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Abstract: Urban transport infrastructures (TIs) play a central role in an urban society that faces
more and more disasters. TIs, part of critical infrastructures (CIs), are highly correlated with urban
disaster management in terms of their resilience when cities are facing a crisis or disaster. According
to many studies, indicator assessment has been frequently used for the resilience management of
CIs in recent decades. Defining and characterizing indicators can be useful for disaster managers
as it could help monitor and improve the capacities and performance of TIs. The purpose of this
paper, therefore, is (1) to identify and summarize the existing indicators of TIs resilience from the
currently available literature, and (2) to discuss the possible future studies of the resilience indicator
of TIs. The first results indicated that there are some barriers to identify indicators following the
common search method through keywords. Additionally, the indicators found are mainly related
to technical information, the disruption stage, and internal TIs. Finally, due to the complexity of
indicator assessment, sub-indicators and indicator spatialization are widely used in the resilience
assessment of urban TIs studies.

Keywords: resilience assessment; assessment indicator; transport network; critical infrastructure

1. Introduction

According to a recent report of the United Nations, 55% of the world’s population
lives in urban areas, a proportion that is expected to increase to 68% by 2050 [1]. Therefore,
cities will remain the main place for global human development in the future. Recently,
“resilience” is a constantly discussed topic for a broad range of academic approaches, such
as environmental studies, civil engineering, and socio-political science. The popularity of
“resilience” makes also resilient cities become an increasingly favored concept, especially
concerning the challenge of human and natural disasters [2]. In urban systems, critical
infrastructures (CIs), such as buildings, transportation networks, and energy and water
grids, represent principal components due to their indispensable role in the maintenance of
critical societal functions. The urban defense and economic activities could be weakened
due to the potential destruction of critical infrastructures (CIs) [3]. In this context, the
change and improvement of urban CIs have an opportunity to make cities more resilient.

Considered as an important part of the CIs system, the urban transport infrastructures
(TIs) support a wide variety of activities ranging in modern societies and play a critical role
in economic competitiveness and quality of life [2–6]. Urban streets, roads, and railways
are components of the urban track infrastructure, which belong to the category of spatial
networks, contrary to non-spatial networks such as the internet, social networks, and
biological systems (e.g., human blood transport system) [7,8]. However, urban transport
networks are vulnerable to congestion, accidents, weather conditions, special events, and
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natural disasters. In Genoa, Italy, a city of some 580,000 inhabitants and the first Mediter-
ranean port, a 200-m section of the Morandi Bridge collapsed on 14 August 2018, including
one of its three supporting towers. This tragedy had wide echoes in the international press
since it killed 43 people, left 600 homeless, and caused an economic disaster for Genoa [9].
In the short term, it created chaotic traffic in the city center, even congestion traffic around
the urban area. In the long term, this traumatic event increases insecurity, thus increasing
citizens’ fear, anger, despair, mistrust of the institutions, and economic and structural
hardships [10]. The spread of consequences of the damage on TIs could be very quick and
disrupt large-scale territories due to the interdependence between transport networks and
urban systems.

The improvement of TIs vulnerability can be seen as an important part of reducing
urban vulnerability facing disasters. In a report of the United Nations Institute for Envi-
ronment and Human Security (UNU-EHS), Japan was ranked 158th out of the 171 most
vulnerable countries (even if it was the 4th country in terms of exposure to natural dis-
asters). This was due to the fact that Japan has a very good capacity of mitigating the
effects of a disaster, especially in regards to the three domains which include transport
infrastructure [11].

Resilience assessment is a key aspect of disaster management since it is a popular
and common method allowing for understanding of the capacities and performance of
a complex system. The framework built for resilience assessment is frequently based
on indicators, which help in the cognitive research of complex systems. Over the last
decade, the use of indicators has been increasingly developed in urban resilience studies
and CIs management [3,12–16]. Indicators are valued due to their ability to characterize CIs
facing disruptions or shocks, and to support stakeholders in the decision-making process.
A comprehensive analysis of indicators is particularly important for the scientists and
managers of urban TIs resilience. However, the literature reviewing resilience indicators
for TIs is insufficient. Therefore, this review study aims to: (1) identify and summarize the
existing indicators of TIs resilience from the literature currently available; and (2) discuss
the possible development of the resilience indicator of TIs. Meanwhile, this study presents
a discussion about the search method for screening relevant scientific papers, and an
investigation of the common characteristics of the identified TIs resilience indicators.

The definition of important terminologies is present in Section 2, which allows clarify-
ing the scope of study interest and establishing the methodology in Section 3. Section 4
compares the number of relevant scientific papers with different keywords, while Section 5
discusses the relevancy of the screened papers. The investigation of the resilience indicators
in the screened papers presents in Section 6 before the discussion and conclusion.

2. Terminology
2.1. Definition of Resilience

The term “resilience” is used in many disciplines and is difficult to define due to its
very broad use. Many resilience studies argue that Holling first introduced the concept
for studying ecological science. Holling [17] defined the term “resilience” as a persistent
ability to absorb change and disturbance and still maintain the same state variables. Over
time, a series of interpretations of resilience has been presented. Holling [18] gave further
explanation of resilience in differing engineering resilience and ecological resilience: the
former focuses on a stable equilibrium and the rate at which a system returns to steady-
state following a perturbation; the latter focuses on processes and can be measured by
the magnitude of disturbance. Walker et al. [19] presented another resilience for socio-
ecological systems (SESs), defined as a region in a state-space (state of variables that
constitute the system) in which the system tends to remain, and assumed four crucial
aspects for resilience:

- Latitude, or the maximum amount a system can be changed before losing its ability
to recover

- Resistance, meaning the ease or difficulty of changing the system
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- Precariousness, or how close the current state of the system is to a limit or threshold
- “Panarchy”, following the theory introduced by Holling and Gunderson [20], referring

to a cross-scale, nested set of adaptive cycles. These cycles differ in range and duration,
and the larger and slower cycles generally maintain system integrity in constraining
the smaller and faster ones [21].

Folke [22] discussed these three types of resilience (engineering resilience, ecological
resilience, and SESs), in summarizing their characteristics, focus (properties) and contexts
(spatial environment). Resilience alliance considered resilience concerning social-ecological
systems that have the capacities to absorb or withstand perturbations and other stressors
such that the system remains within the same regime, essentially maintaining its structure
and functions. In the context of hazards and disasters, the United Nations International
Strategy for Disaster Reduction (UNISDR) presents another definition: “resilience is the
ability of a system, community or society exposed to hazards to resist, absorb, accommodate,
adapt to, transform and recover from disasters timely and efficiently including through
the preservation and restoration of its essential basic structures and functions through
risk management [23].” This idea focuses on the social system through emphasis on the
necessary resources and its abilities to organize itself both before and during times of need.

Furthermore, from the narrower interpretation, the value of resilience can be de-
scribed through the capabilities, such as robustness, fragility, redundancy, reliability, vul-
nerability, recovery, robustness, persistence, transformability, etc. [4,24–30]. In particular,
Ouyang et al. [31] and Francis and Bekera [30] described CIs resilience as involving three
capacities according to temporal stages (see Figure 1):

- Stage 1 refers to the disaster prevention stage, from normal operation to the onset of
initial failure of an infrastructure component, that requires critical infrastructures to
have the resistant capacity, to prevent potential hazards and reduce the initial damage
level if a hazard occurs;

- Stage 2 refers to the damage propagation process after these initial failures. This
corresponds to a system’s absorptive capacity that minimizes the damage of the
hazard and the consequences, such as cascading failures;

- Stage 3 refers to the restoration response and the restorative capacity is the ability of
the system to be repaired quickly and effectively.
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2.1.1. Resilience in Urban Transportation

The urban TIs can be considered as a physical transport network in urban areas [7].
There is no universal description of what transport resilience is or what the standard defini-
tion it should be, since the existing studies are conducted from different perspectives [4,25].
Zhou et al. [4] reviewed the definitions of transportation resilience in 14 works found in the
available literature and summarized two common perspectives: (1) the ability to maintain
functionality under disruptions; and (2) time and resources required to restore performance
level after disruptions.” Other definitions from three studies are presented in the following
table [26,32,33] (see Table 1).

Table 1. Several existing definitions of resilience and assessment indicator on transport sector.

(1) Definitions of Resilience of Transportation

Zhou et al. [4]
Resilience present two perspectives: (1) the ability to maintain
functionality under disruptions, and (2) time and resources
required to restore performance level after disruptions.

Freckleton et al. [32] Ability of the system to maintain its demonstrated level of service
or to restore itself to that level of service in a specified timeframe.

Cox et al. [33] Capacity to adapt to a variety of different stress scenarios

Ganin et al. [26] The ability of an entity or system to recover rapidly from a severe
shock to achieve the desired state

(2) Definitions of Resilience Indicator of Transport Network

Chen and Miller-Hooks [34]
Resilience indicator quantifies the ability of an intermodal freight
transport network to withstand and quickly recover from
a disruption.

Reggiani et al. [35]
Resilience indicator represents as a challenge to monitor and
control systemic network, especially through the observation of
the behavioral patterns under disruption scenarios or shocks

Yang et al. [27]

Resilience indicator assesses the abilities (resist, absorb,
accommodate, adapt to, transform and recover from the effects of
a hazard) of a system exposed to hazards through two aspects:
the consequence of hazards on road transport network; the
efficacy of reactions (in whole resilience scenario) took to improve
system’s resilience.

2.1.2. Resilience of TIs in This Study

In comparison with these definitions, this research highlights the interdependences
between TIs and other related systems. In the conceptual urban system, TIs are part of
CIs, which are a significant portion of urban systems [36–38]. Moreover, TIs can be divided
into a series of component systems (see Figure 2). For example, the function of a road
transport system relies on all its components, such as the regulatory system, the drainage
system, the maintenance system, etc. [36]. TIs resilience is connected to the function of all
relevant systems. The interdependence makes all urban systems interact with and influence
one another. This study considered not only the capacities of one system but also the
relationships between relevant systems. Consequently, this study suggests defining urban
TIs resilience as the ability of a transport network to manage multiple-equilibrium with
other urban systems, to resist and absorb all shock events, to maintain and restore rapid
functions whatever disruptions, to learn and improve capacity to cope with future risks.
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2.2. Definition of Indicator

An indicator is something that shows what a situation is like, according to the Cam-
bridge Dictionary. In the American Dictionary, it can be a sign or signal that shows
something exists or is true, or that makes something clear. In the context of management
and evaluation, an indicator provides information to measure characteristics, assess per-
formance and evaluate capacities. An indicator, understood as a description of how to
measure an issue, is the chosen information associated with a criterion, intended to observe
its evolution at defined intervals [27,39].

2.2.1. Indicator for Resilience Assessment

The development of resilience indicators was inspired by the adaptation practice and
science of vulnerability indicators [40]. The vulnerability indicator came originally from the
sustainable development study of Gallopin, which argued that indicators are not values,
but variables that are an operational representation of an attribute [41]. Based on the
study of Gallopin, Birkman [42] defined vulnerability indicator for natural hazards as an
operational representation of a characteristic or quality of a system and a tool that provides
various information and data. For adapting to different perspectives of the resilience
concept, as well as variously better methods to improve resilience, resilience indicators
have been defined and redefined [40]. Yang et al. believed that resilience indicators
assess the abilities (resist, absorb, accommodate, adapt to, transform and recover from
the effects of a hazard) of a system exposed to hazards through two aspects, consequence
and reaction [27]. Lhomme et al. used a resilience indicator studying the functionality of
systems during disruption, and the capacity of these networks to recovery service [43].

Over the last decade, the resilience indicator has been a practice tool to assess or
measure the resilience of CIs. Indicators are typically used to assess relative levels of
resilience, either to compare between places or to analyze resilience trends over time [44].
Besides, resilience indicators, whether they are presented logical values or numerical,
should be clear, realistic, unambiguous, measurable, tangible, standardized, harmonized,
and performing, which build its pivotal role in defining, selecting, and assessing the value
of a complex system [45]. The resilience or vulnerability indicators are possibly already
applied in related disciplinary of climate change, such as natural risk, human security,
environmental sustainability, etc. [46,47].
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As we explained in Section 2.1, resilience can be described by its capabilities, and
therefore they could be the assessed subjects of resilience indicators [1,33,48–53]. For exam-
ple, Cox et al. [33] argued that the indicators, “Network Topology, threaten”, “Dependence
on single resource” and “Tactical vulnerability” could be used to assess the vulnerability of
transportation resilience. Reed et al. [48] assessed the quality of CIs resilience in applying
two indicators: power delivery capacity and time in days post-event. Enjalbert et al. [50]
assessed the quality of transportation system resilience through three indicators: time
during safety performance decrement, time on maximum effect of disturbance, time during
safety performance recovery. Lhomme et al. [51] used two indicators, independency path
and point transitivity, to assess redundancy of urban technical networks resilience. The
mentioned indicators are used to assess directly the capabilities of resilience, and to assess
indirectly resilience. Whereas qualifying or quantifying resilience through these capabilities
could be an important step in resilience assessment. As the focus of the paper is on the
indicators analysis, this step is not further described.

2.2.2. Indicator for Transport Network Resilience

The description of resilience indicators referring to TIs is concentrated in its function
and utilization (see Table 1). Chen and Miller-Hooks [34] used an indicator for quantifying
the ability of an intermodal freight transport network to withstand and quickly recover
from a disruption. Reggiani et al. [35] argued that vulnerability indicators are applied to
observe the behavioral patterns under disruption scenarios or shocks in transport networks,
in order to monitor and control networks. Yang et al. emphasized the operation of resilience
indicators that on evaluating the consequence of hazards on the road transport network
and the efficacy of reactions (in whole resilience scenario) took to improve the system’s
resilience [27].

2.2.3. Resilience Indicator in This Study

According to the state of the art, resilience indicators in this study are concerning two
objectives: the consequences of shocks events on TIs; and the abilities of TIs to resist and
absorb all shock events, to maintain and restore rapid functions whatever disruptions, to
learn and improve capacity to cope with future risks. Moreover, this study focuses on the
interdependence of infrastructure systems, emphasizing the use of resilience indicators
on assessing TIs abilities to manage multiple-equilibrium with other urban systems in all
stages of the resilience scenario (i.e., disruption cycle (before, during and after disruption)).

3. Three Steps of Literature Search Methodology

To identify existing indicators, in this paper, this study employ the Systematic Reviews
method, which is common in scientific research. This method can address research ques-
tions, and uncover areas by integrating the findings and perspectives of numerous empirical
studies [54]. The methodology applies three steps inspired by several articles [4,55,56]
before a detailed and complete analysis.

3.1. Step 1: Key Word Selection

Identification of the keywords, based on the clear objectives of the review and the
articulated specific research questions or hypotheses, is the first step in the review process.
The “urban infrastructure” is the first chosen keyword since urban TIs are the focus of
this study. According to the Cambridge Dictionary, the term “transport”, also called
“transportation”, refers to the process of transporting people or things from one place to
another, or a system of vehicles, such as buses, trains, aircraft, etc. for getting from one
place to another. However, this definition of “transport” is not representative of TIs, which
means a system or a group of connected parts of critical infrastructures. Therefore, this
step searched also with terms “transport network” and “transport system” that are more
suitable to this research. Meanwhile “urban”, “resilience”, “indicator” are also the critical
keywords for this study.
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3.2. Step 2: Scanning Scientific Database to Screen Papers

Two leading electronic databases, WEB OF SCIENCE and SCIENCEDIRECT, are
selected for articles review. On Web of Science, search strings “urban”, “resilience”, “indica-
tor”, “transport infrastructure” are picked as “Topic” items, with the conjunction “and”, to
conduct the search work in the first round. The term “transport network” and “transport
system” are replaced by “transport infrastructure” in the second and third rounds of the
search. The absent “Topic” items on SCIENCEDIRECT were changed by “Title, abstract
or author-specified keywords”. Therefore, the search work refers to search strings “urban
transport infrastructure resilience indicator”, “urban transport network resilience indicator”
and “urban transport system resilience indicator”. To understand the popularity of this
topic, this study analyzed different combinations of selected keywords.

3.3. Step 3: Selecting Suitable Papers

After the first search in electronic databases, the selecting step aims to eliminate those
that do not fit the research theme. The research result relying on keywords has a common
problem: some found publications are not suitable for study objectives even though they
have all keywords in their topics. For example, an unsuitable article, discussing impacts
assessment of local resilience strategies to the urban transport network, could have “urban”,
“resilience”, “indicator” and “transport network” as a topic keyword. Therefore, before the
investigation of indication, this step helps select suitable articles in identifying the objective
and goals of each screened article. Besides, resilience measurement and evaluation need to
be remarked due to their important role in the resilience assessment. Resilience assessment
is a process of understanding the state or condition of an issue by application of appropriate
methodologies to measure, evaluate, and manage that ability in systems [57]. A relevancy
analysis is created to select suitable articles screened from the electronic database.

4. Searching Result and Quantity Analysis

The databases selected in WEB OF SCIENCE and SCIENCEDIRECT are before 6 pm,
08 February 2022. In WEB OF SCIENCE, 40 publications are screened, while in SCIENCEDI-
RECT, 17 suitable articles are careened (see Table 2). Consequently, 29 articles will be
discussed in relevancy analysis, since some articles of them repeat and two articles are not
available on the online science website.

Table 2. Searching details and number of publications.

Database Search Items Search Strings Number Total

WEB OF SCIENCE “Topic”
“urban”,

“resilience”,
“indicator”

“transport infrastructure” 7

29

“transport network” 17
“transport system” 16

SCIENCE DIRECT
“Title, abstract or
author-specified

keywords”

“urban transport infrastructure resilience indicator” 6
“urban transport network resilience indicator” 3
“urban transport system resilience indicator” 8

For understanding the popularity of the study topic in the scientific discipline, this
study apply to search for different combinations (conjunction “and”) of keywords as
“Topic” on WEB OF SCIENCE” and “Title, abstract or author-specified keywords” on
SCIENCEDIRECT:

- Category 1: combinations of “urban”, “resilience” and “indicator”
- Category 2: combinations of “transport infrastructure” and keywords of category 1
- Category 3: combinations of “transport network” and keywords of category 1
- Category 4: combinations of “transport system” and keywords of category 1

The result is shown through the state of the art (see Figure 3). The orange part (row
10, 17, 24) is the search work mentioned above (Table 2) and discussed in Sections 4 and 5.
Only a small proportion of studies on urban resilience (row 2) or urban transport (rows 4,
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11, 18) are related to the resilience of urban transport (rows 8, 15, 22). In addition, less than
2 in 1000 studies on resilience indicators (row 3) are relevant to TIs (row 9). Overall, the
studies on resilience indicators for TIs account for only about 3.7 per 1000 urban resilience
studies (row 2).
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5. Screening Result and Relativity Analysis

These articles screened on resilience assessment indicators of TIs are multidisciplinary
and cover different subjects. However, most of the articles are not suitable for the interest of
this study (see Table 3). For example, Fonseca et al. [58] describe the concept of transporta-
tion resilience indicator, which assesses the ability of an urban system to reduce the number
of people affected by traffic noise and to reduce the economic cost for transportation noise.
Resilience refers to the ability of a system to maintain its state facing shocks. The shocks
on TIs and the abilities of TIs to shocks are necessary conditions for the concept of TIs
resilience [27]. Therefore, the indicators presented by Fonseca et al. [58] are for assessing
the resilience of the urban economic system to the effects of transportation, rather than
the resilience of TIs. Moreover, Cariolet et al. [13] assess the resilience of urban areas to
traffic-related air pollution by indicators. Vajjarapu et al. [59] and Vajjarapu and Verma [60]
assess the adaptation of policy strategies for urban transportation.

According to the relevance to this study, the screened articles are divided into four
relevancy levels (RL):

1. This article is about assessing urban TIs resilience by indicators;
2. This article is about assessing resilience (except TIs resilience) by indicators;
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3. This article is about assessing one or more object targets (except resilience) by indicators;
4. This article is not about indicators assessment.

Only the studies in the first level are related to the resilience indicator of TIs. Mean-
while, the assessment of resilience capabilities mentioned in Section 2.1 are equally suitable
to the first level. Finally, seven articles are selected after the relevancy analysis (see Table 3).

Table 3. Relevancy levels of screened papers.

Reference RL Assessed Target of the Studies in Level 1–3; Objective of the Studies in Level 4

Da Mata Martins et al. [61] 1 Road network resilience

Vajjarapu and Verma [60] 3 Adaptation of policy strategies

Esfandi et al. [62] 2 Energy resilience

Lu [63] 1 Railway resilience under different operational incidents

Tromeur et al. [64] 2 Environmental system resilience

Cats et al. [65] 1 Public transport robustness

Shelat and Cats [66] 1 Spatial extent of link disruption impacts in urban public transport networks

Cariolet et al. [13] 2 Resilience of urban areas to traffic-related air pollution

Gil and Steinbach [67] 1 Indirect impact of flooding of the urban street network

Santos et al. [68] 2 Resilience and vulnerability of public transportation fare systems
(not infrastructure)

Jang et al. [69] 1 Vulnerability of network-based systems (road network, for example)

Zhang and Ng [70] 3 Node criticality of public transport

Liu et al. [71] 1 Reliability in urban rail transit network facing links capacity reduction

Ortega-Fernandez et al. [72] 3 Possibility of transforming a city to a smart city

Duniway et al. [73] 3 Transportation (no infrastructure) impacts on rangelands

Enjalbert et al. [74] 4 Assessment of transport system through a framework with resilience abilities
as criteria

Xu and Xue [75] 2 Chinese urban critical infrastructure resilience

Oliver et al. [76] 3 Perceptions of flooding, resilience to flooding, and the availability of
critical services

Östh et al. [77] 2 Regional economic resilience

Gromek and Sobolewski [78] 2 Consequences on infrastructures to particular events

Venkatesh et al. [79] 2 Urban water system

Watcharasukarn et al. [80] 4 Explore private travel adaptive capacity by a role playing computer game concept

Olowosegun et al. [81] 3 Quality of service of informal public transport

Fonseca et al. [58]

3 Spatial heterogeneity

3 Performance of environmental system (impacts of energy and transport system on
environmental system)

2 Resilience of the energy system

2 Resilience of economic system facing noisy pollution from transportation systems

Vajjarapu et al. [59] 3 Adaptation of policy strategies

Xiao and Yuizono [82] 3 Landscape microclimate environment

Leung et al. [83] 2 Vulnerability of transport oil

Bowering [84] 3 Mobility of ageing people

Adlakha and Parra [85] 3 Physical activity
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6. An Indicators’ Overview in Selected Papers

In this section, the seven selected articles are further investigated through five aspects:
dimensions, temporal stages of indicators, focus systems (internal or external), use of
sub-indicator and spatialization.

6.1. Dimension of Indicators

IMPROVER project presents three ‘domains’ of critical infrastructure resilience, that
is, social, organizational, and technological [21]. This study suggests the fourth domain,
namely the environmental domain. Therefore, all resilience indicators are mainly divided
into four categories:

- Socio-economic indicator (SEI), which refers to human, social and economic information;
- Organizational indicator (OI) which represents the information of the management of

institutions and the organization of resources;
- Technical indicator (TEI), which refers to the state or situation on technical facilities

and networks;
- Environmental indicators (EI), which refers to natural and environmental resources

or statistics.

Sometimes an indicator corresponds to several domains. In this study, the point of
view of the author is the most important criterion to identify the dimension of resilience
indicators. In addition, this study consider the content actual of indicators, their applicable
users, and the purpose of indicator studies.

6.2. Indicators’ Temporal Stages

From the perspective of the event occurrence, CIs resilience is a refocus from protection
to adaptation and recovery of a system. Based on the theory of Ouyang about the temporal
stages [31], TIs resilience indicators are categorized as pre-event indicators (PrEI), during
event indicators (DEI) and post-event indicators (PoEI). In our study, the event is defined as
the occurrence by which a shock causes maximum impact to transport system’ performance
(see Figure 1):

- Pre-event indicators (PrEI), which assesses the resistance capacity and refers to the
disaster prevention processes before the occurrence of events.

- During event indicators (DEI), which assesses the absorptive capacity and refers to
the damage propagation processes during the occurrence of events.

- Post-event indicators (PoEI), which assesses the restorative and improvement capacity
and refers to the recovery and improvement processes after the occurrence of events.

6.3. Position of Focus System

As introduced earlier, infrastructure resilience should not be limited to stand-alone
infrastructure systems. Based on the study of Yang et al. [36] about the interdependence of
CIs, this study distinguishes the resilience indicator of TIs to internal indicator and external
indicator. The former focus on the target system or its components, while the latter focus on
the external systems of the target transport network. The resilience indicator of internal TIs
refers to assessing the resilience of internal components, categorized as physical structure,
non-physical characteristics, collective actors, and individual actors. The example indicator
of each category is shown in Figure 2

6.4. Sub-Indicators

Resilience assessment is a complex process in which indicators could be measured
with different metrics. Sometimes, to further explain an indicator, many studies use sub-
indicators, all of which are measured to complete the metric of an indicator. The metric of
indicators is based on the collection of reliable data and is used to evaluate or measure one
or more capabilities of the resilience system and to observe whether they meet the criteria.



Infrastructures 2022, 7, 33 11 of 17

6.5. Spatialization of Infrastructure Resilience Indicators

Geography plays a crucial and indispensable role in many decision-making processes,
especially for cities and the components of the urban system. Resilience mapping can be
used to assess the strengths and weaknesses of the city’s resilience [85–87]. The review study
from Cariolet et al. [13] mapping urban resilience to disasters emphasized the central role of
resilience indicators for specific units of resilience analysis (district, region, state, etc.). The
spatialization of indicators allows the value of resilience to be spatialized, thus assessing
vulnerabilities and resilience of different urban territories. That, therefore, makes indicator
mapping important for decision-makers to recognize problems, find solutions and thus
help to define corrective or preventive actions for future risks.

6.6. Results of Indicators’ Analysis

Da Mata Martins et al. [61] assess the absorptive capacity of mobility resilience with
the following indicator: possibility of changing the modes based on motorized vehicles
to active modes in case of a given shock leading to a disruption in TIs. The indicator is
measured with the maximum possible distances (MPD) possible by walking or cycling
mode. The collected information is about the origin-destination (OD) datasets of the road
network (internal system) and social risk sensitivity to motorized transport modes (based
on population physical/health condition, along with terrain using the street gradients,
road network topology). In the last step of his study, Da Mata Martins et al. [61] map the
distribution of resilient trips to apply the outcome to urban planning at a strategic level.

Lu [63] demonstrates a resilience approach for understanding the absorptive and
recovery capacities of rail transit networks under daily operational incidents. This study is
based on the OD flows of the transport network, and the measure of importance-impedance
degradation under incidents. Lu focuses on the changes of the rail transit network before
the system return to the original state, with (1) the time duration of incidents and (2) the
impacts on delayed travel demand during the perturbation (performance below original
state). With a map of indicator value, Lu compares the resilience trail network sector in the
central area and suburban area of Shanghai.

Cats et al. [65] and Shelat and Cats [66] assess the robustness of the public transport
system through TEIs: the former focus on two indicators, namely link criticality and
degrading rapidity; the latter assesses the spill-over effects by link criticality and the
system performance by generalized travel cost criticality. The robustness is one of the
resilience capacity and refers to the ability of the system to withstand a given level of stress
or demand without suffering degradation or loss of total function. Cats et al. [65] and
Shelat and Cats [66] present the indicators on the map of Amsterdam’s urban rail public
transport network.

Gil and Steinbach [67] and Jang et al. [69] assess indirect consequences of hazards on
the road network by measuring its performance changes in terms of spatial accessibility
(closeness) and path overlap (betweenness). The indicators of Gil and Steinbach [67] do
not only address the technical information of TIs, the network-based paths and nodes, but
also the social information, the urban street morphology (in New Orleans). Different from
Gil and Steinbach [67], Jang et al. [69] focus mainly on network-based information and
calculate average node degree, cumulative degree distributions to measure two indicators,
degree centrality, and betweenness centrality. The indicators spatialization in the study of
Jang et al. [69] presents the average node degree in twenty-five districts in Seoul.

Liu et al. [71] assess the reliability of urban rail transit network facing links capacity
reduction. The study suggests a model formulation of passengers’ generalized travel cost,
which is the sum of the monetary and nonmonetary costs of a trip. The nonmonetary costs
refer to perceived travel time, including waiting time, walking time, in-vehicle time, and
transfer times. The value of monetary costs is estimated by the household income per hour
of population.

The summaries of the seven selected articles are in the following Table 4. Most of the
indicators focus mainly on the “during stage” of the resilience scenario, and the internal
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systems of the TIs. All of the indicators concern technical information; a few concern social
information and none concern organizational and environmental information. Six of the
seven studies use sub-indicators and analyze indicator spatialization.

Table 4. Summary of the seven selected articles.

Reference Da Mata
Martins et al. [61] Lu [63] Cats et al. [65] Shelat and Cats

[66]
Gil and Steinbach

[67] Jang et al. [69] Liu et al. [71]

Indicators Possibility of changing
the modes

Importance-
impedance

degradation
of critical
stations

Spatial
criticality,

Degradation
rapidity

Spatial
criticality,

Travel cost
criticality

Performance

Degree
centrality,

Betweenness
centrality

Passengers’
generalized travel

cost

Type Road Railway Railway Railway Road Road Railway

Dimension TEI SEI TEI TEI TEI TEI SEI TEI TEI SEI

Stage DEI DEI PoEI DEI DEI DEI DEI DEI

Position

Internal
system,
External

social system

Internal
system

Internal
system

Internal
system

Internal
system

Internal
system

Internal
system,
External

social system

Spatialization Yes Yes Yes Yes Yes Yes No

Sub-indicator

Maximum
Possible

Distances of three types
of trips

Duration time of
different
incidents,

Characteristics of
the failed stations

Travel cost:
average travel time,

share of
disconnected
demand or

delayed passengers

No

Spatial
accessibility

(closeness), Path
overlap

(betweenness)

Average node
degree,

Cumulative
degree

distributions

Monetary and
nonmonetary costs

of a trip

7. Discussion
7.1. Identified Existing Indicators

The analysis of the identified indicators above shows the characteristics of the existing
resilience indicators of TIs.

Firstly, the assessment of the connection between TIs and other related systems is
inadequate. In modern societies where all systems are highly interconnected and inter-
dependent, the stability of interdependencies should be also considered as part of the
resilience assessment. The study of Yang et al. [36] on functional interdependence, for ex-
ample, demonstrates the connection between urban road systems and emergency medical
services. Secondly, insufficient focus is given to socio-economic, organizational or envi-
ronmental indicators. However, multi-domain indicators exist for assessing the resilience
of other CIs. Shirali et al. [88], Bialas [89], Johnsen and Veen [90], Carvalho et al. [91],
Cox et al. [33], and Fisher et al. [92] discuss organizational indicators, employees’ capacity
to crises, learning culture, safety culture, etc. Franchin [93] Cox [33], Serre [94], Johnsen
and Veen [90], Bialas [89], and LaLone et al. [95] use social indicators, such as decisions of
spatial management, Twitter discussion, shelter-seeking populations, etc. De Vivo et al. [96]
considers the number of green walls and roofs as an indicator to assess the resilience of
airports. The application and reliability of all the above indicators should be discussed
in future studies for the resilience assessment of TIs. Thirdly, all identified indicators
assess the stages of “during” perturbation. The resistance and recovery capacities are less
discussed. The actions of preparation and restoration play an important role to improve
cognitive and learning capacities in a resilience scenario.

Sub-indicators and indicators spatialization and mapping are applied widely. Nev-
ertheless, there is a lack of a standard systematic framework for the hierarchy and cate-
gorization of indicators. To enable users to better apply indicators in practice cases, the
question concerning how to structure the classification of indicators should also be inves-
tigated. Additionally, geographic information systems (GIS) have been a powerful tool
for presenting and analyzing layers of information [87]. The question concerning ow to
improve the method of indicators spatialization based on GIS application has become an
essential challenge for the future.

7.2. Search Method with Keywords

This paper is based on a literature search online. However, the search work may
be limited by the selected keywords. Based on an observation on resilience assessment
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framework, some studies on resilience indicator of TIs could not be screened in electronic
databases with the keywords “indicator” [50,53,97]. Some studies use terms or vocabularies
similar to “indicators”, such as index, indices, parameter, metrics, but they fit the definition
of “indicator” in this study [33,98]. Some studies use variables to assess resilience, such as
time, performance, damage, costs [99–101]. These variables are indicators, but they cannot
be found with the keyword “indicator” either. Therefore, the indicators identified by the
search method with the keyword “indicator” are not all existing indicators. Furthermore,
according to a test, more articles could be screened if the search work adds these similar
vocabularies and variables as keywords. However, few articles are suitable for study
objective and it still requires manual selection, since the definitions and usage of these
similar vocabularies or variables are not completely the same as “indicator”. This shows
that the automatic search method has barriers in practice application. The method used
in this study makes it possible to screen articles with the “resilience indicator of TIs” as
the core of the study, and not to identify all “resilience indicator of TIs”. To select more
relevant literatures, two additional methods are suggested to be considered in the future:
the reference of relevant studies or suggestions from experts.

8. Conclusions

Over the past decade, the emphasis of the concept of resilience has been well enhanced
among urban managers and scientific studies. In particular, the resilience of CIs and TIs
have become the important aspect to improve the city’s performance. Undeniably, on both
scientific and practice domains, there is a growing effort devoted to assess the resilience of
TIs. However, as an internationally recognized method, the indicators assessment has not
been integrated into a standard system to help describe the resilience of TIs. This study
presents a review and a summary of the existing resilience indicators for TIs, which allow
one to highlight the characteristics and possible development of indicators assessment.
Additionally, this paper introduces a new definition of TIs resilience that provides a new
perspective about future resilience indicators.

The limit of this study is its search method, potentially leading to inadequate screened
scientific papers. Broadening the searching words or using other search methods is neces-
sary. Other future studies could focus on practice indicators in the regulatory frameworks,
guides, reports, and other non-scientific documents. Besides, the application of indica-
tors seems indispensable. Concrete steps could include indicators collection, indicators
identification, indicators calculation, indicators mapping, etc.
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101. Janić, M. Reprint of “Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive
event”. Transp. Res. Part A Policy Pract. 2015, 81, 77–92. [CrossRef]

http://doi.org/10.1002/prs.10485
http://doi.org/10.1007/s10111-011-0187-2
http://doi.org/10.1016/j.jlp.2007.04.005
http://doi.org/10.1051/e3sconf/20160707002
http://doi.org/10.1080/23789689.2017.1328920
http://doi.org/10.1007/s11069-021-05066-0
http://doi.org/10.1007/s41062-017-0057-8
http://doi.org/10.1108/IJDRBE-02-2020-0014
http://doi.org/10.1016/j.tra.2015.07.012

	Introduction 
	Terminology 
	Definition of Resilience 
	Resilience in Urban Transportation 
	Resilience of TIs in This Study 

	Definition of Indicator 
	Indicator for Resilience Assessment 
	Indicator for Transport Network Resilience 
	Resilience Indicator in This Study 


	Three Steps of Literature Search Methodology 
	Step 1: Key Word Selection 
	Step 2: Scanning Scientific Database to Screen Papers 
	Step 3: Selecting Suitable Papers 

	Searching Result and Quantity Analysis 
	Screening Result and Relativity Analysis 
	An Indicators’ Overview in Selected Papers 
	Dimension of Indicators 
	Indicators’ Temporal Stages 
	Position of Focus System 
	Sub-Indicators 
	Spatialization of Infrastructure Resilience Indicators 
	Results of Indicators’ Analysis 

	Discussion 
	Identified Existing Indicators 
	Search Method with Keywords 

	Conclusions 
	References

