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Levofloxacin (LFX) is a widely used antibiotic medication. Persistent traces of LFX in water and wastewater may induce bacterial resistance. Photon-driven advanced oxidation processes (AOPs) can assist in attaining complete abatement of LFX for environmental protection. This work benchmarks different solar AOPs based on hydroxyl radical (OH • ) and sulphate radical (SO 4

•-) chemistry. Other oxidant precursors, as radical sources, were used to selectively control the generation of either hydroxyl radical (i.e., H 2 O 2 ), sulphate radical (i.e., peroxydisulphate (PDS)), or a controlled mixture ratio of both OH • /SO 4

•-(i.e., peroxymonosulphate (PMS)). The influence of pH on degradation performance was evaluated using unbuffered and buffered solutions. Simulated irradiation/PMS process exhibited a strong pH-dependence attaining partial degradation of ca. 56% at pH 5 up to complete degradation at pH 7. Despite the similitudes on the abatement of target pollutant LFX in pristine solutions, only simulated irradiation/PDS treatment achieved effective abatement of LFX in wastewater samples given the higher selectivity of SO 4

•-. Toxicity tests were conducted with Escherichia coli (LMG2092) and Micrococcus flavus (DSM1790), demonstrating successful inhibition of the antibiotic character of polluted waters, which would contribute to preventing the development of resistant bacterial strains. Finally, a degradative pathway was suggested from the by-products and intermediates identified by LC-MS. Results demonstrate that the degradation of specific functional groups (i.e., piperazine ring) is associated with the loss of antibacterial character of the molecule.

Water pollution is an increasing environmental hot-spot due to the continuous introduction of recalcitrant organic compounds into the aquatic ecosystem [START_REF] Geissen | Emerging pollutants in the environment: a challenge for water resource management[END_REF]. Antibiotics are pharmaceuticals extensively used to treat and prevent bacterial infectious diseases. Despite being poorly regulated worldwide, antibiotics continue to be the most detected pharmaceuticals given their extensive use in human and veterinary medicine [START_REF] Boy-Roura | Towards the understanding of antibiotic occurrence and transport in groundwater: findings from the Baix Fluvià alluvial aquifer (NE Catalonia, Spain)[END_REF][START_REF] Klein | Global increase and geographic convergence in antibiotic consumption between 2000 and 2015[END_REF][START_REF] Pascale | Validation of a liquid chromatography coupled with tandem mass spectrometry method for the determination of drugs in wastewater using a three-phase solvent system[END_REF]. Effective removal of antibiotic trace levels from the environment is urgently required for a reason beyond the environmental impacts, such as toxicity to plants and other organisms [START_REF] Backhaus | The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri[END_REF][START_REF] Mukhtar | Phytotoxicity of different antibiotics to rice and stress alleviation upon application of organic amendments[END_REF]. Trace levels of antibiotics in aquatic ecosystems may induce the development of antibiotic resistance genes and bacteria, which will decrease or completely inhibit the therapeutic potential of antibiotics against human and animal pathogens [START_REF] Rizzo | Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review[END_REF][START_REF] Zainab | Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks[END_REF]). This is a major risk for human health that should be prevented through effective antibiotic removal from the environment. The most detected classes of antibiotics in wastewater and surface water are fluoroquinolones (FQs) [START_REF] Rizzo | Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review[END_REF][START_REF] Gothwal | Antibiotic pollution in the environment: a review[END_REF] because they are not removed in conventional wastewater treatment plants and can cause long-term bioaccumulation and toxicity in the environment [START_REF] Liu | Degradation difference of ofloxacin and levofloxacin by UV/H 2 O 2 and UV/ PS (persulfate): Efficiency, factors and mechanism[END_REF]. Usually, these fluorinated antibiotics are found at low concentrations, ranging from ng L -1 to µg L -1 , but concentrations up to several mg L -1 were already detected in effluents from pharmaceutical industries [START_REF] Larsson | Effluent from drug manufactures contains extremely high levels of pharmaceuticals[END_REF]). Fluoroquinolones are highly recalcitrant organic pollutants hardly removed by conventional water treatment technologies. The biodegradation of FQs has rarely been reported. To our knowledge, only a few bacteria [START_REF] Pan | Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge[END_REF]) and fungi [START_REF] Manasfi | Biodegradation of fluoroquinolone antibiotics and the climbazole fungicide by Trichoderma species[END_REF]) species have been identified as organisms capable of biotransforming these antibiotic traces. However, the consequences due to the presence of fluoroquinolones in the environment are not fully understood, but they are known to be toxic to plants and aquatic organisms [START_REF] Backhaus | The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri[END_REF][START_REF] Mukhtar | Phytotoxicity of different antibiotics to rice and stress alleviation upon application of organic amendments[END_REF]. For this reason, the development of AOPs holds the promise of entirely mineralising pharmaceutical footprint in water environments if those are included as additional polishing to conventional wastewater treatment plants [START_REF] Brienza | Sulfate Radical Technologies as Tertiary Treatment for the Removal of Emerging Contaminants from Wastewater[END_REF]. The fundamental principle of AOPs resides in the generation in situ of strong oxidising radical species such as hydroxyl radicals (OH • ), which interact with the molecules of the organic pollutants and lead to the progressive degradation of the contaminants [START_REF] Lelario | Effectiveness of different advanced oxidation processes (AOPs) on the abatement of the model compound mepanipyrim in water[END_REF][START_REF] Vagi | Advanced oxidation processes for the removal of pesticides from wastewater: recent review and trends[END_REF]. Hydroxyl radicals (HR) can be produced by different systems such as UV/H 2 O 2 [START_REF] Jung | Removal of amoxicillin by UV and UV/H2O2 processes[END_REF], UV/O 3 (Šojić et al. 2012), UV/TiO 2 [START_REF] Azzaz | Discoloration of simulated textile effluent in continuous photoreactor using immobilized titanium dioxide: Effect of zinc and sodium chloride[END_REF][START_REF] Zuorro | Photocatalytic Degradation of Azo Dye Reactive Violet 5 on Fe-Doped Titania Catalysts under Visible Light Irradiation[END_REF], Fenton, and photo-Fenton technologies [START_REF] Kamagate | Use of laterite as a sustainable catalyst for removal of fluoroquinolone antibiotics from contaminated water[END_REF][START_REF] Zhu | Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review[END_REF]). In the last decade, oxidants like persulphate (PDS = S 2 O 8 2 -

) or peroxymonosulphate (PMS = HSO 5 -) have been studied as an alternative to conventional OH •-based AOPs [START_REF] Ahmed | Solar photo-Fenton using peroxymonosulfate for organic micropollutants removal from domestic wastewater: comparison with heterogeneous TiO 2 photocatalysis[END_REF]. In fact, through their activation, sulphate radicals (SR)(SO 4

•-) can be produced for the removal of an extensive array of organic contaminants, including pharmaceuticals and pesticides [START_REF] Kan | Remediation of organophosphorus pesticide polluted soil using persulfate oxidation activated by microwave[END_REF]. The activation of PMS and PDS can be achieved mainly by thermal, photolytic, sonolytic, radiolytic activation, and the reactions of the oxidants with iron oxide magnetic composites, including in situ formed iron hydroxides and quinones [START_REF] Wacławek | Chemistry of persulfates in water and wastewater treatment: A review[END_REF]. Among the various SR-AOPs, sunlight technologies are desirable because of their low operational costs and high organic contaminants removal efficiency [START_REF] Yang | Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water[END_REF]. After activation, PDS produces sulphate radicals, while PMS produces both sulphate and hydroxyl radicals, as reported in Eqs. 1-2:

Compared to HO • , SO 4

•-radicals have a series of advantages: higher redox potential (E 0 = 2.65-3.1 V), higher selectivity and efficiency on the oxidation of compounds with unsaturated bonds or aromatic ring, higher pH range and higher half-life in some cases [START_REF] Ahmed | Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination[END_REF][START_REF] Hayat | Comparison of radical and non-radical activated persulfate systems for the degradation of imidacloprid in water[END_REF]. Therefore, sulphate radicals can remove emerging contaminants more efficiently (Wang and Wang 2018;[START_REF] Yang | Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water[END_REF].

This work provides a framework to compare the effectiveness of homogeneous AOPs processes based on the generation of OH • and SO 4

•-by solar-driven methods. Levofloxacin (LFX) is used as a model compound since it is the widest fluoroquinolone pharmaceutical and has been widely prescribed in the period of the COVID-19 pandemic due to its usefulness in the treatment of opportunistic bacterial infections that can co-occur during bacterial pathogenesis. In addition, the LFX transformation pathway has been investigated upon different oxidative treatments [START_REF] Epold | Degradation of levofloxacin in aqueous solutions by Fenton, ferrous ion-activated persulfate and combined Fenton/persulfate systems[END_REF][START_REF] Yahya | Mineralization of the antibiotic levofloxacin in aqueous medium by electro-Fenton process: kinetics and intermediate products analysis[END_REF] biodegradation [START_REF] Shu | Anaerobic biodegradation of levofloxacin by enriched microbial consortia: Effect of electron acceptors and carbon source[END_REF], which might facilitate intermediates identification. The oxidants used are H 2 O 2 , PMS and PDS, which produce HO • , HO • , and SO 4

•-, SO 4

•-radicals respectively. In the first step, the performance of different AOPs was investigated in other pH conditions according to essential kinetic criteria, mainly the comparison between apparent first-order kinetic rate constants obtained by different SR-AOPs and HR-AOPs. Then, in a second step, treatment of LFX was conducted in a complex water matrix as representative wastewater composition to assess competitive and targeted reduction of fluoroquinolone at a realistic concentration level. To demonstrate the (1)

HSO - 5 + h → HO • + SO •- 4 (2) S 2 O 2- 8 + h → 2SO •-
hazard of the starting molecule and its degradation products, the evaluation of the inactivation of specific bacterial strains is beneficial [START_REF] Cai | Halo Assay for Toxic Peptides and Other Compounds in Microorganisms[END_REF]. For this purpose, the effective inactivation of anti-bactericidal effects of LFX and by-products was evaluated using the culture of Escherichia coli and Micrococcus flavus microorganisms. The bactericidal effect evaluation is essential to define the effectiveness of technology to prevent the undesired development of bacteria-resistant strains. 

Material and methods

Reagents, catalyst, and wastewater

AOPs and experimental conditions

The photocatalytic experiments were conducted using an amber cylindrical reactor covered with a quartz cap. The photochemical reactor was placed in a solar simulator device (Heraeus-Atlas Suntest CPS + , Chicago, USA), equipped with a Xenon Arc lamp (1.8 KW) as irradiation source, with a light power of 400 Wm -2 and a spectral wavelength range of 290-800 nm. The temperature was kept constant (26 ± 0.1 °C) through an air conditioning system, and the solutions were maintained under continuous stirring to ensure an optimum mixing flow. All photodegradation reactions were performed on a solution of LFX with an initial concentration of 10 mg L -1 , obtained from a stock solution of 2000 mg L -1 in methanol and diluted in different aqueous media: distilled water pH = 6.3, acetate buffer solution 0.01 M pH = 5, phosphate buffer solution 0.05 M pH = 7, simulated wastewater (SWW) pH = 7.8. The initial concentration was fixed at 10 mg L -1 because it is suitable for kinetic competition experiments and allows HPLC quantification without pre-concentration steps. The efficiency of H 2 O 2 , PMS and PDS as oxidants at a concentration of 400 µM was assessed for each medium. Simulated wastewater (SWW) at pH around eight was employed in this work.

The exact composition is as follows [START_REF] Polo-López | Mild solar photo-Fenton: An effective tool for the removal of Fusarium from simulated municipal effluents[END_REF]): NaHCO 3 (96 mg L -1 ), NaCl (7 mg L -1 ), CaSO 4 •2H 2 O (60 mg L -1 ), urea (6 mg L -1 ), MgSO 4 (60 mg L -1 ), KCl (4 mg L -1 ), K 2 HPO 4 (0.28 mg L -1 ), CaCl 2 •2H 2 O (4 mg L -1 ), peptone (32 mg L -1 ), and MgSO 4 •7H 2 O (2 mg L -1 ).

Analytical methods

HPLC-UV and MS method for LFX analysis

The time course concentration of LFX was monitored using a high-performance liquid chromatography (HPLC) system (Agilent Technologies 1200 series, USA) equipped with a Kinetex C18 100 Å column (250 × 4.6 mm i.d. and 5 µm particle size) coupled to a diode array detector, set at λ = 295 nm. The mobile phase consists of a biphasic gradient, ultrapure water with 0.1% formic acid (solvent A) and acetonitrile (solvent B), structured as follows: 0-3 min, 0% B; 3-5 min, 15% B; 5-16 min, 15% B; 16-18 min, 100% B; 18-22 min, 100% B; 22-23 min, 0% B; 23-25 min, 0% B. The flow rate is 1.0 mL min -1 , and the injection volume is 20 µL. The study of metabolites for LFX degradation in SWW by simulated irradiation/PDS was carried out using an LC-ESI( +)-linear trap quadrupole (LTQ) MS (Thermo Fisher Scientific, Bremen, Germany). Chromatographic conditions were maintained identical to those described above for the HPLC-UV method. The MS optimized experimental conditions for the ESI ion source were: ESI needle voltage, + 4.5 kV; cone voltage, + 3.00 kV; the temperature of the heated capillary, 350 °C; and sheath gas (N 2 ) flow rate of 60 arbitrary units (a.u.). The instrument was externally calibrated with appropriate standards, and mass spectrometric data were acquired in the positive ion mode while scanning m/z 50-2000.

Spectrophotometric method for PDS quantification

During degradation, residual PDS concentration in SWW samples was monitored using a UV/visible single-ray spectrophotometer Cary 50 at λ = 352 nm and λ = 400 nm.

The analyzed solutions consisted of 1 mL of the selected sample, 1 mL of NaHCO 3 5.0 mg mL -1 , 1 mL of KI 0.1 g mL -1 . Samples were maintained under dark conditions for 15 min and then placed into the spectrophotometer for analysis [START_REF] Liang | A rapid spectrophotometric determination of persulfate anion in ISCO[END_REF].

Antibacterial activity assessment

The antibacterial effect of treated solutions was assessed on E. coli (LMG2092) and M. flavus (DSM1790). These analyses aimed to quantify the effective inhibition of antibacterial character to the effluent to prevent the development of antibiotic-resistant strains. Therefore, studies were carried out by testing the samples obtained from photodegradation experiments of LFX in SWW with simulated irradiation/PDS. Tryptic soy broth (TSB) and lysogeny broth (LB) were used as agar medium. TSB was prepared to dissolve 15.0 g tryptone, 5.0 g enzymatic digest of soybean meal, 5.0 g sodium chloride, 15.0 g agar in 1 L of distilled water. In comparison, LB medium was made up of 10.0 g peptone, 5.0 g yeast extract, 5.0 g sodium chloride and 12.0 g agar in 1 L of distilled water. Both the mediums were sterilized in a high-pressure sterilizer at 121 °C for 15 min and deposited into Petri dishes with a diameter of 60 mm (MacWilliams and Liao 2006). The suspensions of E. coli and M. flavus bacteria were prepared to contain approximately 10 8 CFU mL -1 . Each Petri dish was spiked in four different points with 20 µL of four different samples, then finally incubated at a temperature of 37 °C for 18 h.

Results and discussion

Degradation efficiency of levofloxacin by simulated irradiation-drive processes

Before undertaking the LFX photodegradation studies in distilled water, acetate buffer, and phosphate buffer, a control experiment was carried out under dark conditions with an initial concentration of LFX at 10 mg L -1 , with and without H 2 O 2 , PMS and PDS. In these conditions, there was no evidence for LFX degradation in the presence of H 2 O 2 . As far as PDS is concerned, a decrease in the percentage of degradation is observed with increasing pH, except distilled water, which has a zero-degradation rate. Finally, concerning PMS, there is an increase in the degradation percentage as the pH increases, except for distilled water again. This anomalous behavior in distilled water could be attributed to the absence of ions in the solution. In particular, after 30 s adding of PDS, we obtained a decrease of 1%, 17%, and 10% in LFX concentration, while after adding PMS, we obtained a reduction of 10%, 40%, and 100% in distilled water, acetate buffer and phosphate buffer, respectively. In the case of PMS in phosphate buffer solution, we observe a complete transformation of LFX in just 30 s, as shown in the chromatogram of Fig. 1. All the LFX (retention time 13.3 min) was transformed into another compound with a retention time of 18.4 min. This was identified as LFX N-oxide [START_REF] Merel | Assessment of N-Oxide Formation during Wastewater Ozonation[END_REF]. Indeed, as reported for other fluoroquinolone antibiotics and nitrogenous heterocyclic compounds [START_REF] Brienza | Relevance of N-nitrosation reactions for secondary amines in nitrate-rich wastewater under UV-C treatment[END_REF][START_REF] Brienza | Nitric oxide reactivity accounts for N-nitroso-ciprofloxacin formation under nitrate-reducing conditions[END_REF][START_REF] Nihemaiti | Reactivity of unactivated peroxymonosulfate with nitrogenous compounds[END_REF], especially PMS can degrade organic contaminants without radicals involvement through an oxidation process, and it has been demonstrated that the piperazine ring is the leading reaction site for quinolone compounds. This mechanism is still little studied, but it is closely related to the range of pH used in the experimental setup and seems to be improved in alkaline conditions (Wang and Wang 2018).

To compare the efficiency of sunlight-driven advanced oxidation processes, a kinetic study of LFX photodegradation using different oxidant systems such as H 2 O 2 , PMS, and PDS and represented by the following reactions in Eqs. 3-5 was carried out, and the results obtained were reported in Table 1:

From the results obtained, minimal degradation is observed during photolysis processes and in the presence of H 2 O 2 ; meanwhile, high percentage degradation in a range of 25 to 100 and 89.2 to 100% was observed by PMS and PDS, respectively. This result can be explained by the small yield of OH • induced by simulated irradiation. It is important to remark that photolysis of H 2 O 2 from reaction (1) only takes place under UVC wavelengths. The spectrum of solar radiation has a small component of UV-light (< 4.0%), from which UVC represents an almost null percentage [START_REF] Serrà | Photocatalytic treatment of natural waters. Reality or hype? The case of cyanotoxins remediation[END_REF]. Therefore, it cannot be expected a high efficiency in the photoactivation of H 2 O 2 to produce a high concentration of OH • for LFX degradation.

In the case of PDS, there is an increase of degradation rate when switching from acetate buffer solution pH 5 to distilled water pH 6.3 and a decrease when switching to phosphate buffer pH 7. At the same time, for H 2 O 2, there is a continuous increase when changing from acidic to neutral pH, in agreement with the results reported by [START_REF] Lau | The aqueous degradation of butylated hydroxyanisole by UV/S 2O82-: Study of reaction mechanisms via dimerization and mineralization[END_REF] and [START_REF] Liu | Comparison of UV/ PDS and UV/H2O2 processes for the degradation of atenolol in water[END_REF]. There are some main reasons for this observed behavior: (i) the increase of pH in the solution

(3) H 2 O 2 +hv → OH • +SO 4 - (4) HSO 5 -+hv → OH • +SO 4 - (5) S 2 O 8 2-+hv → 2SO 4
determines a different degree of molecule protonation, which will therefore have a distinct affinity for the radicals present; moreover, (ii) the more or less acidic aqueous environment may determine an abundant production of radicals, which results in a different number of degraded molecules depending on their total concentration. Furthermore, all the variations occurring in a solution determine a different degree of light absorption and, therefore, an extra degradation efficiency [START_REF] Lau | The aqueous degradation of butylated hydroxyanisole by UV/S 2O82-: Study of reaction mechanisms via dimerization and mineralization[END_REF][START_REF] Liu | Comparison of UV/ PDS and UV/H2O2 processes for the degradation of atenolol in water[END_REF].

The kinetics of degradation of the various oxidants at different pH under simulated irradiation conditions are shown in Fig. 2.

Under photolysis and simulated irradiation/H 2 O 2 system, we have linear one-step degradation kinetics in all the solutions tested. In contrast, for simulated irradiation/PDS and affected irradiation/PMS systems, we have a first step where there is a rapid decrease in the concentration of the LFX due to a possible direct and immediate action of the oxidants adding and depending on the pH of the solutions tested, as said above, followed by a second step where we have a much slower degradation. However, the effect of pH value in the simulated irradiation/PDS process was smaller than that in the simulated irradiation/PMS process. In all cases, the first process led to complete degradation of LFX in 10 min and 20 min for distilled water and acetate/phosphate-buffered solutions, respectively.

Beyond direct comparison between the different reactions of AOPs, the simulated radiation activates the oxidants, resulting in hydroxyl and sulphate radicals forming depending on the chemical nature of the oxidants (Eq. 3 and Eq. 5). However, the results obtained indicate that SO4 •-radicals are more reactive towards the molecule of LFX concerning OH • radicals [START_REF] Brienza | Relevance of a photo-Fenton like technology based on peroxymonosulphate for 17β-estradiol removal from wastewater[END_REF]. These results also demonstrate that, in this specific case, the activation of PDS through the use of only simulated radiation is sufficient to degrade LFX at a concentration of 10 mg L -1 . However, in literature, most researchers focus on the metal-induced activation of PDS using metal ions such as Cu 2+ , Fe 2+ , Zn 2+ , or Mn 2+ (Wang et al. 2018;[START_REF] Gao | Efficient degradation of levofloxacin by a microwave-3D ZnCo2O4/activated persulfate process: Effects, degradation intermediates, and acute toxicity[END_REF][START_REF] Liu | Enhanced degradation of ofloxacin by persulfate activation with Mn doped CuO: Synergetic effect between adsorption and non-radical activation[END_REF].

Kinetic study of simulated irradiation/PDS system in simulated wastewater (SWW) and optimization of the process

Wastewater matrices present a complex composition that may affect the overall treatment performance of a treatment technology due to the existence of competitive species that may consume radicals produced (Garcia-Segura et al. 2020). Although methanol is an excellent scavenger for hydroxyl radicals [START_REF] Bartlett | The kinetics of the decomposition of potassium persulfate in aqueous solutions of methanol[END_REF][START_REF] Jiménez | Kinetics of the reactions of the hydroxyl radical with CH3OH and C2H5OH between 235 and 360 K[END_REF], in our case, the small amount of methanol was considered part of the complex and its influence in this scenario was not significative. Given the high performance of the simulated irradiation/PDS treatment, this process was selected to conduct further studies in a complex wastewater sample. Due to the ongoing COVID-19 pandemic, it was impossible to use an accurate wastewater sample for safety reasons; therefore, we used simulated wastewater, according to [START_REF] Polo-López | Mild solar photo-Fenton: An effective tool for the removal of Fusarium from simulated municipal effluents[END_REF]. It can be observed that, despite the complex composition, the simulated irradiation/PDS treatment attains complete degradation of target LFX in 10 min with 400 µM PDS dose. The remaining PDS in the solution was quantified through spectrophotometric analyses [START_REF] Liang | A rapid spectrophotometric determination of persulfate anion in ISCO[END_REF]. A remaining concentration of 275 µM PDS was quantified after treatment, suggesting that only 125 µM PDS was required to attain complete abatement of LFX. Dose optimization is crucial to minimize capital expenditures and decrease risks associated with unwanted remaining concentrations of oxidants in treated water effluents. Additional experiences were conducted using lower initial doses of PDS of 100 µM and 200 µM (Fig. 3). In Fig. 3, it can be seen that all three concentrations achieved almost complete degradation of LFX. Considering 10 min of residence time, LFX removal reached 86.4%, 93.1%, and 100% for increasing doses of PDS of 100 µM, 200 µM, and 400 µM, respectively. Thus, it can be observed that a lower amount of 200 µM can be used to attain one log removal of trace pollutant LFX in wastewater samples. All normalized concentration of LFX was fitted according to a simple first-order kinetic model (Fig. 4) described by Eq. 6.

The kinetic rate constant (k (min -1 )) and the corresponding half-reaction time (Eq. 7) (Table 2) were determined to find the best fit between the experimental and the calculated concentration of LFX profiles obtained with the simulated irradiation/PDS system.

Figure 4 indicates that a decrease in initial oxidant dose slowed the kinetics of LFX abatement. The kinetic analysis shows pseudo-first-order rate constants (k 1 ) of 4.261 × 10 -1 min -1 (R 2 = 0.993) for 400 µM, 2.726 × 10 -1 (R 2 = 0.996) for 200 µM, 2.019 × 10 -1 min -1 (R 2 = 0.997) for 100 µM. The faster decrease observed in the wastewater concerning ultrapure water suggests that some components may facilitate the degradation of LFX. The decrease in k 1 with decreasing dose of PDS can be explained by the lower yield when decreasing the concentration of precursor, which would

(6) ln([A0]) = -kt (7) t 1∕2 = (ln2) k
decrease the availability of oxidant to react with the same concentration of target pollutant LFX.

Antibacterial activity (E. coli and M. flavus)

The LFX molecule contains several active functional groups that have been demonstrated to effectively induce toxicity to microorganisms in an aqueous ecosystem. Those vibrant centers are responsible for the antibacterial activity of LFX that is used to treat both Gram-negative and Gram-positive bacterial infections. Trace concentration levels of antibacterial pharmaceuticals in water samples below the lethal dose for bacteria (LD 50 ) can cause the proliferation of multi-resistant strains. This analysis aims to evaluate the successful inhibition of the antibacterial activity of LFX and by-products to demonstrate that simulated irradiation/PDS can be an effective treatment technology to remove LFX and prevent the development of bacteria strains resistant to antibacterial drugs. Therefore, an antibacterial activity test was performed against Gram-negative E. coli (LMG2092) in the TSB medium and Gram-positive M. flavus (DSM1790) in the LB medium. The toxicity results were expressed by measuring the diameter of the culture inhibition halo. Blank experiments were conducted before the antibacterial activity assessment on the samples obtained during the simulated irradiation/PDS treatment to evaluate the potential toxicity of PDS, methanol, and simulated wastewater. The results obtained showed that none of the tested concentrations of PDS (50 µM ÷ 400 µM), methanol and SWW had any inhibition activity on the tested bacteria. Based on these results, it was also possible to test the mix of LFX transformation products in SWW with PDS.

The samples tested were the solution containing LFX 10 mg L -1 in SWW (t 0 ) and the solutions obtained after 5, 10, 30, 60, and 120 min of irradiation in the presence of PDS. The results obtained from the first sample (t 0 ) analysis showed a growth inhibition halo with a diameter of 19 mm and 20 mm for E. coli and M. flavus, respectively, thus demonstrating the toxicity of LFX. In subsequent analysis after 5 min of treatment, we observed a notorious decrease in the inhibition halo on E. coli down to a diameter of 10 mm, almost 50% decrease in diameter. Meanwhile, no halo was observed for M. flavus, suggesting that after 5 min of treatment, there is no remaining antibacterial activity for Gram-positive microorganisms. Any halo was observed in the other samples tested on E. coli and M. flavus. The decrease in the antibacterial activity may be attributed to the breaking down of the molecular structure and the elimination of some functional groups (quinolonic ring and piperazinic ring) responsible for the toxicity of quinolone antibiotics thanks to the binding with DNA gyrase enzyme.

The DNA gyrase is an essential bacterial enzyme that allows the replication of DNA [START_REF] Chu | Structure-activity relationships of the fluoroquinolones[END_REF]. Furthermore, it has been reported that some moieties, such as piperazine, carboxylic acid and keto groups in quinolones molecules, played essential roles in killing Gram-positive bacteria [START_REF] Neth | Emerging investigator series: Transformation of common antibiotics during water disinfection with chlorine and formation of antibacterially active products[END_REF]. The toxicity studies demonstrate the effectiveness of simulated irradiation/PDS treatment to completely degrade the functional groups of LFX and its degradation by-products associated with the antibacterial character of the pharmaceutical [START_REF] Li | Oxidative transformation of levofloxacin by d-MnO 2: Products, pathways and toxicity assessment[END_REF][START_REF] Zhou | A comparison study of levofloxacin degradation by peroxymonosulfate and permanganate: Kinetics, products and effect of quinone group[END_REF]). These promising results suggest that simulated irradiation/PDS treatment might be a feasible solution to prevent the undesired release of trace antibacterial fluoroquinolone pharmaceuticals to the environment.

Elucidation on degradation pathways of levofloxacin

The toxicity analyses allow inferring the degradation of different functional groups with antibacterial effects such as the piperazine ring. To elucidate the possible degradation pathway of LFX induced by simulated irradiation/PDS, aliquots were analyzed by the HPLC-MS to identify intermediates and by-products yielded from the radical-mediated oxidation. Structure analysis of the main degradation products was based on literature and fragmentation data obtained by positive ion collision dissociation (data not shown). In Fig. 5, the structure and the m/z ratio of all photo-products detected as [M + H] + ions and the proposed degradation pathway are reported.

The parent compound LFX exhibits as [M + H] + ion a nominal m/z ratio of 362 and, as highlighted in Fig. 5, undergoes further losses and substitutions forming, directly, eight main photoproducts. These primary products were themselves degraded, and we observed a quick increase during the first minutes and then a rapid decrease. After 10 min, the concentrations of LFX and all by-products identified were below the LOD, suggesting the complete disappearance of aromatic structures. The breakage of aromatic rings is commonly reported for other AOPs resulting in the yield of biodegradable carboxylic acids of low molecular weight (e.g., oxalic acid, oxamic acid, formic acid). The classification of identified by-products allows depicting different organic events of relevance that justify the loss of the antibiotic character of the effluent. As described above, certain functional groups are associated with toxic effects on Gram-positive and Gram-negative bacteria. These results agree with the previous discussion and suggest the competitive degradation of LFX and effective inactivation of the antibiotic character of the effluent. Identifying stable intermediates presents the significant events for LFX degradation mediated by sulphate radicals involving hydroxylation reactions. One of the degradation pathways is associated with the defluorination of LFX.

The intermediate at m/z 344 is due to the neutral loss of fluorine atom in the C-5 position, and, at the same time, the ion at m/z 360 can be obtained by substituting fluorine with OH [START_REF] Scrano | Fluoroquinolones in Water: Removal Attemps by Innovative Aops[END_REF]. Previous literature identified the piperazine ring as the most reactive site towards sulphate radicals attack (De [START_REF] Witte | Levofloxacin ozonation in water: Rate determining process parameters and reaction pathway elucidation[END_REF][START_REF] Jiang | Sulfate radical-based oxidation of fluoroquinolone antibiotics: Kinetics, mechanisms and effects of natural water matrices[END_REF].

A compound identified at nominal m/z of 348 exhibited a difference of 14 amu concerning the m/z ratio of the protonated LFX suggesting the direct formation of de-methylated derivative by loss of a methyl group bonded to N-3, according to previous studies [START_REF] Jiang | Sulfate radical-based oxidation of fluoroquinolone antibiotics: Kinetics, mechanisms and effects of natural water matrices[END_REF][START_REF] Li | Efficient degradation of Levofloxacin with magnetically separable ZnFe2O4/NCDs/Ag2CO3 Z-scheme heterojunction photocatalyst: Vis-NIR light response ability and mechanism insight[END_REF]. Further neutral loss of CO 2 generates the product at m/z 304, agreeing with [START_REF] Li | Efficient degradation of Levofloxacin with magnetically separable ZnFe2O4/NCDs/Ag2CO3 Z-scheme heterojunction photocatalyst: Vis-NIR light response ability and mechanism insight[END_REF]. The vulnerability of the piperazine group to sulphate radicals attack was confirmed by the other three compounds identified at m/z 378 and 394, and 392. The first two, probably, derived from single and double hydroxylation of piperazine ring, respectively; the third, a Fig. 5 Possible degradation pathway of LFX in SWW by simulated irradiation/PDS system, after 5 min of irradiation di-aldehyde derivative, due to the cleavage of piperazine ring following the formation of peroxyl radicals on two N atoms [START_REF] Jiang | Sulfate radical-based oxidation of fluoroquinolone antibiotics: Kinetics, mechanisms and effects of natural water matrices[END_REF]. Because hydroxyl radicals are not selective towards different functional groups, it is impossible to identify the exact position of hydroxylation in the two compounds at m/z 378 and 394. At the same time, based on the fragmentation pathway, retention time, and comparison with the product formed by the addition of PMS, it is possible to attribute the structure of the other compounds identified at m/z 378 to N-oxide levofloxacin (De [START_REF] Witte | Ozonation of ciprofloxacin in water: HRMS identification of reaction products and pathways[END_REF][START_REF] Jiang | Sulfate radical-based oxidation of fluoroquinolone antibiotics: Kinetics, mechanisms and effects of natural water matrices[END_REF]. The direct oxidation of the piperazine side-chain until forming an amino group in position 2 leads to the formation of de-piperazinyl LFX at m/z 279. These by-products define a selective attack of sulphate radicals that induce the piperazine ring opening. In addition, a product with m/z 366 was identified and it was associated with the cleavage of the quinolone moieties instead of the piperazine ring.

Conclusions

Photon-driven advanced oxidation processes can effectively remove recalcitrant antibacterial pharmaceuticals such as levofloxacin. This work benchmarked the performance of three different precursors of radical oxidant species (H 2 O 2 , PMS and PDS) in other pH conditions.

Experiments demonstrated that simulated irradiation/ H 2 O 2 treatment showed less impact on LFX reduction than the combined AOPs of simulated irradiation/PMS and simulated irradiation/PDS due to the low content of UVC radiation in the solar spectra. In contrast, PMS and PDS were able to degrade levofloxacin completely.

The simulated irradiation/PDS AOP showed the best performance compared to the other oxidation processes evaluated in all mediums investigated, except for phosphate buffer, where PMS resulted in the best. For this medium, exciting results was the complete removal of LFX in 30 s and the formation through the non-radicals mechanism of LFX N-oxide in the presence of PMS. Further studies will focus on product yield quantification to better understand these results.

However, the simulated irradiation/PDS system showed the best performance, achieving a complete degradation of LFX after 10 min of irradiation in all mediums investigated. In simulated wastewater, PDS at different concentrations was tested, and in all cases, the degradation followed a first-order kinetic. Mass balance after treatment indicated that only 125 µM PDS was required to attain complete abatement of levofloxacin. However, decreasing the PDS dose may reduce the kinetic rate of levofloxacin abatement. A concentration of 100 µM of PDS resulted in optimal removal of LFX in simulated wastewater. The toxicity test allowed inferring that simulated irradiation/PDS can inhibit the antibacterial character of waste effluents, which is relevant to preventing multi-resistant strains' development. The culture of Grampositive and Gram-negative bacteria was not affected after the effective degradation of levofloxacin by the sulphate radical-based AOP. Finally, a degradative pathway was suggested from the by-products and intermediates identified by LC-MS. Results demonstrate that the degradation of specific functional groups (i.e., piperazine ring) is associated with the loss of antibacterial character of the molecule. Thus, the mechanism demonstrates the successful degradation of levofloxacin and suggests promising niche application opportunities to ensure pharmaceutical abatement in wastewater effluents. Aromatic by-products were wholly depleted within 10 min of treatment, highlighting simulated irradiation/PDS as a promising technology to mitigate the undesired effects of trace pharmaceuticals pollution in real wastewater effluents.

Fig. 1

 1 Fig. 1 Chromatograms of LFX 10 mg L -1 in distilled water and after adding PMS [400 µM] in distilled water, acetate buffer solution pH = 5 and phosphate buffer solution pH = 7

Fig. 2 Fig. 3

 23 Fig. 2 Photodegradation curve of LFX in A distilled water B acetate buffer solution, and C phosphate buffer solution, by different simulated irradiation/oxidant system (t = 10 min; C 0 = 10 mg L -1 )

Fig. 4

 4 Fig. 4 Trends of first-order linearized equation used for the calculation of kinetic parameters reported in Table 2

Table 1

 1 

	Percentage (%) of LFX degraded in acetate buffer solution,
	distilled water and phosphate buffer solution by different simulated
	irradiation/oxidant systems (t = 10 min)	
		% Photodegradation	
		Acetate buffer	Distilled water	Phosphate buffer
		solution (pH = 5)	(pH = 6.3)	solution (pH = 7)
	Photolysis	3.0	2.5	13.9
	H 2 O 2	8.0	6.8	17.2
	PMS	52.5	25.0	100.0
	PDS	92.8	100.0	89.2

Table 2

 2 

	Kinetic parameters of LFX degradation in synthetic	System	(C exp -C calc ) 2	R 2	t 1/2 (min)	k (min -1 )
	wastewater with three different concentrations of PDS	Simulated irradiation/PDS_100 Simulated irradiation/PDS_200	0.1584 0.1125	0.9975 0.9960	3.43 2.54	0.2019 0.2726
		Simulated irradiation/PDS_400	0.1025	0.9934	1.63	0.4261
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