
HAL Id: hal-03623354
https://imt-mines-ales.hal.science/hal-03623354

Submitted on 29 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Post-hoc recommendation explanations through an
efficient exploitation of the DBpedia category hierarchy

Yu Du, Sylvie Ranwez, Nicolas Sutton-Charani, Vincent Ranwez

To cite this version:
Yu Du, Sylvie Ranwez, Nicolas Sutton-Charani, Vincent Ranwez. Post-hoc recommendation explana-
tions through an efficient exploitation of the DBpedia category hierarchy. Knowledge-Based Systems,
2022, 245, �10.1016/j.knosys.2022.108560�. �hal-03623354�

https://imt-mines-ales.hal.science/hal-03623354
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Knowledge-Based Systems 245 (2022) 108560

a

b

c
d
e
t
t
r
d
d
a
t
u
c

b
a
g
i
t

(
v

h
0
n

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Post-hoc recommendation explanations through an efficient
exploitation of the DBpedia category hierarchy
Yu Du a, Sylvie Ranwez a,∗, Nicolas Sutton-Charani a, Vincent Ranwez b

EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France

a r t i c l e i n f o

Article history:
Received 4 August 2021
Received in revised form 16 December 2021
Accepted 9 March 2022
Available online 15 March 2022

Keywords:
Linked Open Data (LOD)
Knowledge graph
Recommender system
Recommendation explanation
DBpedia
Ontology

a b s t r a c t

Leveraging knowledge graphs for post-hoc recommendation explanations has been investigated in
recent years. Existing approaches rely mainly on the overlap properties (encoded by knowledge graphs)
that characterize both user liked items and the recommended ones. These approaches, however, do not
fully leverage the property hierarchy of knowledge graphs which may lead to flawed explanations. In
this paper we introduce an approach that takes the whole property hierarchy into account. This is done
with a limited computation time overhead thanks to efficient algorithmic optimizations relying on
sub-ontology extraction. The hierarchical relationships among properties are also considered to avoid
redundant properties for explanation. We carried out a user study of 155 participants in the movie
recommendation domain and used both offline and online metrics to assess the proposed approach.
Significant improvements, in terms of informativeness (by 39%), persuasiveness (by 22%), engagement (by
29%) and user trust (by 26%), are suggested by the obtained results, as compared to the state-of-the-art
property-based explanation model. Our findings indicate the superiority of accounting for the whole
property hierarchy when dealing with post-hoc recommendation explanations.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recommender systems (RSs) are efficient solutions to over-
ome the information overload in product offering. Recommen-
ation models have the ability to predict accurately users’ pref-
rences for items they have not yet consumed or evaluated and
o recommend the top-N most relevant ones to them [1]. Despite
he efficiency of RSs in terms of accuracy, showing only the
ecommendation lists (without any justification) could make it
ifficult for users to make decisions based on those recommen-
ations [2]. Recently, recommendation explanations have become
n important functionality of RS, aiming at providing justifica-
ions for users’ recommended items, which increases the trust
sers have in the RS and helping them decide which item to
onsume next [3–5].
In the literature, recommendation explanation approaches can

e roughly divided into two categories: model-based approaches
nd post-hoc ones [4]. Model-based approaches aim at investi-
ating how the recommending process works in order to make
t easier to interpret the recommendation model. Nevertheless,
he capacity to provide explainable recommendations depends

∗ Corresponding author.
E-mail addresses: yu.du@mines-ales.fr (Y. Du), sylvie.ranwez@mines-ales.fr

S. Ranwez), nicolas.sutton-charani@mines-ales.fr (N. Sutton-Charani),
incent.ranwez@supagro.fr (V. Ranwez).
ttps://doi.org/10.1016/j.knosys.2022.108560
950-7051/© 2022 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
heavily on the recommendation models themselves, which leads
to the fact that some RS models will have particular advantages
over others. Previously, to explain recommendations based on
association rule mining [6] or neighborhood-based collaborative
filtering [7] was quite easy, because those RS models are hu-
man understandable and self-explainable, e.g., ‘‘People who bought
product A also bought product B’’. But recent models, such as ma-
trix factorization [8] and artificial deep neural networks [9–11],
while being highly accurate, are based on opaque latent spaces,
hard to interpret. To address this problem, additional information
such as user reviews can be used. For example, Zhang et al. [12]
proposed EFM (Explicit Factor Model), which aligns each latent
dimension of matrix factorization with an explicit item feature
extracted from user reviews data. The proposed model can thus
provide personalized explanations for the recommended prod-
ucts, e.g., ‘‘The product is recommended because you are interested
in {a particular feature}, and the product performs well on that
feature’’.

Following a quite different perspective, post-hoc recommen-
dation explanation approaches consider the RS models as black-
boxes, and proceed in either a non-personalized or a personalized
way. In the non-personalized case, explanations are only based
on the recommended items’ descriptions. This absence of per-
sonalization allows the pre-computing of the explanation for
each catalog item and thus avoids the optimization challenges
of personalized explanations. Tintarev and Masthoff [3] discussed
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.knosys.2022.108560
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2022.108560&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:yu.du@mines-ales.fr
mailto:sylvie.ranwez@mines-ales.fr
mailto:nicolas.sutton-charani@mines-ales.fr
mailto:vincent.ranwez@supagro.fr
https://doi.org/10.1016/j.knosys.2022.108560
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y. Du, S. Ranwez, N. Sutton-Charani et al. Knowledge-Based Systems 245 (2022) 108560

s
b
i
p
r
(
e
p
(
a
c
e
t
d
b

k
r
i
w
t
i
o
h
w
l
i
t
m

w
d
p
c
w

2

s
v
b
d

u

e
p
m

o

I
r
r

s
P

P

F
t
c
m
s
t

s

N
s
c
a
Y

p
‘
p
t
t

everal non-personalized explanation styles such as popularity-
ased styles, e.g., ‘‘This movie is recommended to you because it
s a popular movie’’. The authors of [13] proposed another non-
ersonalized, post-hoc approach that summarizes positive user
eviews on items. The authors used natural language processing
NLP) and sentiment analysis to extract relevant features for
xplanations. Meanwhile, the users’ reviews data needed to im-
lement such an approach are not available for all types of items
e.g., scientific papers, radio podcasts) and their quantity may
lso vary greatly between catalog items (e.g., a US blockbuster as
ompared to a Swedish art house film). In the case of personalized
xplanations, the relations between the recommended items and
hose liked by users (user profile items) are usually explored to
raw up the explanations, e.g., ‘‘This movie is recommended to you
ecause you have liked comedy movies’’.
Semantic web resources such as Linked Open Data (LOD) and

nowledge graphs (KG) are useful tools for enhancing post-hoc
ecommendation explanations as they are capable of represent-
ng facts and domain knowledge in a formal, machine-readable
ay. Existing LOD-based explanation approaches rely mainly on
he overlap features (i.e., the KG’s entities) between user liked
tems and the recommended ones. However, the main drawback
f existing methods is that neither the KG’s hierarchy nor the
ierarchical relationships among entities are considered carefully,
hich may lose the inference power of knowledge graphs and

ead to irrelevant or redundant explanations. To address these
ssues, we proposed in this paper a generic method that allows
o exploit efficiently the entire entity hierarchy and to select the
ost relevant entities for explanation.
The main contributions of this paper are the followings:

• we account for the whole property hierarchy with low com-
putation time overhead thanks to algorithmic optimizations
relying on sub-ontology extraction [14];

• we limit irrelevant properties in explanations by favoring
those that directly annotate (describe) the catalog items.

• we propose a simple criterion to eliminate fully redundant
explanations;

• we propose a parameter-free scoring function to rank prop-
erties.

The rest of the paper is organized as follows. In Section 2
e present related works and our research motivations before
etailing our proposed approach in Section 3. The assessment
rotocol is presented in Section 4. The results based on the
arried-out online user study are detailed in Section 5. Finally,
e present the main conclusions and perspectives in Section 6.

. Related works and motivation

In Linked Open Data, domain knowledge is encoded by large-
cale knowledge graphs (KGs) [15]. LOD has facilitated the de-
elopment of some famous KGs such as DBpedia [16] or Free-
ase [17], encoding heterogeneous facts and knowledge in a stan-
ardized, machine-readable structure relying on the RDF1 schema

of W3C. The authors of [18] proposed a model based on entities
extracted from DBpedia to enhance explanations of recommenda-
tions in the tourism domain. For a recommended visit tour, the
authors compared four different explanation styles including EN
(entities), NL (natural language sentences containing entities), PC
(pure classes of entities) and CC (entities accompanied by their
classes). Based on an online user study, they found that NL and
CC styles performed better than EN and PC ones. The explanations
based on their proposed method are non-personalized as they

1 https://www.w3.org/TR/rdf-schema/.
 c

2

only focus on the descriptions of the recommended tours while
ignoring user preferences.

Musto et al. [19] proposed a personalized explanation frame-
work named ExpLOD, which is based on the set of object prop-
erties2 P describing both a given user u’s liked items Iu (i.e., the
ser profile) and the items Ir recommended to that user. Let Pu

(resp. Pr) be the set of properties describing items in Iu (resp. Ir),
then P = Pu ∩ Pr . The scoring function for a given property p ∈ P
regarding Iu and Ir is defined by Eq. (1), where np,Iu (resp. np,Ir)
represents the number of items in Iu (resp. Ir) that are described
by the property p, α and β are weighting factors and the IDF (p)
term stands for the Inverse Document Frequency of the property
p. The latter term aims at penalizing those properties describing
most of the catalog items, e.g., American Films.

score(p, Iu, Ir) =

(
α
np,Iu

|Iu|
+ β

np,Ir

|Ir |

)
∗ IDF (p) (1)

After the ranking step, the top-k properties are used to gen-
rate natural language explanations based on a predefined tem-
late. As an example, the explanation for the recommended
ovie Memento to a user who liked Sherlock Holmes and The

Prestige, can be (with k = 2): ‘‘We recommend Memento because
you liked 2000s mystery films as Sherlock Holmes and Christopher
Nolan directed films as The Prestige’’.

The scoring function favors properties frequent in both Iu
(np,Iu

|Iu|
) and Ir (np,Ir

|Ir |
) while rare in the catalog (IDF (p)). The part

favoring properties appearing several times in the recommended
list (i.e., np,Ir

|Ir |
) is a specificity of the ExpLOD method. Indeed, Ex-

pLOD was designed to provide compact explanations for a group
of items. Assigning a bonus to properties describing multiple
items in Ir helps to favor explanations that rely on the same
properties for different recommended items. The explanations are
then factorized by sentences such as: ‘‘We recommend movies
m1 and m2 because they are romantic comedy films as most of the
nes you liked’’. The counterpart is that an item ir ∈ Ir is not

necessarily as good as it could have been if alone (i.e., if Ir = {ir}).
t could even occur that none of the top-k group properties are
elevant to explain some items of Ir , the larger |Ir | the higher the
isk of such problematic cases.

In [20], the authors extended ExpLOD by considering a broader
et of properties Pb that are direct subsumers of the properties in
u ∪ Pr . More formally,

b = {p|parent(p, pu) ∧ parent(p, pr), pu ∈ Pu, pr ∈ Pr}.

or instance, the broader set of properties subsuming directly
he property 2000s mystery films (i.e., its parent properties) will
ontain 2000s Films, mystery films by decade and 21st-century
ystery films. The broader properties pb ∈ Pb are scored by
umming up the scores of properties they subsume (Eq. (2)). The
op-k ranked pb are then used to generate the explanation.

core(pb, Iu, Ir) =

∑
p∈children(pb)∩(Pu∪Pr)

score(p, Iu, Ir) ∗ IDF (pb) (2)

ote that the same item may contribute multiple times to pb’s
core if it is described by several children of pb. For instance,
onsider a user profile with two films set in USA; one is described
s set in New York while the other is described as both set in New
ork and set in Washington; then the second film will have more

2 Note that in the knowledge engineering domain, the terminology ‘‘object
roperty’’ refers to a relationship that links individuals to other individuals, e.g.,
‘dct:subject’’ that associates a category to a film. To avoid possible ambiguity,
lease note that by an abuse of language, and for sake of simplicity, the
erm ‘‘property’’ we are using below refers to the individual itself rather than
he property, i.e., it designates ‘‘dbc:American_sports_comedy_films’’ that may
haracterize ‘‘dbr:Cool_Runnings’’ rather than ‘‘dct:subject’’.

https://www.w3.org/TR/rdf-schema/

Y. Du, S. Ranwez, N. Sutton-Charani et al. Knowledge-Based Systems 245 (2022) 108560

i
f
t
i
w
a

s

o
m
m
e
r
t
r
f
r

i

b

I
E
t
t
u
s
c

2
d
c

a
i
c
r
e
m
t
a
b
e
v
p
D
s
w
m
E
C
(
l
p
i

mpact on the scoring of the set in USA broader property than the
irst one as it will contribute twice in the sum of Eq. (2). Note also
hat the score of the broader property not only takes into account
ts IDF value but also the IDF values of a subset of its children –
hich might seem questionable – indeed Eq. (2) can be rewritten
s:

core(pb, Iu, Ir) =

∑
p∈children(pb)∩(Pu∪Pr)

(
α
np,Iu

|Iu|
+ β

np,Ir

|Ir |

)
∗IDF (p) ∗ IDF (pb) (3)

The authors evaluated ExpLOD through an online user study
n three datasets in different recommendation domains (movie,
usic and book). The results have shown that their proposed
odel performed well in terms of transparency, persuasiveness,
ngagement and trust which are classic evaluation metrics for
ecommendation explanations [3,4]. In addition, it seems that
heir model allows to generate effective post-hoc explanations,
egardless of the used RS model. Finally, their evaluations con-
irmed the superiority of the broader ExpLOD extension and the
elevance of accounting for subsumer properties.

This latter observation is the main motivation of our work:
t aims at taking the broader variant of ExpLOD a step further
by efficiently taking into account the whole property hierarchy.
Though the approach proposed in this article is generic we will
focus on the DBpedia category hierarchy to provide the reader
with a familiar framework. The DBpedia category hierarchy is an
ontology encoding subsumption relationships among categories
within the DBpedia knowledge graph. In this hierarchy, categories
are linked to those generalizing them via the ‘‘skos:broader’’
relationship.

The experiments comparing the basic and broader variants
of ExpLOD proved the value of considering subsumer proper-
ties [20]. However, there is no obvious reason for restricting
this broadening only to direct subsumers. Meanwhile, subsumer
properties should be considered carefully to: (i) avoid using very
abstract and irrelevant properties in the explanation (ii) limit
redundancy in the explanation and (iii) keep the computation
time low.

An item explicitly described by the property p is also implic-
itly described by all properties subsuming p. Most KGs have at
least one strong property backbone defined by a transitive sub-
sumption relationship such as ‘‘rdf:type’’ (is-a), ‘‘dbo:isPartOf’’ or
‘‘skos:broader’’. This is a key feature of KGs that enables semantic
reasoning without which most of the KG value would be lost.
Fig. 1 illustrates the importance of the property hierarchy through
simple examples inspired by the movie categories in DBpedia. In
all these examples the aim is to explain a recommended movie
ir based on a set of the user’s liked movies Iu. If ir is described
y French romantic comedy (denoted by a green star) and some

items of Iu are also described by this property (denoted by a red
triangle), then it can be used to explain the recommendation, as
illustrated in Fig. 1A. This is the idea behind the basic version
of ExpLOD. However, this basic version would fail when ir is
annotated as French romantic comedy while Iu contains some
talian romantic comedy movies, i.e., Fig. 1B. The broader variant of
xpLOD overcomes this problem while keeping the computation
ime reasonable, by considering direct subsumers of each anno-
ating property. This allows to explain the recommended movie
sing the European romantic comedy property which is a direct
ubsumer of both Italian romantic comedy and French romantic
omedy properties.
Note also that the two ExpLOD variants proposed in [19,

0] were considered as two separate approaches with somehow
ifferent scoring functions. As a result, the basic variant only
onsiders direct properties for explanations whereas the broader
 /

3

one only considers the direct subsumers of those properties. Thus,
the French romantic comedy in Fig. 1A will be considered by
the basic version but not by the broader one whereas European
romantic comedy in Fig. 1B will be considered by the broader
variant of ExpLOD but not the basic one.

Though the broader variant is clearly a meaningful improve-
ment, the last three examples, i.e., Fig. 1C, D and E, illustrate
its limitation and the new problems it raises. In Fig. 1C, ir is
nnotated as French romantic comedy while one of the Iu items
s annotated as US romantic comedy and the other one Romantic
omedy. The problem here is that the direct subsumer of French
omantic comedy is European romantic comedy; it follows that
ven the broader version of ExpLOD fails to infer that the three
ovies are Romantic comedy and will hence be unable to use

his key property to explain the recommendation. Note also that
ny subsumer of Romantic comedy, e.g., Comedy, though shared
y these three movies’ annotations, would be irrelevant for the
xplanation as it would be redundant with the explanation pro-
ided using the more specific Romantic comedy property. Fig. 1D
rovides a minimalist example of this redundancy problem. In
Bpedia, the Romantic comedy property has about 1,710 sub-
umers including Romance, Films or Creative works, all of which
ould (implicitly) annotate the two items of Fig. 1D. It may seem
ore reasonable to base the explanation on the more specific
uropean romantic comedy property than on its subsumers, e.g.,
reative works is meaningless for user explanation. Finally, adding
direct) subsumers of annotating properties raises another prob-
em: some of those subsumers may be relevant for organizing the
roperty hierarchy but meaningless for explanation as illustrated
n our last example, Fig. 1E. Here, ir is annotated as Comedy, while
an item in Iu is annotated as Drama. Since both properties are
directly subsumed by the property Films by genre, the following
surrealistic explanation could be proposed by the broader variant
of ExpLOD: ‘‘This movie is recommended to you because it is a Films
by genre and you usually liked Films by genre’’.

In this paper we propose a generic, item Property-based Expla-
nation Model (PEM) which efficiently exploits the whole property
hierarchy of the KG. The next section presents the proposed
approach and details the way we exploit this full hierarchy in a
reasonable computing time while providing explanations which
avoid redundancy and meaningless properties.

3. Proposed Property-based Explanation Model (PEM)

In this section we detail the proposed approach to handle the
full property hierarchy for post-hoc recommendation explana-
tions efficiently.

3.1. Definitions and notations

First, we denote as C the set of catalog items and as Iu the
set of items liked by the user u (user profile). The target item
to explain is denoted as ir . We denote as H(N , E) the hierar-
chy of DBpedia categorical entities, with N being the entities
prefixed by ‘‘dbr:Category’’ and E being the ‘‘skos:broader’’ rela-
tionship among those entities. P(i) provides the set of properties
directly annotating the item i, i.e., P(i) = {p|p ∈ N and
⟨i, ‘‘dct:subject", p⟩}. The predicate ‘‘dct:subject’’3 is commonly
used in LOD to link a resource to its topics, e.g., link a movie (i) to
its genres (properties p annotating i). By extension we define the
P(·) function on a set I of items as P(I) =

⋃
i∈I P(i). It follows

that P(C) is the set of properties explicitly used to annotate at
least one item of the catalog.

3 https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http:
/purl.org/dc/terms/subject.

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/subject
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#http://purl.org/dc/terms/subject

Y. Du, S. Ranwez, N. Sutton-Charani et al. Knowledge-Based Systems 245 (2022) 108560

d
H
P
u

r

o

3

h
a
g
t
p
i
t
p
i
e
o
s
p
a
d
H
t

Fig. 1. Motivating examples illustrating the importance of considering the property hierarchy within the explanation process in order to emphasize semantic
relationships between properties that are valued by the user and the ones that annotate recommended items.
r
p
w
i
t
t
i
n
F
o
m
t
t
o
h
i

3

s
s
h
t

Second, we denote as P(i,H) the set of all the properties that
irectly or indirectly describe the item i regarding the hierarchy
, i.e., P(i,H) = {p|∃px such that p subsumes px in H and px ∈

(i)}. Again, we extend this notation to a set of items using
nion: P(I,H) =

⋃
i∈I P(i,H). For simplicity’s sake, we will omit

the H parameter and use P(i) and P(I) if there is no ambiguity
egarding the hierarchy used. Similarly, we denote as I(p, I) (resp.
I(p, I)) the subset of items of I directly annotated (resp. directly
r implicitly described) by p.

.2. Scoring properties

In the PEM method, we aim at taking the whole property
ierarchy into account while avoiding irrelevant properties that
re only there to organize the property hierarchy (e.g., Films by
enre). To this end, we consider all properties p that are simul-
aneously: (i) a subsumer of a property of ir , (ii) a subsumer of a
roperty of an item in Iu and (iii) directly annotate at least one
tem of the catalog, i.e., p ∈ P(ir)

⋂
P(Iu)

⋂
P(C). By doing so, we

ake the whole property hierarchy into account thus handling the
otential problems illustrated by Fig. 1B and C. The benefit of this
ntersection is that it is no longer necessary to consider all prop-
rties of the hierarchy, but only those directly annotating an item
f the considered catalog, which allows to have a low-latency
olution while considering the whole hierarchy. The score of the
roperties in this intersection is built upon a simple fold change,
s detailed in Eq. (4). The fold change metric is widely used to
etect over-represented properties in a subset of elements [21].
ere, we use it to detect properties of the recommended item
hat are over-represented in the user profile as compared to the
 d

4

whole item catalog.

score(p, Iu, ir) = log10
(
|I(p, C)|

)
∗

⎛⎝
⏐⏐⏐I(p, Iu)⏐⏐⏐/|Iu|⏐⏐⏐I(p, C)⏐⏐⏐/|C|

⎞⎠ (4)

For each scored property p, we introduce a factor,
log10

(
|I(p, C)|

)
, which strongly penalizes the score when p is

arely used to describe the catalog items directly. The scores of
roperties directly annotating less than 10 items will be reduced
hile the scores of properties directly annotating more than 10

tems will be increased (without making much difference be-
ween properties directly annotating 300 or 320 items, thanks to
he logarithmic transformation). The benefit of this factor is that
t avoids properties that are relevant to organize the hierarchy but
ot to describe the items, i.e., the problem illustrated in Fig. 1E.
inally, for all properties to be considered, our scoring is based
n a fold change ratio that highlights properties of ir describing
ore items in the user profile than expected by chance should

he profile be a random sampling from the catalog. Note that in
his ratio, a property is considered as describing an item if itself
r one of its descendants is used to describe the item. The full
ierarchy information is hence taken into account to infer implicit
tem descriptions.

.3. Efficient scoring calculation using sub-ontology extraction

In large KGs such as DBpedia, a property may have thou-
ands of subsumers (e.g., Romantic comedy having about 1700
ubsumers). While an item is usually directly annotated by a
andful of properties, it is implicitly described by thousands of
heir subsumers. Fig. 2A depicts a toy example where direct item
escriptions are represented by a small colored geometric shape

Y. Du, S. Ranwez, N. Sutton-Charani et al. Knowledge-Based Systems 245 (2022) 108560

t
a
0
t
C
c
t

a

Fig. 2. Toy examples illustrating the sub-ontology extraction process: (A) provides an extract of the full property hierarchy; (B) provides the associated sub-ontology
and (C) a post-ordering of this latter, that supports algorithmic optimization.
t

(using one shape per catalog item) and implicit descriptions are
depicted by the corresponding white geometric shape. Even in
this toy example, inspired by the DBpedia property hierarchy,
it is obvious that there is many more implicit descriptions than
direct ones. Considering those implicit descriptions is thus key to
getting the most out of the LOD data, but it poses an algorithmic
challenge as the scoring computation should be able to be scaled
up.

The scoring calculation we propose here ensures the scalability
hanks to two key considerations. First, only properties directly
nnotating at least one item of the catalog have a score above
and are worth evaluating. In practice, this considerably reduces

he number of properties for which the score has to be evaluated.
omputing the score of each property independently is ineffi-
ient as it would require to consider the same properties mul-
iple times. For instance, in order to estimate (the cardinality of)
I(Romantic comedy, C) one needs, among other things, to identify
ll French romantic comedy movies of the catalog, something that
5

has to be done also to compute I(French romantic comedy, C) and
I(European romantic comedy, C). Given a relatively stable catalog,
it could be argued that those counts can be precomputed once
and only need updating when the catalog changes. However, such
an argument does not hold for the user profiles counts I(p, Iu) or
o identify properties within

(
P(ir)

⋂
P(Iu)

)
, for example in an

online study setting.
As H encodes the subsumption relationships it should be a

directed acyclic graph (or DAG for short). The absence of cycles
allows to order nodes in a consistent way so that a node always
appears after all its descendants (post-ordering) or its ascendants
(pre-ordering). Fig. 2B depicts a small property hierarchy and
together with a possible post-ordering of its properties in Fig. 2C.
Using a post-ordering of the properties allows to factorize the
computation of I(p, Iu) and I(p, C) efficiently. Indeed, for any
item set I , all I(p, I) can be obtained by processing all properties

Y. Du, S. Ranwez, N. Sutton-Charani et al. Knowledge-Based Systems 245 (2022) 108560

i

N
a
c
o

t

M

n the post-order and using the following recursive formula:

I(p, I) = I(p, I)
⋃(⋃

pc∈children(p)

I(pc, I)
)

(5)

ote that for our scoring function Eq. (4), only the set sizes
re needed; the actual set are only temporarily needed to avoid
ounting the same item multiple times. Thus, once all fathers
f a property p have been processed, the actual set I(p, I) can

be deleted to free some memory as long as its cardinality is
saved. This can be done efficiently by assigning a counter to each
property that is initially set to the number of its direct parents
and decreased every time one of them is processed (see Section
4.2.3 of [14] for more details on this optimization).

So far we mentioned two solutions to optimize the scoring
calculation: the first one computing scores only for properties
directly annotating at least one item of the catalog (i.e., those
within P(C)) and the second one using the recursive formula of
Eq. (5). The problem is that they seem to exclude each other since
there is no guaranty that a child of properties directly annotating
items is also directly used to annotate items. However, these two
optimization ideas can be combined thanks to the sub-ontology
extraction algorithm described in [14]. Extracting fromH the sub-
DAG induced by P(C) allows to obtain a much smaller graph
HC . This sub-DAG is the smallest one that contains all properties
of P(C) and the least common ancestors of any subset of the
kept properties that are useful to factorize I(p, Iu) and I(p, C)
computations efficiently. Fig. 2 illustrates the construction of HC
on a toy example. Moreover, note that all properties of HC that
are not in P(C) would be useful if they have an ancestor in P(C).
Hence, HC can be further reduced by pruning all its properties
that are not in P(C) and have no ancestors in P(C). Consider,
Fig. 2B as an instance. While Romantic fiction is useful to grasp
the relationship existing between Romantic comedy and French
romantic fiction and hence kept by the sub-ontology extraction,
it is not useful in our case since neither it nor its only subsumers
(i.e., Genres) directly annotate an item of the toy catalog. Both
properties can thus be safely removed from HC without impact-
ing our algorithm. On the contrary, European romantic comedy,
while not in P(C) of this toy example, needs to be kept in order to
evaluate efficiently the score of Romantic comedy (i.e., a property
that directly annotates some items and can thus be relevant for
explanation). Identifying properties that are safely removable (or
not) can be achieved by processing all properties in pre-order
using the following recursive formula:

NotRemovable(p, C) =
(
p ∈ P(C)

)
or(

∃pp ∈ parents(p)|NotRemovable(pp, C)
)
(6)

3.4. Avoiding full redundancy among selected properties

Let us first clarify what we call redundancy and full redun-
dancy among properties used for an explanation. We say that
a property p is redundant with respect to p1, if and only if, p
subsumes p1 in H. For instance, Romantic comedy is redundant
with respect to French romantic comedy. However, it could be
worthwhile to use both those properties to explain the recom-
mendation of a French romantic comedy movie if the user profile
contains few French romantic comedy movies and many Romantic
comedy movies. In such a case to compare the two arguments is
not obvious. Indeed, would it be more meaningful for the user
to explain the recommendation with ‘‘we recommend this movie
because it is a French romantic comedy such as 3 of the movies
you liked’’ or with ‘‘we recommend this movie because it is a
Romantic comedy such as 8 of the movies you liked’’? On the
other hand, if all the Romantic comedy of the user profile are
French ones, then the Romantic comedy property is fully redundant
6

with respect to the French romantic comedy property and using
it in the explanation is meaningless since it does not carry new
information. More formally, we say that a property p is fully
redundant with respect to a user profile Iu and a property p1 if,
and only if, p subsumes p1 in H and

⏐⏐⏐I(p, Iu)⏐⏐⏐ =

⏐⏐⏐I(p1, Iu)⏐⏐⏐. Note
hat if p1 does not directly annotate any item of the catalog (i.e.,
p1 /∈ P(C)) then p1 will never be used within an explanation and p
can thus be used without fearing redundancy with p1. To identify
full redundancy, we need to know the maximum number of user
profile items annotated by a property subsumed by p:

u(p, Iu) = max
p1∈{descendants(p)∩P(C)}

⏐⏐⏐I(p1, Iu)⏐⏐⏐.
Any property p such that Mu(p, Iu) =

⏐⏐⏐I(p, Iu)⏐⏐⏐ is not considered
for explanations since this equality implies that p is fully redun-
dant with a relevant and more specific property. The Mu(p, Iu)
values can be efficiently computed using a post-order traversal
of HC using the following recursive formula:

mu(p, Iu) = max
pc∈children(p)

Mu(pc, Iu) (7)

Mu(p, Iu) =

{
max

(
mu(p, Iu),

⏐⏐⏐I(p, Iu)⏐⏐⏐) if p ∈ P(C)

mu(p, Iu) otherwise
(8)

3.5. The PEM method

The PEM method provides a tractable solution to identify and
rank properties that can be used to explain a recommended item
with respect to a user profile while considering the whole prop-
erty hierarchy. The first steps of the PEM method precompute
things that only depend on the item catalog C and the hierarchical
property DAG H used to describe them, namely:

1. identify the set of relevant properties P(C)
2. build the sub-DAG HC
3. compute the number of catalog items directly (I(p, C)) or

indirectly (I(p, C)) described by any property p ∈ P(C).

Then any time an explanation should be provided for an item ir
and a user profile Iu, the following steps are carried out:

1. count the number of items of Iu that are directly (I(p, Iu))
or indirectly (I(p, Iu)) described by any property p ∈ P(C),
cf. Section 3.3

2. filter out fully redundant properties of P(C) with respect to
Iu, cf. Section 3.4

3. compute the scoring of each remaining properties of P(C)
and rank them accordingly, cf. the Section 3.2

An algorithm description of the proposed PEM method is
provided in Appendix. The low-latency is guaranteed by the
algorithmic optimization related to the sub-ontology extraction.
For instance, it required less than 10 min to preprocess (cf.
Algorithm 1) the whole DBpedia knowledge graph (1,639,815
properties) and the corpus of 18,983 items that we used during
our experimentation. Having done once this preprocessing, each
explanation is then generated in about 1 s. The above computa-
tion times were obtained on a MacBook Pro (2019, 16 GB RAM
and 1.4 GHz Quad-Core Intel Core i5 Processor).

4. Experimental evaluation

This section details the assessment of our proposed property-
based explanation model (PEM). As the baseline, we chose to
compare PEM with the ExpLOD model which leverages broader
properties [20]. Indeed, in [19], the authors have shown that the
basic variant of ExpLOD outperformed other baseline approaches

Y. Du, S. Ranwez, N. Sutton-Charani et al. Knowledge-Based Systems 245 (2022) 108560

a
s
s
E

d
s
t
i
p

I

i
p
T
c
T
m
s

g
t
t
r
a
a

nd that the broader version of ExpLOD is even more effective
ince more indirect properties can be discovered [20]. For the
ake of brevity, in the evaluation section we will use the term
xpLOD to refer to its broader variant.
The most common way to assess and compare recommen-

ation explanation approaches is to carry out an online user
tudy [22]. Our experimental evaluation is strongly inspired by
hose used to test most recommendation explanation systems,
ncluding ExpLOD [2,3,18]. We will first discuss the experimental
rotocol (i.e., an overview of the conducted user study), and

then we will discuss the experimental design including the used
annotated item catalog and the recommendation model. We will
then discuss the evaluation metrics used in our experimentation.
In Section 5 the results will be presented and discussed.

4.1. Experimental protocol

To conduct our user study, we deployed a movie recommen-
dation web application implementing the proposed PEM model
and the ExpLOD model. All source code implementing these ap-
proaches and the web application can be found at this GitHub
repository.4 For demonstration purpose, we also deployed a demo
web application5 illustrating the proposed PEM method.

In a nutshell, each participant involved in the user study took
the following steps (a two-stage evaluation):

1. Collection of user demographic data. We first asked the
participant to fill a form to collect user’s demographic data
such as first/last name, gender and email.

2. Generation of recommendations and explanations. The
participant was asked to select at least 5 movies from the
database in order to build his/her profile (i.e., Iu). Then, the
content-based recommender was used to generate the top-
1 most relevant movie according to that specific profile.
Simultaneously, one of the two explanation models (Ex-
pLOD and PEM) was chosen at random. The explanation for
the recommended movie was then drawn based on the as-
signed explanation model. The number of properties used
for the explanation was set to k = 3 for both approaches.
The authors of ExpLOD discussed the impact of the num-
ber of properties used in the explanation. As the natural
language explanation is based on a pre-defined template,
the more properties we would consider, the longer the ex-
planation sentence would be, which may require more user
efforts and decrease his/her satisfactions. For this point, we
also chose to use the top-3 ranked properties for generating
the explanations.

3. Stage-I evaluation through questionnaire. For the recom-
mended movie along with its explanation, the participant
was asked to evaluate different evaluation metrics through
a questionnaire (cf. Table 1), i.e., a 5-point scale (1 =

strongly disagree, 5 = strongly agree). During the stage-
I, only the movie title and poster were shown to the user
and the user was asked to rate how much he/she liked the
movie (i.e., stage-I of effectiveness) and other four metrics.

4. Stage-II evaluation through questionnaire. During the
second phase, the user was asked to rate the recommended
movie again after watching a trailer of the recommended
movie. The closeness of the two ratings assigned to the
recommended movie can then be used as a proxy for the
metric effectiveness [2,3].

4 https://github.com/lgi2p/web_app.
5 https://rse.ceris.mines-ales.fr.
7

4.2. Experimental design

4.2.1. Annotated item catalog
To implement the web application for our user study, we

chose the MovieTweetings dataset6 as our item catalog, that
compiles movie ratings contained in well-structured tweets on
Twitter [23]. It is a daily updated dataset and has been widely
used in the recommender system community. In our experimen-
tation we only used MovieTweetings to assemble a broad movie
catalog containing 35,944 movies, and did not exploit the user
ratings.

As both ExpLOD and PEM require item properties from DB-
pedia for generating explanations, one needs first to map movie
items into DBpedia entities. We applied the method described
in [24] to create mappings, which consists in measuring the
Levenshtein distance between movie titles and labels of DBpedia
entities (rdfs:label). Items were then mapped with corresponding
DBpedia entities identified by their URIs. As a result, we have
mapped 18,983 movies, which has constituted the item catalog
of the web application we deployed.

To collect the properties that directly annotate movies in the
catalog, we chose to retrieve the genres (i.e., properties indi-
cating movie categories) for all of the mapped movies via the
‘‘dct:subject’’ predicate in the DBpedia knowledge graph. Note
that in the experiments we did not consider other predicates
such as ‘‘dbo:director’’, ‘‘dbo:musicComposer’’, etc. This was done
for the following 3 main reasons. First, movie genres are crucial
features that best represent the characteristics of movies and
are considered a key criterion impacting users’ satisfaction and
experiences when using a movie recommendation system [25].
The second reason is that the properties of other predicates
within DBpedia such as ‘‘dbo:director’’ and ‘‘dbo:writer’’ are often
literal nodes (represented as string values) that are not useful. The
last reason is that the semantics of the properties of other predi-
cates are often repeated via the ‘‘dct:subject’’ predicate, e.g., ⟨The
ntouchables,7 ‘‘dbo:musicComposer’’, Ludovico_Einaudi⟩ and ⟨The
Intouchables, ‘‘dct:subject’’, Films_scored_by_Ludovico_Einaudi⟩.

By extracting from DBpedia the movie genres for all the
movies of the catalog, we gathered 22,720 direct movie descrip-
tions. We downloaded the dump file from the official website8

that contains 1,639,815 nodes and used it to build a local version
of the property hierarchy. A quick check revealed that this graph
has several roots and contains a few unexpected cycles (e.g., Pak-
stan Tehreek-e-Insaf, ‘‘skos:broader’’, Pakistan Tehreek-e-Insaf
oliticians, ‘‘skos:broader’’, Imran Khan, ‘‘skos:broader’’, Pakistan
ehreek-e-Insaf). We used a basic approach to get rid of those
ycles by removing some of the 4, 084, 504 edges of this graph.
he resulting DAG has 4, 080, 682 edges. To simplify the treat-
ent of this graph, we linked its 61,017 distinct root nodes to a
ingle broader node labeled ‘‘Thing’’.
Note that our goal in this paper is to propose a fast and

eneric LOD-based approach providing a personalized explana-
ion to users; in our case the movie benchmark is nothing more
han a very convenient benchmark to test our approach. For
eproducibility purpose, the movie mappings that we generated
s well as the used local version of DBpedia category hierarchy
re available in this public Zenodo [26] repository.9

6 https://github.com/sidooms/MovieTweetings.
7 https://dbpedia.org/page/The_Intouchables.
8 http://downloads.dbpedia.org/repo/dbpedia/generic/categories/.
9 https://doi.org/10.5281/zenodo.5122902.

https://github.com/lgi2p/web_app
https://rse.ceris.mines-ales.fr
https://github.com/sidooms/MovieTweetings
https://dbpedia.org/page/The_Intouchables
http://downloads.dbpedia.org/repo/dbpedia/generic/categories/
https://doi.org/10.5281/zenodo.5122902

Y. Du, S. Ranwez, N. Sutton-Charani et al. Knowledge-Based Systems 245 (2022) 108560

4

a
w
o
b
d

4

b
b
i

4

t
b
a
s
p
c

t
t
d
a

i
p
p
e
o
t
a
h
i
o
p
E

I

t
s

a
h
w
t
r
o
r
e
o

.2.2. The recommendation model
As both models (ExpLOD and PEM) are post-hoc ones that are

lgorithm-independent, the RS model is not the focus here. So
e chose to use a content-based recommendation model based
n item semantic similarities, leveraging knowledge graphs em-
edding techniques (see the CBF recommender of [27] for more
etails on the implementation of the recommendation model).

.3. The evaluation metrics

The quality of explanation approaches can be assessed partly
y some offline metrics (that do not require users’ assessment),
ut online metrics (based on users assessment) are usually more
nformative.

.3.1. Offline metrics
Using a rating dataset one could try to assess automatically

he quality of the explanations that would be provided to a user
ased on the user’s profile. Having no user-centric feedbacks, the
ssessment is limited, however some insights can be gained from
uch offline metrics. For instance, a method that often fails to
rovide any explanation or provides very uninformative ones is
learly not ideal.
For the capacity of a method to produce explanations, we refer

o the explainability precision metric [28]. It represents typically
he proportion of explainable items within the top-n recommen-
ation list relative to the number of recommended items (i.e., n)
nd is denoted as EPrec@n.
Another aspect that we would like to consider here is the

nformation content conveyed by the properties used in the ex-
lanation. In general, the information content (IC) of a concept (or
roperty in our case) provides an estimation of its degree of gen-
rality/concreteness, that is used to enable a better understanding
f the concept’s semantics [29]. The more general a property is,
he less information it conveys, e.g., Films, Creative works. The IC of
property is usually defined based on its position in the ontology
ierarchy (intrinsic definition) or based on the number of items it
ndirectly describes (extrinsic definition). As our approach relies
n the number of items indirectly described by a property, we
refer to rely on an intrinsic IC definition to avoid bias. Following
q. (9) of [29] we thus use the following IC metric:

C(p) = − log
(

|leaves(p) + 1|
|leaves(H)|

)
(9)

where leaves(p) is the set of properties subsumed by p, which are
leaves; and leaves(H) is the total number of leaves in the property
DAG.

4.3.2. Online metrics
The recommendation explanations should increase the trust

users have in the RS and favor their interactions. A good expla-
nation should lead users to (i) better understand the recommen-
dation (Transparency); (ii) be more convinced by the recommen-
dation (Persuasiveness); (iii) learn new information (Engagement);
(iv) trust the RS more (Trust) and (v) better assess the quality of
the recommended item (Effectiveness), according to [2,3]. It has
been proposed to evaluate these metrics through a classic user-
study protocol executed in two stages as stated in Section 4.1.
Given the poster of the recommended movie and the proposed
explanation, the user is asked to use a 5-point scale (1 = strongly
disagree, 5 = strongly agree) to answer the five questions listed
in Table 1. The user is then asked to rate the recommended movie
again after having watched its trailer. The difference between the
movie assessments before and after seeing the trailer is consid-
ered to be a proxy of the Effectiveness of the explanation. A change
of rating might indicate that the trailer provides new relevant
8

information that was missing from the explanation, whereas a
stable rating would indicate that the explanation was compre-
hensive enough. This protocol has since been used in numerous
studies [2,3,18–20].

5. Results

In this section we will examine the results of the user study
carried out on a panel of 155 subjects (male = 55%), each one
evaluating the explanation of one movie described by DBpedia
properties. First, we will discuss some indicators concerning the
sub-ontology optimization; we will then provide the evaluation
metrics measured during the online user study and finish by de-
tailing a toy example that sheds light on the differences between
ExpLOD and PEM in terms of selecting properties.

5.1. The efficiency of the sub-ontology optimization

While the DBpedia knowledge graph contains 1,639,815 prop-
erties, only 22,720 (1.38%) of them are describing one of the
18,983 movies of our benchmark dataset directly. Given this
whole ontology and the set of movie annotations that we ex-
tracted, we then applied the method proposed in our previous
work [14] to extract a sub-ontology that relating the movie do-
main. The resulting sub-ontology contains 28,424 (1.73%) proper-
ties. Excluding from this sub-ontology those without any ances-
tors (including themselves) that directly annotate a movie allows
us to reduce the property hierarchy to be considered, leading
to a DAG of 28,016 (1.70%) properties. For the ExpLOD model,
the whole ontology was used when generating the explanations.
Using the sub-ontology allowed us to develop a low-latency
solution while dealing with the very large DBpedia property
hierarchy. Note that this approach is not restricted to the case
where properties annotating items directly are the sole ones to
be considered. Indeed, if a property p is not in the sub-DAG HC ,
hen it can be proven that an alternative property p′

∈ HC exists
uch that (i) p′ describes all items described by p and (ii) p′ is
more informative than p. By definition of the sub-ontology it is
guaranteed that the least common ancestor of any subset of P(C)
is in HC . Considering the subset of P(C) made of p’s descendants,
the least common ancestor p′ of this set then describes all the
items described by p while being more informative (i.e., the fold
change ratio of p′ in Eq. (4) is at least as good as the one of p).

The source code implementing the sub-ontology extraction
process is available at the GitHub repository.10

5.2. Performance comparison of the ExpLOD and PEM methods on a
user study

Among those 155 explanations, 82 have been generated using
the ExpLOD approach and 73 using the proposed PEM method.
These 155 user profiles and explanations were also used to eval-
uate offline metrics.

Let us first consider the comparison results for offline metrics.
In terms of the explainability precision (see Section 4.3.1), both
pproaches have an optimal EPrec@1 = 1. If a larger set of items
as to be explained then EPrec@5 = 0.7 decreases for ExpLOD
hereas it remains equals to 1 for PEM. In other words, if each of
he 82 subjects (associated with ExpLOD) was shown with a top-5
ecommendation list (i.e., 410 items to be explained in total), then
nly 287 out of the 410 items were explainable. This essentially
eflects the difference of goals of the two methods; when sev-
ral items have to be explained simultaneously, ExpLOD focuses
n factorizing explanations rather than on producing the best

10 https://github.com/lgi2p/Sub-Ontology_Extraction.

https://github.com/lgi2p/Sub-Ontology_Extraction

Y. Du, S. Ranwez, N. Sutton-Charani et al. Knowledge-Based Systems 245 (2022) 108560

o

c
o
e
t
t
o

o
e
e
i
o
d
r
(
a
f
r

5

d
m
d
S
p
a
3
E
t
o
p

Table 1
Questionnaire details.
Metric (Stage) Corresponding question in user study

Transparency (I) ‘‘I understood why this item was recommended to me’’
Persuasiveness (I) ‘‘The explanation made the recommendation more convincing’’
Engagement (I) ‘‘The explanation helped me discover new information about this item’’
Trust (I) ‘‘The explanation increased my trust in the recommender system’’
Effectiveness (I, II) ‘‘I like this recommendation’’
Table 2
Results of the user study. Better metrics are bolded and statistically significant improvements (with p < 0.05) are emphasized with (*).

Transparency Persuasiveness Engagement Trust Effectiveness IC

ExpLOD 3.91 2.83 2.45 2.62 0.40 7.49
PEM 4.21 3.45(*) 3.16(*) 3.30(*) 0.34 10.42(*)
d
s

5

t
t
e
h
t
e
m
m

e
w
g
s
b
t
w
T
a
m
a
t
i
t

explanation for individual items. As this group explanation task
is beyond the scope of this paper, we will focus our remaining
comparisons on explanations produced by ExpLOD for a single
item (i.e., Ir = {ir}), as such, both approaches have the same
bjective to produce the best explanation for ir .
In terms of the information content (IC) of properties, we

omputed the corresponding values using Eq. (9). The average IC
f the 246 properties used within the 82 ExpLOD explanations (as
ach explanation used 3 properties) is 7.49 whereas it is 10.42 for
he 219 properties used within the 73 PEM explanations, as illus-
rated in Table 2. The results demonstrate that the explanations
f our proposed approach are more informative.
Considering the result comparison for online metrics. For each

f the 5 online metrics listed in Table 1, we measured the av-
rage value of user feedback collected over the 82 ExpLOD user
valuations and the 73 PEM ones. All those results are provided
n Table 2. On average, PEM was better evaluated than ExpLOD
n all metrics. To assess the significance of those average metric
ifferences, we used Mann–Whitney U Test to compare the 6 met-
ics values among all participants. The differences are significant
with p < 0.05) for Persuasiveness, Engagement, Trust as well
s for the average property information content (IC). The result
iles of this user study are available in an open-access Zenodo
epository.11

.3. A concrete comparison example

In this subsection, we use a toy example to shed light on the
ifferences between ExpLOD and PEM (Fig. 3). The recommended
ovie (Bitter Moon12) has to be explained based on a user profile
esigned from three movies, The Intouchables,13 Welcome to the
ticks14 and Amélie.15 The top-3 properties according to our pro-
osed PEM method are French comedy films, Films shot in France
nd French-language films. None of those properties is in the top-
properties ranked by ExpLOD. The first one is considered by
xpLOD but not ranked in the top-3 properties whereas the last
wo properties are not even considered since they are not part
f the broader property set considered by ExpLOD. The top-3
roperties selected by ExpLOD on this example are Film scores

11 https://doi.org/10.5281/zenodo.5122902.
12 https://dbpedia.org/page/Bitter_Moon.
13 https://dbpedia.org/page/The_Intouchables.
14 https://dbpedia.org/page/Welcome_to_the_Sticks.
15 https://dbpedia.org/page/Am%C3%A9lie.
9

by composer, Films by director and Films by French directors. The
first two properties are quite uninformative (and ignored by the
PEM method since they do not directly annotate any catalog
items). Note that the Films by director property is also fully redun-
ant with respect to the third property Films by French directors,
elected by ExpLOD.

.4. Discussion and limitations

In this article, we proposed a post-hoc explanation model
hat generates explanations based on item properties available in
he DBpedia knowledge graph. The proposed method improves
xisting post-hoc approaches by considering the entire property
ierarchy and eliminating irrelevant and redundant properties in
he explanation. Moreover, taking advantage of the sub-ontology
xtraction makes the calculations more efficient and our model
ore flexible. However, the proposed model has the following
ain limitations.
As mentioned in Section 5.2, the goal of the proposed PEM

xplanation model is to focus on one single explanation at a time,
hich might represent a major limitation when multiple (or a
roup of) items need to be explained simultaneously. In such a
cenario, PEM would compute sequentially the explanations item
y item, thus it would not be efficient in terms of the calculation
ime. One possible way to tackle this issue is to provide users
ith the possibility of asking for explanations by their own needs.
he idea is that not each of the recommended items would need
n explanation for the user, i.e., some of the recommendations
ight be already familiar for the user. The compared ExpLOD
pproach treats the recommendation list as a whole and uses the
op-k most relevant properties to explain at the same time the
tems within the entire list. However, as discussed in Section 5.2,
he drawback is that the explanation precision decreases when the
length of the recommendation list gets larger, i.e., the number of
explainable items of the list decreases for ExpLOD.

From a more general point of view, the post-hoc explanation
approaches based on item properties share a common limitation:
they rely solely on the quality of knowledge encoded in the
knowledge graphs such as DBpedia used in our approach. The
completeness and the correctness of the knowledge and facts
encoded in these KGs are essential for identifying relevant prop-
erties for explanations. However, as pointed out by Färber et al.
in [30], the famous knowledge graphs such as DBpedia may con-
tain a large amount of missing facts and sometimes incorrect ones

(e.g., the circles in the DAG as shown in Section 4.2.1). To alleviate

https://doi.org/10.5281/zenodo.5122902
https://dbpedia.org/page/Bitter_Moon
https://dbpedia.org/page/The_Intouchables
https://dbpedia.org/page/Welcome_to_the_Sticks
https://dbpedia.org/page/Am%C3%A9lie

Y. Du, S. Ranwez, N. Sutton-Charani et al. Knowledge-Based Systems 245 (2022) 108560

s
h

t
t
t
g
i

6

t
e
s

p
O
h

Fig. 3. A concrete example comparing the broader variant of the ExpLOD (A) and PEM (B) approaches. User profile movies are represented by red, yellow and orange
ymbols while the green star refers to the recommended movie to explain. White geometric symbols represent indirect movie descriptions induced by the property
ierarchy. The top-3 ranked properties for each approach are highlighted in green.
his issue related to the quality of the KGs, one may consider to
ake advantage of other types of data and information other than
he item properties, such as the user–item interactions, when
enerating the explanations. It is also one of our perspectives, as
llustrated in the following section.

. Conclusions & perspectives

The explanation of recommendations is becoming an impor-
ant feature of recommender systems as it provides users with
xtra information and helps them make faster and better deci-
ions.
In this paper, we propose a generic, personalized post-hoc ap-

roach exploiting Linked Open Data. To be more specific, Linked
pen Data generally relies on a backbone hierarchy organizing a
uge number of concepts so that the broader or is-a relationship

among these concepts can be explored. Thanks to algorithmic
optimizations relying on the sub-ontology extraction and post-
order graph traversal, we demonstrate that this whole hierarchy
can be efficiently exploited. We also provide simple solutions to
limit explanation redundancy in the proposed approach as well
as the use of properties that are helpful to organize the hierarchy
but irrelevant for explanation. The user study carried out confirms
the advantage of our proposed approach as compared to existing
LOD-based approaches such as ExpLOD which does not consider
the whole property hierarchy and does not explicitly take into
account the property relevance and possible redundancy issues.
10
Another type of personalized explanation approaches exist
that ignore item contents and only take advantage of the user–
item rating matrix [31]. Those methods generate post-hoc ex-
planations based on user–item interactions (collaborative data),
leading to explanations such as ‘‘we recommend the item x be-
cause you liked the item y and 80% of users liking y also like
x’’.

We believe that the two types of approaches are not exclusive.
Depending on the context, the user could be more convinced by
either a LOD-based explanation or by a collaborative-based ap-
proach. If the LOD-based explanation is based upon very generic
properties it would be better to rely on a collaborative one;
conversely if the collaborative explanation relies on a very low
percentage the LOD-based explanation is probably preferable.
One can therefore consider switching between those strategies
depending on their output or even combining their output into a
hybrid explanation mixing both points of view.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors thank Pierre Jean (IMT Mines Ales) for deploying
the web applications (both for the user study and the demonstra-
tion purpose) on the IMT Mines Ales, server.

Y. Du, S. Ranwez, N. Sutton-Charani et al. Knowledge-Based Systems 245 (2022) 108560

A
ppendix. Algorithm description of the proposed PEMmethod

Algorithm 1: Property_frequency (auxiliary method)
Input : an item set I , a post-ordered property list postO,

an annotation function P(·)
Output: I_expl, I_impl // dictionaries providing

the number of items in I that are
explicitly, resp. implicitly, described
by properties of postO

// collect the set of items annotated by each property
I_impl = I_expl = EmptyDictionnary;
for item i in I do

for property p in P(i) do
I_expl[p].add(i);

end
end
for property p in postO do

I_impl[p] = I_expl[p];
for property pc in p.children() do

I_impl[p].add(I_impl[pc]); // Eq. (5)
end

end
// count the number of items annotated by each property
for (p, p_item_set) in I_expl do

I_expl[p] = p_item_set .size();
end
for (p, p_item_set) in I_impl do

I_impl[p] = p_item_set .size();
end
return I_expl, I_impl;

Algorithm 2: PEM_preprocessing (This is done only once)
Input : an item catalog C, a property hierarchy H, an

annotation function P(·)
Output: HC // the sub-hierarchy of properties

HC_po // list of the sub-hierarchy
properties in post ordering

C_expl, C_impl // dictionaries providing
for each property of HC_po, the number of
items in C that it explicitly, resp.
implicitly, describes

// identify properties annotating explicitly(directly) at
least 1 item of C

PC = EmptySet;
for item i in C do

for property p in P(i) do
PC .add(p);

end
end
// compute the sub-hierarchy sufficient to fully handle
properties of PC

HC = subOntology(H, PC); // Algorithm 5 of [14]
// get a list of its properties in post order
HC_po = postOrderTraversal(HC); // Algorithm 3 of
[14]

// get explicit and implicit annotation counts at the
catalog level

C_expl, C_impl = Property_frequency(C, HC_po, P(·));
return HC , HC_po, C_expl, C_impl
11
Algorithm 3: PEM_explanation (proposed method of se-
lecting the top-k properties — Run-time computation, i.e.,
this is called whenever a user request is received)

Input : a user profile Iu, a target item ir , an item catalog
C, an annotation function P(·), the number k of
top properties to select, and the four outputs of
Algorithm 2 (PEM_preprocessing) i.e., HC , C_expl,
C_impl and HC_po

Output: the top-k properties for the explanation of ir
// identify properties annotating the target item ir
ir_expl, ir_impl = Property_frequency({ir }, HC_po, P(·));
// identify properties annotating at least 1 item of Iu
Iu_expl, Iu_impl = Property_frequency(Iu, HC_po, P(·));
// identify the set of candidate properties
CandidateProperties =

setIntersection(ir_impl.keys(), Iu_impl.keys(),
C_expl.keys());

// remove fully redundant properties // Eq. (8)
mu = Mu = emptyDictionnary;
for property p in HC_po do

mu[p] = 0;
for property pc in p.children() do mu[p] = max(mu[p],
Mu[p_c]);

if mu[p] == Iu_impl[p] then
CandidateProperties.remove(p);

if p in C_expl.keys() then
Mu[p] = max(mu[p], Iu_impl[p]);

else
Mu[p] = mu[p]

end
end
for property p in CandidateProperties do

fold_change = (Iu_impl[p]/Iu.size())/(C_impl[p]/C.size());
p.score = log10(C_expl[p]) * fold_change; // Eq. (4)

end
CandidateProperties.sortByScore();
return the top-k elements of CandidateProperties

References

[1] F. Ricci, L. Rokach, B. Shapira, Recommender systems: introduction and
challenges, in: F. Ricci, L. Rokach, B. Shapira (Eds.), Recommender Sys-
tems Handbook, Springer, 2015, pp. 1–34, http://dx.doi.org/10.1007/978-
1-4899-7637-6_1.

[2] F. Gedikli, D. Jannach, M. Ge, How should i explain? A comparison of
different explanation types for recommender systems, Int. J. Hum.-Comput.
Stud. 72 (4) (2014) 367–382, http://dx.doi.org/10.1016/j.ijhcs.2013.12.007.

[3] N. Tintarev, J. Masthoff, Evaluating the effectiveness of explanations for
recommender systems, User Model. User-Adapt. Interact. 22 (4-5) (2012)
399–439, http://dx.doi.org/10.1007/s11257-011-9117-5.

[4] Y. Zhang, X. Chen, Explainable recommendation: A survey and new
perspectives, Found. Trends Inf. Retr. 14 (1) (2020) 1–101, http://dx.doi.
org/10.1561/1500000066.

[5] P. Lops, D. Jannach, C. Musto, T. Bogers, M. Koolen, Trends in content-based
recommendation, User Model. User-Adapt. Interact. 29 (2) (2019) 239–249,
http://dx.doi.org/10.1007/s11257-019-09231-w.

[6] W. Lin, S.A. Alvarez, C. Ruiz, Collaborative recommendation via adaptive
association rule mining, Data Min. Knowl. Discov. 6 (1) (2000) 83–105.

[7] J.L. Herlocker, J.A. Konstan, J. Riedl, Explaining collaborative filtering rec-
ommendations, in: Proceedings of the 2000 ACM Conference on Computer
Supported Cooperative Work, in: CSCW ’00, 2000, pp. 241–250, http:
//dx.doi.org/10.1145/358916.358995.

[8] Y. Koren, R. Bell, Advances in collaborative filtering, in: F. Ricci, L. Rokach,
B. Shapira, P.B. Kantor (Eds.), Recommender Systems Handbook, Springer,
2015, pp. 77–118, http://dx.doi.org/10.1007/978-0-387-85820-3_5.

[9] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, Neural collaborative
filtering, in: Proceedings of the 26th International Conference on World
Wide Web, in: WWW ’17, 2017, pp. 173–182, http://dx.doi.org/10.1145/
3038912.3052569.

http://dx.doi.org/10.1007/978-1-4899-7637-6_1
http://dx.doi.org/10.1007/978-1-4899-7637-6_1
http://dx.doi.org/10.1007/978-1-4899-7637-6_1
http://dx.doi.org/10.1016/j.ijhcs.2013.12.007
http://dx.doi.org/10.1007/s11257-011-9117-5
http://dx.doi.org/10.1561/1500000066
http://dx.doi.org/10.1561/1500000066
http://dx.doi.org/10.1561/1500000066
http://dx.doi.org/10.1007/s11257-019-09231-w
http://refhub.elsevier.com/S0950-7051(22)00249-0/sb6
http://refhub.elsevier.com/S0950-7051(22)00249-0/sb6
http://refhub.elsevier.com/S0950-7051(22)00249-0/sb6
http://dx.doi.org/10.1145/358916.358995
http://dx.doi.org/10.1145/358916.358995
http://dx.doi.org/10.1145/358916.358995
http://dx.doi.org/10.1007/978-0-387-85820-3_5
http://dx.doi.org/10.1145/3038912.3052569
http://dx.doi.org/10.1145/3038912.3052569
http://dx.doi.org/10.1145/3038912.3052569

Y. Du, S. Ranwez, N. Sutton-Charani et al. Knowledge-Based Systems 245 (2022) 108560
[10] M.F. Dacrema, P. Cremonesi, D. Jannach, Are we really making much
progress? A worrying analysis of recent neural recommendation ap-
proaches, in: Proceedings of the 13th ACM Conference on Recommender
Systems, in: RecSys ’19, 2019, pp. 101–109, http://dx.doi.org/10.1145/
3298689.3347058.

[11] S. Zhang, L. Yao, A. Sun, Y. Tay, Deep learning based recommender system:
A survey and new perspectives, ACM Comput. Surv. 52 (1) (2019) 1–38,
http://dx.doi.org/10.1145/3285029.

[12] Y. Zhang, G. Lai, M. Zhang, Y. Zhang, Y. Liu, S. Ma, Explicit factor models for
explainable recommendation based on phrase-level sentiment analysis, in:
Proceedings of the 37th International ACM SIGIR Conference on Research
& Development in Information Retrieval, 2014, pp. 83–92, http://dx.doi.
org/10.1145/2600428.2609579.

[13] C. Musto, M. de Gemmis, P. Lops, G. Semeraro, Generating post hoc
review-based natural language justifications for recommender systems,
User Model. User-Adapt. Interact. 31 (2021) 629–673, http://dx.doi.org/10.
1007/s11257-020-09270-8.

[14] V. Ranwez, S. Ranwez, S. Janaqi, Subontology extraction using hyponym
and hypernym closure on is-a directed acyclic graphs, IEEE Trans. Knowl.
Data Eng. 24 (12) (2011) 2288–2300, http://dx.doi.org/10.1109/TKDE.2011.
173.

[15] C. Bizer, T. Heath, K. Idehen, T. Berners-Lee, Linked data on the web
(LDOW2008), in: Proceedings of the 17th International Conference on
World Wide Web, in: WWW ’08, 2008, pp. 1265–1266, http://dx.doi.org/
10.1145/1367497.1367760.

[16] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, Dbpedia:
A nucleus for a web of open data, in: The Semantic Web, Springer, 2007,
pp. 722–735, http://dx.doi.org/10.1007/978-3-540-76298-0_52.

[17] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a col-
laboratively created graph database for structuring human knowledge,
in: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, in: SIGMOD ’08, 2008, pp. 1247–1250, http://dx.doi.
org/10.1145/1376616.1376746.

[18] V. Lully, P. Laublet, M. Stankovic, F. Radulovic, Enhancing explanations in
recommender systems with knowledge graphs, Procedia Comput. Sci. 137
(2018) 211–222, http://dx.doi.org/10.1016/j.procs.2018.09.020.

[19] C. Musto, F. Narducci, P. Lops, M. De Gemmis, G. Semeraro, Explod: a
framework for explaining recommendations based on the linked open
data cloud, in: Proceedings of the 10th ACM Conference on Recommender
Systems, in: RecSys ’16, 2016, pp. 151–154, http://dx.doi.org/10.1145/
2959100.2959173.
12
[20] C. Musto, F. Narducci, P. Lops, M. de Gemmis, G. Semeraro, Linked open
data-based explanations for transparent recommender systems, Int. J.
Hum.-Comput. Stud. 121 (2019) 93–107, http://dx.doi.org/10.1016/j.ijhcs.
2018.03.003.

[21] M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (12) (2014)
1–21, http://dx.doi.org/10.1186/s13059-014-0550-8.

[22] I. Nunes, D. Jannach, A systematic review and taxonomy of explanations
in decision support and recommender systems, User Model. User-Adapt.
Interact. 27 (3) (2017) 393–444, http://dx.doi.org/10.1007/s11257-017-
9195-0.

[23] S. Dooms, T. De Pessemier, L. Martens, Movietweetings: a movie rating
dataset collected from twitter, in: Workshop on Crowdsourcing and human
computation for recommender systems, CrowdRec at RecSys 2013, 2013,
p. 43.

[24] T. Di Noia, R. Mirizzi, V.C. Ostuni, D. Romito, M. Zanker, Linked open data
to support content-based recommender systems, in: Proceedings of the
8th International Conference on Semantic Systems, in: I-SEMANTICS ’12,
2012, pp. 1–8, http://dx.doi.org/10.1145/2362499.2362501.

[25] T. Nanou, G. Lekakos, K. Fouskas, The effects of recommendations’ presen-
tation on persuasion and satisfaction in a movie recommender system,
Multimedia Syst. 16 (4–5) (2010) 219–230, http://dx.doi.org/10.1007/
s00530-010-0190-0.

[26] European organization for nuclear research, OpenAIRE, zenodo, 2013, http:
//dx.doi.org/10.25495/7GXK-RD71, URL https://www.zenodo.org/.

[27] Y. Du, S. Ranwez, N. Sutton-Charani, V. Ranwez, Is diversity optimization
always suitable? Toward a better understanding of diversity within rec-
ommendation approaches, Inform. Process. Manage. 58 (6) (2021) 102721,
http://dx.doi.org/10.1016/j.ipm.2021.102721.

[28] B. Abdollahi, O. Nasraoui, Using explainability for constrained matrix
factorization, in: Proceedings of the Eleventh ACM Conference on Recom-
mender Systems, in: RecSys ’17, 2017, pp. 79–83, http://dx.doi.org/10.1145/
3109859.3109913.

[29] D. Sánchez, M. Batet, D. Isern, Ontology-based information content com-
putation, Knowl.-Based Syst. 24 (2) (2011) 297–303, http://dx.doi.org/10.
1016/j.knosys.2010.10.001.

[30] M. Färber, F. Bartscherer, C. Menne, A. Rettinger, Linked data quality of
dbpedia, freebase, opencyc, wikidata, and yago, Semantic Web 9 (1) (2018)
77–129, http://dx.doi.org/10.3233/SW-170275.

[31] G. Peake, J. Wang, Explanation mining: Post hoc interpretability of latent
factor models for recommendation systems, in: Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, in: KDD ’18, New York, NY, USA, 2018, pp. 2060–2069, http:
//dx.doi.org/10.1145/3219819.3220072.

http://dx.doi.org/10.1145/3298689.3347058
http://dx.doi.org/10.1145/3298689.3347058
http://dx.doi.org/10.1145/3298689.3347058
http://dx.doi.org/10.1145/3285029
http://dx.doi.org/10.1145/2600428.2609579
http://dx.doi.org/10.1145/2600428.2609579
http://dx.doi.org/10.1145/2600428.2609579
http://dx.doi.org/10.1007/s11257-020-09270-8
http://dx.doi.org/10.1007/s11257-020-09270-8
http://dx.doi.org/10.1007/s11257-020-09270-8
http://dx.doi.org/10.1109/TKDE.2011.173
http://dx.doi.org/10.1109/TKDE.2011.173
http://dx.doi.org/10.1109/TKDE.2011.173
http://dx.doi.org/10.1145/1367497.1367760
http://dx.doi.org/10.1145/1367497.1367760
http://dx.doi.org/10.1145/1367497.1367760
http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://dx.doi.org/10.1145/1376616.1376746
http://dx.doi.org/10.1145/1376616.1376746
http://dx.doi.org/10.1145/1376616.1376746
http://dx.doi.org/10.1016/j.procs.2018.09.020
http://dx.doi.org/10.1145/2959100.2959173
http://dx.doi.org/10.1145/2959100.2959173
http://dx.doi.org/10.1145/2959100.2959173
http://dx.doi.org/10.1016/j.ijhcs.2018.03.003
http://dx.doi.org/10.1016/j.ijhcs.2018.03.003
http://dx.doi.org/10.1016/j.ijhcs.2018.03.003
http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1007/s11257-017-9195-0
http://dx.doi.org/10.1007/s11257-017-9195-0
http://dx.doi.org/10.1007/s11257-017-9195-0
http://refhub.elsevier.com/S0950-7051(22)00249-0/sb23
http://refhub.elsevier.com/S0950-7051(22)00249-0/sb23
http://refhub.elsevier.com/S0950-7051(22)00249-0/sb23
http://refhub.elsevier.com/S0950-7051(22)00249-0/sb23
http://refhub.elsevier.com/S0950-7051(22)00249-0/sb23
http://refhub.elsevier.com/S0950-7051(22)00249-0/sb23
http://refhub.elsevier.com/S0950-7051(22)00249-0/sb23
http://dx.doi.org/10.1145/2362499.2362501
http://dx.doi.org/10.1007/s00530-010-0190-0
http://dx.doi.org/10.1007/s00530-010-0190-0
http://dx.doi.org/10.1007/s00530-010-0190-0
http://dx.doi.org/10.25495/7GXK-RD71
http://dx.doi.org/10.25495/7GXK-RD71
http://dx.doi.org/10.25495/7GXK-RD71
https://www.zenodo.org/
http://dx.doi.org/10.1016/j.ipm.2021.102721
http://dx.doi.org/10.1145/3109859.3109913
http://dx.doi.org/10.1145/3109859.3109913
http://dx.doi.org/10.1145/3109859.3109913
http://dx.doi.org/10.1016/j.knosys.2010.10.001
http://dx.doi.org/10.1016/j.knosys.2010.10.001
http://dx.doi.org/10.1016/j.knosys.2010.10.001
http://dx.doi.org/10.3233/SW-170275
http://dx.doi.org/10.1145/3219819.3220072
http://dx.doi.org/10.1145/3219819.3220072
http://dx.doi.org/10.1145/3219819.3220072

	Post-hoc recommendation explanations through an efficient exploitation of the DBpedia category hierarchy
	Introduction
	Related works and motivation
	Proposed Property-based Explanation Model (PEM)
	Definitions and notations
	Scoring properties
	Efficient scoring calculation using sub-ontology extraction
	Avoiding full redundancy among selected properties
	The PEM method

	Experimental evaluation
	Experimental protocol
	Experimental design
	Annotated item catalog
	The recommendation model

	The evaluation metrics
	Offline metrics
	Online metrics

	Results
	The efficiency of the sub-ontology optimization
	Performance comparison of the ExpLOD and PEM methods on a user study
	A concrete comparison example
	Discussion and limitations

	Conclusions perspectives
	Declaration of competing interest
	Acknowledgments
	Appendix. Algorithm description of the proposed PEM method
	References

