are set by contributors who selfreport their level of experience in projects on social networks (LinkedIn, Twitter) or in project documentation. This labeling may be thus subject to bias if some developers consider themselves to be experienced when they are not, or vice versa. To mitigate this risk, our proposal includes a manual relabeling phase using a mathematical method. Despite this, errors may still exist in our dataset. External Threats. External threats might have an impact on the generalizability of our proposal. The selected projects are open-source projects, written in the Java language that use the Spring framework. Contributors might be mainly Java developers. Moreover, three metrics used in our dataset (DE LSAM, AD DSAM, CH U R NSAM) are specific to the Spring framework and this paper focuses exclusively on two levels of experience (experienced or not). These characteristics might impede the generalization of our proposal to projects written in different programming languages, using other technologies or employing contributors with different profiles. Such alternate studies still are perspective works.

Conclusion

This paper proposes an approach to mine experienced developers in open-source projects using metrics and supervised learning. Firstly, it builds a dataset of project contributors and define a binary classification process to discriminate between experienced developers and non-experienced developers. Contributors are extracted from 17 open-source projects and 23 metrics evaluated for each of them. The dataset is then manually labeled with the experience of contributors in each project, as needed by supervised learning. Data is then processed (log transformation and scaling) to ease its interpretation by classification algorithms. As the dataset is strongly imbalanced, synthetic data generation is also performed (with the SMOTE method) to create synthetic profiles of expe-rienced contributors as a compensation. Six supervised classification algorithm are then benchmarked.

The RF classifier provides the best results showing both a good F1 measure (0.7887) and a good accuracy (0.8607). The balance between recall (0.7446) and precision (0.8390) is fairly equitable. The explainability of our classifier shows that the metrics that have the most influence on the classification are the number of lines of code and the churn of lines of code. Contrary to our intuition, the metrics related to the Spring architecture have very little influence on the classifier's decision. The number of files added, the number of commits and the variables related to the Java structure are among those with a medium influence. This could indirectly mean that experienced developers make a lot of of changes to the project structure but that contributing to the runtime architecture is a very specific task only devoted to architects. This work opens many perspectives. A first idea is to improve the genericity of our approach by training a technology-agnostic classifiers. To do so means both collecting technology-independant metrics and extracting contributors from projects that use other programming languages. A second perspective is to study the correlation between the number of experienced developers in a given project and project quality using project-level software metrics.
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 1 Figure 1: Experienced developers classification process.
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 3 Figure 3: Values and confidence intervals for F1, recall, precision and accuracy on 4 settings.

  (a) SHAP values for each classified instance. (b) Mean SHAP values.
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 4 Figure 4: SHAP values for the 23 features.

Table 1 :

 1 23 Metrics extracted for each developer.

	AddLGM	Lines added in Gradle or Maven files by a given de-
		veloper
	DelLGM	Lines deleted in Gradle or Maven files by a given
		developer in Gradle or Maven files
	ChurnLGM	Difference between added and deleted lines in Gradle
		/ Maven files for a given developer
	NoMGM	Number of Modules Gradle or Maven created by a
		given developer
	AD DSAM	Spring Architectural Modifications (lines specific to
		Spring) added by a given developer
	DE LSAM	Spring Architectural Modifications (lines specific to
		Spring) by a given developer
	CH U R NSAM	Difference between added and deleted specific
		Spring lines for a given developer
	AddLOC	Number of Lines Of Code added by a given devel-
		oper in project files
	DelLOC	Number of Lines Of Code deleted by a given devel-
		oper in project files
	ChurnLOC	Difference between added and deleted lines of code
		in project files for a given developer
	DiP	Days in Project. Number of days the developer has
		been in the project (time between first and last com-
		mit)
	IT	Inter-commit Time. Average time (days) between
		commits
	NoC	Number of commit made by a developer
	AddF	Number of files added for a given developer
	DelF	Number of files deleted for a given developer

Variable code Variable NoAB Number of Abstract Classes created by a given developer NonAB Number of non Abstract Classes created by a given developer NoCII Number of Classes Implementing an Interface created by a given developer NoCnII Number of Classes not Implementing an Interface created by a given developer NoCE Number of Classes Extending another class created by a given developer NonCE Number of Classes not Extending another class created by a given developer NoInEI Number of Interfaces not Extending another Interface created by a given developer NoIEI Number of Interfaces Extending another Interface created by a given developer

Table 2 :

 2 Labels used to annotate developers.

	Label acronym	Label	Description
	ESE	Experienced Software Engineer	Contributor declaring himself as being an experienced or senior software engineer.
	SE	Software Engineer	Contributor declaring himself as being a software engineer.
	OTHER	Other	Contributor declaring himself as not belonging to one of the above categories.
	UNKNOWN	Unknown	No information available about the contributor.
	BOT	Bot	Machine of continuous integration having a GitHub profile to: test, commit, release, etc.

Table 3 :

 3 Dataset details before and after manual relabeling.

		#ESE	#SE	#UNKNOWN	#BOT	#OTHER
	Before manual relabeling	81	86	509	10	17
	After manual relabeling	98	73	505	10	17

Table 4 :

 4 Results obtained with SciKit classifiers using a stratified 4-fold cross-validation 23 features.

	CLF	Specific Classifier Parameters Grid-Search Optimized	F1 Measure
	RF	criterion='gini', n estimators=300, random state=0, max depth=2, max features='log2'	0.789 IC 95%: 0.053
	SGD	loss='modified huber', max iter=2000, random state=0, tol=0.1, alpha=0.1, learning rate='invscaling'	0.775 IC 95%: 0.057
	kNN	weights='distance', n neighbors=6, algorithm='ball tree', p=2	0.767 IC 95%: 0.073
	MLP	activation='relu', learning rate='constant', max iter=100, random state=0, hidden layer sizes=(50, 50), solver='adam'	0.766 IC 95%: 0.046
	SVM	C=0.2, gamma='scale', kernel='poly',random state=0, tol=0.0001	0.763 IC 95%: 0.021
	LR	C=0.52, random state=9090, solver='sag', tol=0.1	0.757 IC 95%: 0.142

Table 5 :

 5 Values and confidence intervals for F1, recall, precision and accuracy on 4 settings.

		Setting 1	Setting 2	Setting 3	Setting 4	Evaluation
		Value	IC 95%	Value	IC 95%	Value	IC 95%	Value	IC 95%	protocol
	F1	0.7601	0.0571	0.7591	0.0458	0.7654	0.1111	0.7887	0.0529	Stratified 4-fold
	Recall	0.6829	0.0978	0.6933	0.0777	0.7033	0.1267	0.7446	0.0708	Stratified 4-fold
	Precision	0.8608	0.0625	0.8412	0.0654	0.8411	0.1098	0.8390	0.0438	Stratified 4-fold
	Accuracy	0.8324	0.0459	0.8359	0.0363	0.8409	0.0678	0.8607	0.0364	Stratified 4-fold
	Number of deleted files and number of non-abstract					
	classes created could be a sign of refactoring per-					
	formed by experimented developers. Among features					
	with lower importance, number of commits (NoC) is					
	in sixth place and days in project (DiP) in twelfth					
	place. These two features are also considered dis-					
	criminant by Di Bella et al. (Di Bella et al., 2013).					
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